Greedy low-rank methods for solving general linear matrix equations‡

Daniel Kressner∗ Petar Sirković†

February 26, 2014

Abstract

This work is concerned with the numerical solution of large-scale linear matrix equations

\[A_1XB_1^T + \cdots + A_KXB_K^T = C. \]

The most straightforward approach computes \(X \in \mathbb{R}^{m \times n} \) from the solution of an \(mn \times mn \) linear system, typically limiting the feasible values of \(m, n \) to a few hundreds at most. Our new approach exploits the fact that \(X \) can often be well approximated by a low-rank matrix. It combines greedy low-rank techniques with Galerkin projection and preconditioned gradients. In turn, only linear systems of size \(m \times m \) and \(n \times n \) need to be solved. Moreover these linear systems inherit the sparsity of the coefficient matrices, which allows to address linear matrix equations as large as \(m = n = O(10^5) \). Numerical experiments demonstrate that the proposed methods perform well for generalized Lyapunov equations. Even for the case of standard Lyapunov equations our methods can be advantageous, as we do not need to assume that \(C \) has low rank.

Keywords. general linear matrix, Lyapunov equation, greedy low-rank, generalized Lyapunov equation, Galerkin projection

1 Introduction

We consider the numerical solution of large-scale linear matrix equations of the form

\[\sum_{k=1}^K A_kXB_k^T = C, \]

for given coefficient matrices \(A_1, \ldots, A_K \in \mathbb{R}^{m \times m}, B_1, \ldots, B_K \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{m \times n} \). Equation can also be seen as a linear system

\[\sum_{k=1}^K (B_k \otimes A_k) \text{vec}(X) =: A \text{vec}(X) = \text{vec}(C). \]

∗ANCHP, MATHICSE, EPF Lausanne, Switzerland. daniel.kressner@epfl.ch
†ANCHP, MATHICSE, EPF Lausanne, Switzerland. petar.sirkovic@epfl.ch
§Supported by the SNF research module A Reduced Basis Approach to Large-Scale Pseudospectra Computations within the SNF ProDoc Efficient Numerical Methods for Partial Differential Equations.
The matrix equation (1) is uniquely solvable if and only if \(A \in \mathbb{R}^{mn \times mn} \) is invertible, which will be assumed throughout the whole paper.

For \(K = 2 \), the matrix equation (1) reduces to the so called \textit{generalized Sylvester equation}, which includes the standard Sylvester equation \(A_1X + XB_2^T = C \) and the \textit{Lyapunov equation} \(A_1X + XA_1^T = -C \), with \(C \) symmetric positive definite, as particularly important special cases. The efficient numerical solution of Lyapunov and Sylvester equations has been studied intensively during the last decades and significant progress has been made; we refer to [9, 27] for recent surveys. In particular, a number of approaches have been developed for \(K = 2 \) that avoid the explicit computation and storage of the \(m \times n \) matrix \(X \), but attempt to compute a low-rank approximation to \(X \) and store the low-rank factors only. Of course, this requires that \(X \) can be well approximated by a low-rank matrix at all, that is, the singular values of \(X \) have a strong decay. Such a decay has been shown for a low-rank right-hand side \(C \) in [18, 26, 2].

None of the established methods for Lyapunov and Sylvester equations generalizes to the general case \(K > 2 \). In fact, the recent survey paper by Simoncini [27] states: \textit{The efficient numerical solution to . . . [reference to equation (1)] thus represents the next frontier for linear matrix equations . . .} Among the existing work addressing \(K > 2 \), particular attention has been paid to the \textit{generalized Lyapunov equation}

\[
AX + XA^T + \sum_{k=1}^{K} N_k X N_k^T = -DD^T.
\] (3)

In fact, this appears to be the most frequently encountered instance of (1) for \(K > 2 \) and typically arises in connection with bilinear dynamical systems. By extending results for the Lyapunov case, singular value decay bounds for \(X \) have been established in [6, 22], under various conditions on \(A \) and \(N_k \). For the numerical solution of (3), Damm [12] proposed a fixed point iteration based on the splitting \(\mathcal{L}(X) + \mathcal{N}(X) = -DD^T \) of (3) with the Lyapunov operator \(\mathcal{L} : X \mapsto AX + XA^T \). This iteration converges if \(\mathcal{L} \) is the dominant part of (3), that is, the spectral radius of \(\mathcal{L}^{-1}\mathcal{N} \) of smaller than 1.

A rather different approach by Benner and Breiten [6] treats (3) as an \(n^2 \times n^2 \) linear system in the entries of \(X \). Based on ideas from [16, 21], a standard iterative solver, such as CG or BiCGstab, is combined with low-rank truncation of the iterates. This approach requires the availability of a preconditioner, not only to ensure fast convergence but also to keep the numerical ranks of the iterates under control. Natural candidates for preconditioners are \(\mathcal{L} \) or approximations thereof, such as one iteration of the ADI method, especially if \(\mathcal{L} \) is the dominant part. Numerical experiments reported in [6] demonstrate that this approach performs remarkably well.

In this paper, we develop a framework of low-rank methods for addressing the general linear matrix equation (1). Our approach is very much inspired by a class of methods proposed in [11, 24] for solving Fokker-Planck equations and stochastic partial differential equations, see [11] for a survey of recent developments. The basic idea is to subsequently refine the current approximation to the solution \(X \) by adding a rank-1 correction. This correction is chosen to minimize a certain target functional, which renders the approach a greedy algorithm. As we will see, this basic approach may require further improvement to perform well for a larger range of applications. We will discuss two techniques for improving convergence: adding information from the preconditioned residual,
similar to the techniques considered in [14, 15], and performing Galerkin projection.

The rest of this paper is organized as follows. In Section 2, we explain the basic algorithm using greedy rank-1 updates. For the special case of stable symmetric Lyapunov equations, this algorithm is shown to preserve symmetry of the solution. As shown in Section 3, the performance of this basic algorithm is improved by using Galerkin projections. In Section 4, we discuss the incorporation of preconditioners into the method. Finally, a variety of numerical experiments is presented in Section 5.

2 Basic algorithm using greedy rank-1 updates

In this section, we describe the basic greedy rank-1 strategy for approximating the solution X of (1). Starting from the zero initial guess $X_0 = 0$, a sequence of approximations X_1, X_2, X_3, \ldots with $\text{rank}(X_j) \leq j$ is constructed as follows. Given the current approximation X_j, the next approximation takes the form

$$X_{j+1} = X_j + u_{j+1}v_{j+1}^T,$$

where the rank-1 correction $u_{j+1}v_{j+1}^T$ is chosen to minimize the approximation error. If the system matrix A defined in (2) is symmetric positive definite, we may use the energy norm induced by A to measure the error. Otherwise, we will use the residual norm. In the following, we will discuss details for these two choices. For notational convenience, we will identify the matrix representation $A \in \mathbb{R}^{mn \times mn}$ with the corresponding linear operator

$$A : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}, \quad A : X \mapsto \sum_{k=1}^{K} A_k X B_k^T.$$

2.1 Symmetric positive definite case

Let us assume that A is symmetric positive definite. Then the linear operator A induces the scalar product $\langle Y, Z \rangle_A = \text{tr}(Y^T A(Z))$ on $\mathbb{R}^{m \times n}$ along with the induced norm $\|Y\|_A = \sqrt{\langle Y, Y \rangle_A}$. We choose the correction $u_{j+1}v_{j+1}^T$ in (4) such that the approximation error measured in this norm is as small as possible. This yields the minimization problem

$$\min_{u,v} \|X - X_j - uw^T\|_A^2 = \min_{u,v} \langle X - X_j - uw^T, X - X_j - uw^T \rangle_A$$

$$= \|X - X_j\|_A^2 + \min_{u,v} \langle uw^T, uw^T \rangle_A - 2 \text{tr} (vu^T A(X - X_j))$$

$$= \|X - X_j\|_A^2 + \min_{u,v} \langle uw^T, uw^T \rangle_A - 2 \text{tr} (vu^T C_j),$$

where we set $C_j := A(X - X_j) = C - A(X_j)$. Ignoring the constant term, we thus obtain $u_{j+1}v_{j+1}^T$ from the minimization of the functional

$$J(u, v) := \langle uw^T, uw^T \rangle_A - 2 \text{tr} (vu^T C_j).$$

Note that J is convex in each of the two vectors u, v but it is not jointly convex. This setting is well suited for the alternating linear scheme (ALS), see [25]. Note that a minor complication arises
from the non-uniqueness in the representation of \(uv^T\) by the factors \(u,v\):
\[J(u,v) = J(\lambda u, \lambda^{-1} v)\]
for any \(\lambda \neq 0\). In ALS, this can be easily addressed by normalizing the factor that is currently not optimized.

In the first half-iteration of ALS, we consider \(v\) with \(\|v\|_2 = 1\) to be fixed and optimize for \(u\):

\[
\hat{u} = \arg \min_u J(u,v) = \arg \min_u \langle uv^T, uv^T \rangle_A - 2 \text{tr} (vu^T C_j)
\]

\[
= \arg \min_u \sum_{k=1}^K \text{tr} (vu^T A_k uv^T B_k^T) - 2 \text{tr} (vu^T C_j)
\]

\[
= \arg \min_u \sum_{k=1}^K (u^T A_k u)(v^T B_k v) - 2u^T C_j v.
\] (6)

The matrix

\[
\hat{A} := \sum_{k=1}^K (v^T B_k v) A_k
\] (7)

amounts to \((v^T \otimes I)A(v \otimes I)\) and thus inherits the positive definiteness from \(A\). Therefore, the solution of the unconstrained linear-quadratic optimization problem (6) is given by the solution of the linear system \(\hat{A}\hat{u} = C_j v\).

In the second half-iteration of ALS, we fix the normalized \(u \leftarrow \hat{u}/\|\hat{u}\|_2\) and optimize for \(v\). By the same arguments, the minimizer \(\hat{v}\) is given by the solution of the linear system \(\hat{B}\hat{v} = C_j^T u\), with

\[
\hat{B} := \sum_{k=1}^K (u^T A_k u) B_k.
\] (8)

The described procedure is summarized in Algorithm 1.

Algorithm 1 ALS for minimizing (5).

Choose random vectors \(u,v\) such that \(\|v\|_2 = 1\).

while not converged do

Solve linear system \(\hat{A}\hat{u} = C_j v\) with \(\hat{A}\) defined in (7).

Normalize \(u \leftarrow \hat{u}/\|\hat{u}\|_2\).

Solve linear system \(\hat{B}\hat{v} = C_j^T u\) with \(\hat{B}\) defined in (8).

Normalize \(v \leftarrow \hat{v}/\|\hat{v}\|_2\).

end while

We refer to [25] concerning the local convergence of Algorithm 1. In our setting, there is no need to let Algorithm 1 converge to high accuracy and we stop it after a few iterations.

Remark 2.1. The system matrices \(\hat{A}\) and \(\hat{B}\) in (7)–(8) are linear combinations of the coefficient matrices \(A_1,\ldots,A_K\) and \(B_1,\ldots,B_K\), respectively. They therefore inherit the sparsity of these matrices, which allows to use a sparse direct solver [13] for solving the linear systems in Algorithm 1.

In the special case of a Lyapunov equation \(AX + XA^T = C\), we have

\[
\hat{A} = A + (v^T Av) I, \quad \hat{B} = A + (u^T Au) I.
\]
Remark 2.2. Similar to the discussion in [23], the procedure above can be extended to work with rank- \(r \) corrections \(UV^T \), where \(U \in \mathbb{R}^{m \times r} \) and \(V \in \mathbb{R}^{n \times r} \), instead of rank-1 corrections. The first half-step of ALS then consists of fixing \(V \) (normalized to have orthonormal columns) and optimize for \(U \). The resulting linear system takes the form of a linear operator equation \(\mathbf{A}(U) = C_j V \) with

\[
\mathbf{A} : \mathbb{R}^{m \times r} \to \mathbb{R}^{m \times r}, \quad \mathbf{A}(U) = \sum_{k=1}^K A_k Y (V^T B_k V)^T.
\]

For the special case of a Lyapunov equation, we have \(\mathbf{A} : Y \mapsto \mathbf{A} Y + Y (V^T AV)^T \). After computing a Schur decomposition of the \(r \times r \) matrix \(V^T AV \), the linear operator equation \(\mathbf{A}(U) = C_j V \) decouples into \(r \) linear systems, see, e.g., [27, Sec. 4.3].

For \(K > 2 \), such a decoupling is usually impossible and one therefore has to solve an \(mr \times mr \) linear system for the matrix representation \(\mathbf{A} = \sum_{k=1}^K V^T B_k V \otimes A_k \). The unfavorable sparsity pattern and the size of \(\mathbf{A} \) make the application of a sparse direct solver to this linear system expensive, see [2] for a related discussion.

2.1.1 Preservation of symmetry in the solution

In numerical experiments, we sometimes observed that ALS, Algorithm 1, converges to a symmetric solution for symmetric right-hand sides. The following theorem shows this property for the special case of Lyapunov equations.

Theorem 2.3. Let us consider the Lyapunov equation \(AX + XA^T = C \), where \(A \) is symmetric positive definite and \(C \) is symmetric positive semidefinite. Then for every local minimum \((u^*, v^*) \) of the corresponding functional \(J(u,v) := \langle u^T, wv^T \rangle_A - 2 \operatorname{tr} (vu^T C) \), the matrix \(u^*(v^*)^T \) is symmetric.

Proof. Since the zero matrix is symmetric, we may assume \(u^* \neq 0 \) and \(v^* \neq 0 \). Note that

\[
J(u,v) = v^T A u^* u + u^T A v^* v - 2 u^T C v.
\]

is invariant under rescaling: \(J(u,v) = J(\lambda u, 1/\lambda v) \) for \(\lambda \in \mathbb{R} \setminus \{0\} \). Hence, we may assume w.l.o.g. that \(\|u^*\|_2 = \|v^*\|_2 \). By the semidefiniteness of \(C \), \(J(u^*, -u^*) \geq J(u^*, u^*) \) and we therefore do not need to consider local minima of the form \((u^*, -u^*)\). With these considerations, the matrix \(u^*(v^*)^T \) is symmetric if and only if \(u^* = v^* \).

In contradiction to the statement of theorem, let us suppose that \(u^* \neq v^* \). Since \(f_{u^*}(v) := J(u^*, v) \) is strictly convex, its unique minimum is given by \(v^* \). In particular, this implies \(J(u^*, v^*) < J(u^*, u^*) \). Analogously, \(J(u^*, v^*) < J(v^*, v^*) \). Adding these two inequalities, one gets

\[
2(u^*)^T u^*(v^*)^T A u^* + 2(v^*)^T v^*(u^*)^T A v^* - 4(u^*)^T C v^* < 2(u^*)^T u^*(u^*)^T A u^* + 2(v^*)^T v^*(v^*)^T A v^* - 2(u^*)^T C u^* - 2(v^*)^T C v^*.
\]

Using \(\|u^*\|_2 = \|v^*\|_2 \), this is equivalent to

\[
-2(u^*)^T C v^* < -(u^*)^T C u^* - (v^*)^T C v^*
\]

\[
\iff 0 < -(u^* - v^*)^T C (u^* - v^*),
\]

which leads to contradiction for \(u^* \neq v^* \), since \(C \) is positive semidefinite.

\[\square\]
2.1.2 Basic greedy rank-1 algorithm

Combining Algorithm 1 with the basic iteration 4 for rank-1 updates leads to Algorithm 2.

Algorithm 2 Greedy rank-1 updates.

Input: Matrices $A_1, \ldots, A_K, B_1, \ldots, B_K, C$ defining a symmetric positive definite linear matrix equation (1), number of updates R.

Output: Rank-R approximation X_R to the solution of (1).

\[
X_0 = 0 \quad C_0 = C
\]

\[
\text{for } j = 0, 1, \ldots, R - 1 \text{ do}
\]

\[
\text{Apply Algorithm 1 with right-hand side } C_j \text{ to determine rank-1 correction } u_{j+1}v_{j+1}^T.
\]

\[
X_{j+1} \leftarrow X_j + u_{j+1}v_{j+1}^T
\]

\[
C_{j+1} \leftarrow C_j - \sum_{k=1}^K A_ku_{j+1}v_{j+1}^TB_k^T
\]

\[
\text{end for}
\]

Assuming that a fixed number alsit of inner iterations in Algorithm 1 is used, Algorithm 2 requires the solution of $2R \times \text{alsit}$ linear systems of size $m \times m$ or $n \times n$. According to Remark 2.1, these linear systems inherit the sparsity from the coefficient matrices. Note that X_R is not stored explicitly, but in terms of its low-rank factors $[u_1, \ldots, u_R] \in \mathbb{R}^{m \times R}$, $[v_1, \ldots, v_R] \in \mathbb{R}^{n \times R}$. Similarly, the updated right-hand side C_j is stored implicitly, as a sum of the matrix C and j rank-K correction terms. Note that we only need to perform matrix-vector multiplications with C_j and C_j^T. To perform this efficiently, it is sufficient that C_j is sparse or has moderate rank. In contrast to many algorithms for large-scale matrix equations [27], we do not require C to be of low rank, see Section 5.2 for an example.

2.2 Symmetric indefinite and nonsymmetric cases

In the case when \mathcal{A} is not symmetric positive definite, we use the residual norm to measure the error. The correction term $u_{j+1}v_{j+1}^T$ in (4) is chosen such that the approximation error measured in this norm is as small as possible. This yields the minimization problem

\[
\min_{u,v} \|\mathcal{A}(X - X_j - uv^T)\|_F^2
\]

\[
= \min_{u,v} \langle \mathcal{A}(X - X_j - uv^T), \mathcal{A}(X - X_j - uv^T) \rangle
\]

\[
= \|\mathcal{A}(X - X_j)\|_F^2 + \min_{u,v} \langle \mathcal{A}(uv^T), \mathcal{A}(uv^T) \rangle - 2\langle \mathcal{A}(uv^T), \mathcal{A}(X - X_j) \rangle
\]

\[
= \|\mathcal{A}(X - X_j)\|_F^2 + \min_{u,v} \langle uv^T, uv^T \rangle_{\mathcal{A}^T\mathcal{A}} - 2\text{tr} (vu^T\mathcal{A}^T(C_j)),
\]

where we again set $C_j := \mathcal{A}(X - X_j) = C - \mathcal{A}(X_j)$. By ignoring the constant term, we thus obtain $u_{j+1}v_{j+1}^T$ from the minimization of the functional

\[
J(u, v) := \langle uv^T, uv^T \rangle_{\mathcal{A}^T\mathcal{A}} - 2\text{tr} (vu^T\mathcal{A}^T(C_j)).
\]
The symmetric positive definite linear operator \(A^T A \) has the form
\[
A^T A : \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}, \quad A^T A : X \mapsto \sum_{k,l=1}^{K} A_k^T A_l X B_k^T B_l.
\]

As before, we use ALS to address the minimization of (10). The first half-iteration takes the form
\[
\tilde{u} = \arg \min_u J(u, v) = \langle uu^T, vv^T \rangle_{A^T A} - 2 \text{tr} \left(vu^T A^T (C_j) \right)
\]
\[
= \arg \min_u \sum_{k=1}^{K} \sum_{l=1}^{K} (u^T A_k^T A_l u)(v^T B_l^T B_k v) - 2 \sum_{k=1}^{K} (u^T A_k^T C_j B_k v).
\]

The matrix
\[
\tilde{A} := \sum_{k=1}^{K} \sum_{l=1}^{K} (v^T B_l^T B_k v) A_k^T A_l
\]
amounts to \((v^T \otimes I) A^T A (v \otimes I)\) and thus inherits the positive definiteness from \(A^T A \). Therefore, the solution of the unconstrained linear-quadratic optimization problem is given by the solution of the linear system \(\tilde{A} \tilde{u} = \sum_{k=1}^{K} A_k^T C_j B_k v \).

In the second half-iteration of ALS, we fix the normalized \(u \leftarrow \tilde{u}/\|\tilde{u}\|_2 \) and optimize for \(v \). By the same arguments, the minimizer \(\tilde{v} \) is given by the solution of the linear system \(\tilde{B} \tilde{v} = \sum_{k=1}^{K} (A_k^T C_j B_k) u \), with
\[
\tilde{B} := \sum_{k=1}^{K} \sum_{l=1}^{K} (v^T A_k^T A_l v) B_l^T B_k.
\]

Using the described procedure instead of Algorithm in Algorithm then yields the basic greedy rank-1 algorithm for indefinite and nonsymmetric \(A \).

2.3 Numerical example

The approach described in Section 2.2 considers \(A^T A \) instead of \(A \). This squares the condition number, which is well known to slow down convergence of classical iterative methods for solving linear systems. Our greedy low-rank methods are no exception.

To illustrate this point, we consider a generalized Lyapunov equation
\[
AX + XA^T + N_1 X N_1^T = -DD^T
\]
from the discretization of a 2D heat equation with bilinear boundary control, see Example below for more details. We have used 50 discretization points in each direction, resulting in matrices of size \(n = 2500 \). The corresponding \(n^2 \times n^2 \) system matrix \(A \) is symmetric, but not positive definite; it has one negative eigenvalue.

The blue curves in the plots of Figure show the singular values of the exact solution \(X \) for (14). Since the \((j+1)th\) singular value is the 2-norm error of the best rank-\(j \) approximation to \(X \), the singular values represent a lower bound for the error of the iterates obtained from any greedy rank-1
algorithm. As can be seen in Figure 1a, Algorithm 2 based on the residual norm converges quite slowly. We now modify (14), by dividing the matrices N_i by 2. In turn, the matrix A becomes definite. As seen in Figure 1b, the convergence of Algorithm 2 based on the residual norm does not benefit from this modification. However, the positive definiteness allows us to use the energy norm, which significantly speeds up convergence, see Figure 1c. Although the error curve is still not close to the best possible convergence predicted by the singular values, this clearly shows that it is preferable to use the energy norm formulation whenever possible. However, in the indefinite case, further improvements are needed to attain satisfactory convergence.

Figure 1: Convergence of basic greedy rank-1 algorithm for the generalized Lyapunov equation (14) arising from the discretization of 2D heat equation with bilinear boundary control. $X_m \rightarrow X_j$ and maybe set X_{lim} to $[0 \ 51]$.

3 Galerkin projection

In this section, we combine greedy rank-1 updates with Galerkin projection, similar to an existing idea [8] to accelerate convergence of the ADI method for Sylvester equations. After R iterations of Algorithm 2 the approximate solution takes the form

$$X_R = \sum_{j=1}^{R} u_j v_j^T. \quad (15)$$

Considering the subspaces $\mathcal{U} = \text{span} \{u_1, \ldots, u_R\}$ and $\mathcal{V} = \text{span} \{v_1, \ldots, v_R\}$, this means that X_R is contained in the tensor product $\mathcal{V} \otimes \mathcal{U}$. It is not unreasonable to expect that one can obtain an improved approximation to X by choosing the best approximation from $\mathcal{V} \otimes \mathcal{U}$. For this purpose, let the columns of $U, V \in \mathbb{R}^{n \times R}$ form orthonormal bases of \mathcal{U} and \mathcal{V}, respectively. Then every element in $\mathcal{V} \otimes \mathcal{U}$ takes the form $U Y V^T$ for some $R \times R$ matrix Y.
If \(\mathcal{A} \) is symmetric positive definite, we arrive at the minimization problem
\[
\min_{Z \in V \otimes U} \| X - Z \|^2_A
= \min_{Z \in V \otimes U} \langle Z, Z \rangle_A - 2 \operatorname{tr} (Z^T C),
= \min_{Y \in \mathbb{R}^{m \times m}} \langle U Y V^T, U Y V^T \rangle_A - 2 \operatorname{tr} (V Y^T U^T C)
= \min_{Y \in \mathbb{R}^{m \times m}} \operatorname{vec}(Y)^T (V \otimes U)^T \mathcal{A} (V \otimes U) \operatorname{vec}(Y) - 2 \operatorname{vec}(Y)^T (V \otimes U)^T \operatorname{vec} C.
\]
This minimization problem is strictly convex and has the unique solution \(Y_R \) given by the solution of the linear system
\[
\sum_{k=1}^{K} (V^T \otimes U^T) (B_k \otimes A_k) (V \otimes U) \operatorname{vec} Y_R = (V^T \otimes U^T) \operatorname{vec} C. \tag{16}
\]
This can be viewed as a Galerkin projection of the original equation (1) onto the subspace \(V \otimes U \).

If \(\mathcal{A} \) is not symmetric positive definite, minimizing the residual yields \(Y_R \) as the solution of the linear system
\[
\sum_{k=1}^{K} \sum_{l=1}^{K} (V^T \otimes U^T) (B_k \otimes A_k)^T (B_l \otimes A_l) (V \otimes U) \operatorname{vec} Y_R = \sum_{k=1}^{K} (V^T \otimes U^T) (B_k \otimes A_k)^T \operatorname{vec} C. \tag{17}
\]
Combining greedy rank-1 updates, Algorithm 2 with Galerkin projection yields Algorithm 3.

Algorithm 3 Greedy rank-1 updates with Galerkin projection.

Input: Matrices \(A_1, \ldots, A_K, B_1, \ldots, B_K, C \) defining a linear matrix equation (1), number of updates \(R \).

Output: Rank-\(R \) approximation \(X_R \) to the solution of (1).

\[
X_0 = 0 \quad \quad C_0 = C
\]

for \(j = 0, 1, \ldots, R - 1 \) do

Apply Algorithm 2 with right-hand side \(C_j \) to determine rank-1 correction \(u_{j+1} v_{j+1}^T \).

Orthonormalize \(u_{j+1} \) wrt \(U \) and append to \(U \).

Orthonormalize \(v_{j+1} \) wrt \(V \) and append to \(V \).

\(Y_{j+1} \leftarrow \) solution of the Galerkin equation (16) or (17)

\(X_{j+1} \leftarrow U Y_{j+1} V^T \)

\(C_{j+1} \leftarrow C - \sum_{k=1}^{K} A_k X_{j+1} B_k^T \)

end for

Remark 3.1. Both, (16) and (17), amount to solving a dense linear system of size \(R^2 \times R^2 \). This is performed by an LU decomposition, which requires \(O(R^6) \) operations and thus limits \(R \) to moderate values, say \(R \leq 100 \). A notable exception occurs for (16) when \(K = 2 \). Then (16) is a generalized Sylvester equation and can be solved with \(O(R^3) \) operations [17]. For the general case, one may be able to exploit the Kronecker structure (16) and (17) by using the preconditioned conjugate gradient method. This, however, requires the availability of a good preconditioner.
3.1 Numerical example

We reconsider the example from Section 2.3, with \(n = 400 \) (20 discretization points) and \(n = 2500 \) (50 discretization points). In both cases, the corresponding operator \(A \) is indefinite, and therefore the residual based formulation needs to be used. Figure 2 shows the convergence improvement obtained from the use of Galerkin projection. Clearly, a significant improvement sets in much earlier for \(n = 400 \) than for \(n = 2500 \).

Figure 2: Convergence of error \(\| X_j - X \|_2 \) for Algorithm 3 vs. the basic greedy rank-1 algorithm applied to the generalized Lyapunov equation (14).

4 Injecting preconditioned residuals

The example from Section 3.1 shows that the use of greedy low-rank techniques and Galerkin projection is not sufficient to attain quick convergence for ill-conditioned problems. It is sometimes possible to construct an efficient preconditioner \(P \) for a general linear matrix equation \(A(X) = C \). For example, suitable preconditioners for the generalized Lyapunov equation (3) can often be obtained from preconditioners for the Lyapunov operator \(X \mapsto AX + XA^T \). The usual way of using preconditioners when solving linear systems consists of replacing \(A(X) = C \) by the preconditioned equation \(P^{-1}(A(X)) = P^{-1}(C) \). This, however, bears a major disadvantage: Assuming that \(P^{-1} \) can be represented by a sum of \(L \) Kronecker products, the composition \(P^{-1} \circ A \) is a sum of \(K \cdot L \) (instead of \(K \)) Kronecker products. This significantly increases the cost of Algorithms 2 and 3.

In this section, we therefore suggest a different way of incorporating preconditioners, inspired by the Alternating minimal energy method (AMEn) from [14]. In AMEn, a low-rank approximation of the residual is used to enrich the subspaces in the Galerkin projection. Our approach follows the same idea, but uses a preconditioned residual instead of the residual. In turn, information from 1 step of the preconditioned Richardson iteration is injected into the subspaces.
The preconditioned residual in step $j + 1$ of Algorithm 3 is given by $P^{-1}(C_j)$. Of course, this matrix is not computed explicitly but represented in terms of its low-rank factors, exploiting the fact that C_j itself is given in terms of low-rank factors and P^{-1} is a short sum of Kronecker products. Still, the rank of $P^{-1}(C_j)$ is usually quite high and truncated further to fixed rank, say rank 5. The matrices containing the corresponding dominant left and right singular vectors are denoted by U_{res} and V_{res}, respectively. These vectors are added to U and V before performing the Galerkin projection.

In effect, the dimension of the subspaces spanned by U and V grows much more quickly compared to Algorithm 3. In particular, the solution of the linear systems (16) or (17) becomes rapidly expensive, see Remark 3.1. To diminish this effect, we perform another low-rank truncation after every Galerkin projection. This requires the computation of an SVD of the (small) matrix Y_{j+1}. If possible, the tolerance for performing this truncation should be kept small, say $\text{tol} = 10^{-10}$, as it ultimately determines the accuracy of the approximate solution.

Algorithm 4 Greedy rank-1 updates with Galerkin projection and preconditioned residuals.

Input: Matrices $A_1, \ldots, A_K, B_1, \ldots, B_K, C$ defining a linear matrix equation (1), number of updates R.

Output: Low-rank approximation X_R to the solution of (1).

$X_0 = 0$

$C_0 = C$

for $j = 0, 1, \ldots, R - 1$ do

 Apply Algorithm 1 with right-hand side C_j to determine rank-1 correction $u_{j+1}v_{j+1}^T$.

 Compute approximate left/right dominant singular vectors $U_{\text{res}}, V_{\text{res}}$ of $P^{-1}(C_j)$.

 Orthonormalize $[u_{j+1}, U_{\text{res}}]$ wrt U and append to U.

 Orthonormalize $[v_{j+1}, V_{\text{res}}]$ wrt V and append to V.

 $Y_{j+1} \leftarrow$ solution of the Galerkin equation (16) or (17).

 Truncate Y_{j+1} to lower rank.

 $X_{j+1} \leftarrow UY_{j+1}V^T$

 $C_{j+1} \leftarrow C - \sum_{k=1}^K A_kX_{j+1}B_k^T$

end for

4.1 Preconditioners

It remains to discuss examples of effective preconditioners for which P^{-1} is represented as a short sum of Kronecker products. As mentioned above, we can use a preconditioners for the Lyapunov operator $X \mapsto AX + XA^T$ in the case of a generalized Lyapunov equation (3). As discussed in [20], such preconditioners can be derived from iterative methods for solving Lyapunov equations:

1. One step of the ADI method with a single shift σ gives rise to the preconditioner

 $$P_{\text{ADI}}^{-1} = (A - \sigma I)^{-1} \otimes (A - \sigma I)^{-1}.$$

 Suitable choices for σ are discussed in, e.g., [9].

11
2. One step of the sign function iteration for Lyapunov equations gives rise to the preconditioner

$$P_{\text{sign}}^{-1} = \frac{1}{2c}(I \otimes I + c^2 A^{-1} \otimes A^{-1}),$$

with the scaling factor $c = \sqrt{\frac{\|A\|_2}{\|A^{-1}\|_2}}$. The matrix 2-norm can be approximated using $\|M\|_2 \approx \sqrt{\|M\|_1 \|M\|_\infty}$.

The application of P_{ADI}^{-1} and P_{sign}^{-1} to a matrix of rank ℓ requires the solution of 2ℓ linear systems with the (shifted) matrix A. To optimize this step, the LU factors are computed only once and reused in every iteration.

4.2 Numerical example

Figure 3 shows the convergence of Algorithm 4 for the example from Sections 2.3 and 3.1 for $n = 2500$. We used the preconditioner P_{sign}^{-1} from (18). The convergence, compared to Algorithm 3, clearly improves, to the extent that the method becomes practical for this example. This comes at the expense of a faster increase of the rank, which makes the Galerkin projection more expensive. To limit this increase, we apply a more aggressive truncation strategy and cap the rank at 50. This procedure is explained in more detail in Section 5 below.

5 Numerical experiments

In this section, we report on the performance of our algorithm for a number of large-scale examples available in the literature. Algorithm 4 has been implemented in MATLAB Version 7.14.0.739.
(R2012a) and all experiments have been performed on an Intel Xeon CPU E31225 with 4 cores, 3.1 GHz, and 8 GB RAM.

Unless stated otherwise, we have made the following choices in the implementation of Algorithm 4:

ALS iterations. The number of ALS iterations (see Algorithm 1) in the greedy rank-1 procedure is fixed to 5.

Preconditioner. The sign function based preconditioner P_{sign}^{-1} from (18) is used.

Truncation of residual. The preconditioned residual $P_{\text{sign}}^{-1}(C_j)$ is replaced by its best rank-5 approximation. This truncation is performed by a combining QR decompositions with an SVD, exploiting the fact that the rank of $P_{\text{sign}}^{-1}(C_j)$ is not full but given by the product of rank(C_j) with the Kronecker rank of P_{sign}^{-1} (which is 2 for P_{sign}^{-1}).

Truncation of iterates. As explained in Section 4, we truncate Y_{j+1} to lower rank such that all singular values below the relative tolerance $\text{tol} = 10^{-10}$ are neglected and the maximal rank maxrank is never exceeded. This strategy bears the risk that little new information can be added once maxrank is reached. To avoid this, we have implemented a restart strategy when this happens: Every 10 iterations the current approximation is truncated more aggressively to rank $0.6 \times \text{maxrank}$.

In all experiments below, we measure the convergence of Algorithm 4 by computing the relative residual norm

$$\|C - A(X_j)\|_F / \|C\|_F.$$

5.1 Generalized Lyapunov equations

Generalized Lyapunov equations typically arise from bilinear control problems of the form

$$\dot{x}(t) = Ax(t) + \sum_{k=1}^{K} N_k x(t) u_k(t) + Du(t), \quad x(0) = x_0,$$

(19)

with the state vector $x(t) \in \mathbb{R}^n$ and the control $u(t) \in \mathbb{R}^\ell$. The controllability Gramian [7] for (19) plays an important role in model reduction of bilinear systems and is given by the solution of the generalized Lyapunov equation [3].

In the following, we consider two examples of bilinear control systems, a bilinear boundary control problem and the Carleman bilinearization of an RC circuit.

Example 5.1. Following [6, 12], we consider the heat equation on the unit square with bilinear boundary control:

$$\frac{\partial}{\partial t} z = \Delta z \quad \text{in } [0, 1]^2,$$

$$\vec{n} \cdot \nabla z = 0.5 \cdot u \cdot (z - 1) \quad \text{on } \Gamma_1,$$

$$z = 0 \quad \text{on } \Gamma_2, \Gamma_3, \Gamma_4,$$
where $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$ are the boundaries of $[0,1]^2$. After a standard finite difference discretization, the controllability Gramian is obtained as the solution of the generalized Lyapunov equation

$$AX +XA^T + N_1XN_1^T = -DD^T,$$

where $A \in \mathbb{R}^{n \times n}$ is the discretization of the 2D Laplace operator. The matrices N_1, D arise from the Neumann boundary control on Γ_1 and therefore have $O(\sqrt{n})$ nonzero columns. The corresponding $n^2 \times n^2$ system matrix $A = I \otimes A + A \otimes I + N_1 \otimes N_1$ turns out to be symmetric, but indefinite; most of its eigenvalues are negative and only a few are positive.

The convergence of Algorithm 4 for $n = 10,000$ and the maximal rank $\text{maxrank} = 90$ is shown in Figure 4. The execution time spent per iteration significantly increases as the size of the subspaces \mathcal{U} and \mathcal{V} grows, mainly due to the increased cost of constructing and solving the Galerkin system (17) and partly due to the orthogonalization that has to be performed. When increasing n further, we would need to work with even larger values of maxrank to attain reasonable convergence.

Inspired by the experiments in [6], we consider a slight modification of this example, dividing the matrices N_i by 2. In turn, the matrix A becomes definite and Algorithm 4 can be based on the energy norm. Also, the singular value decay of X appears to improve. Figure 5 shows the obtained results for $n = 250,000$. Even though n is larger than in Figure 4, Algorithm 4 converges significantly faster and attains a higher accuracy with the same maximal rank.

For both examples, the convergence of Algorithm 4 is clearly sublinear. This appears to be typical for algorithms based on greedy low-rank strategies, see, e.g., [10].

Compared to the results for $n = 562,500$ reported in [6] for the preconditioned CG with low-rank truncation, our algorithm seems to perform slightly worse in terms of attainable accuracy vs. the rank of the approximate solution.
Example 5.2. This example is taken from [3] and concerns a scalable RC ladder with \(n_0 \) resistors described by

\[
v_t = f(v) + bu(t),
\]

where

\[
f(v) = \begin{pmatrix}
-g(v_1) - g(v_1 - v_2) \\
g(v_1 - v_2) - g(v_2 - v_3) \\
& \vdots \\
g(v_{n_0-1} - v_{n_0})
\end{pmatrix}, \quad g(v) = \exp(40v) + v - 1.
\]

Using Carleman bilinearization, the nonlinear control problem (21) can be approximated by a bilinear control problem of the form (19). In turn, we obtain a generalized Lyapunov equation

\[
AX + XA^T + NXX^T = -DD^T
\]

with \(X \in \mathbb{R}^{(n_0 + n_0^2) \times (n_0 + n_0^2)} \) and

\[
A = \begin{bmatrix}
A_0 & A_1 \\
0 & I \otimes A_0 + A_0 \otimes I
\end{bmatrix},
\]

and \(A_0 \) is a tridiagonal matrix and \(A_1 \) arises from the coupling of first and second order terms.

According to our experiments, it is beneficial for this example to skip the greedy rank-1 procedure entirely and only include information from the preconditioned residual in \(U \) and \(V \). The resulting convergence for \(n_0 = 500 \), that is \(n = 250,500 \), and \(\text{maxrank} = 70 \) is displayed in Figure 6. The algorithm converges quickly to an accuracy below \(10^{-3} \), after which the convergence slows down due to imposed limit on the subspace size.

For reference, we also include the results for a modification discussed in [6], where the matrix \(N \) is divided by 2. Figure 7 shows nearly the same convergence behavior. Compared to the results
Figure 6: Convergence of relative residual norm for Algorithm 4 (without greedy rank-1) applied to Example 5.2.

Figure 7: Convergence of relative residual norm for Algorithm 4 (without greedy rank-1) applied to Example 5.2 with N replaced by $N/2$.
The following example is concerned with a stochastic control problem.

Example 5.3. This example is taken from [6] and arises from the control of a dragged Brownian particle, whose motion is described by the Fokker-Planck equation. We refer to [19] for a detailed explanation of this example. After discretization, the resulting generalized Lyapunov equation has size \(n = 10000 \) and is of the form (20). The matrix \(N_1 \) is sparse and has full rank 10000, while the right-hand side has rank 1.

As can be seen in Figure 8, Algorithm 4 converges quickly for this example and requires less than 0.5 seconds to attain an accuracy below \(10^{-8} \). According to [6, Table 1], the preconditioned BiCG with low-rank truncation requires around 10 seconds for the same example in a computing environment that is comparable to ours.

5.2 Lyapunov equation with right-hand sides having a singular value decay

As mentioned in the introduction, one of the most important special cases of (1) is the Lyapunov equation

\[
AX + XA^T = C, \tag{22}
\]

where \(A, C \in \mathbb{R}^{n \times n} \). There are numerous numerical methods that specifically target (22), see [9, 27]. For large-scale equations, most existing strategies crucially depend on a low-rank right-hand side, that is

\[
C = -DD^T, \quad \text{with} \quad D \in \mathbb{R}^{n \times \ell}, \quad \ell \ll n.
\]

In particular this is the case for methods that make use of Krylov subspaces based on \(A \) and \(D \). The dimension of these subspaces grows proportionally with \(\ell \), rendering these techniques impractical for larger values of \(\ell \).
In contrast, Algorithm 3 does not require such a low-rank assumption on the right-hand side to perform efficiently; we only need to be able to perform fast matrix-vector multiplications with C. Of course, Algorithm 3 can only attain reasonable convergence if the solution X has a strong singular value decay. For this purpose, it is not necessary that C has low rank. As the following example demonstrates, it sometimes suffices that C has a (possibly weaker) singular value decay.

Example 5.4. Consider the 2D Poisson equation on the unit square:

$$\Delta u(\xi) = f(\xi), \quad \xi \in \Omega = (-1, 1)^2$$

$$u(\xi) = 0, \quad \xi \in \partial \Omega.$$ \hspace{1cm} (23)

The standard finite difference discretization with n grid points in each coordinate yields a $n^2 \times n^2$ linear system of the form

$$(L \otimes I + I \otimes L) \text{vec}(X) = \text{vec}(F),$$

where L is the discretization of the 1D Laplace operator and F contains the values of f at the grid points. This is equivalent to the Lyapunov equation

$$LX + XL^T = F.$$ \hspace{1cm} (24)

In our experiments, we have used $f(\xi_1, \xi_2) = \exp((\xi_1^p + \xi_2^p)^{\frac{1}{p}})$ with $p = 10$ and $n = 40 000$. This results in a matrix F with a relatively slow singular value decay. There are several established techniques to multiply with such a matrix F implicitly and efficiently. For simplicity, we have used ACA (Adaptive Cross Approximation [4]) to replace F with a matrix of rank $\ell = 92$, which corresponds to an error indicator of 9.7×10^{-8} in ACA. The resulting convergence of Algorithm 3 (with 3 ALS iterations in Algorithm 1) is shown in Figure 9. The observed execution times are very small compared to other example, due to the fact that each iteration only requires the solution of $n \times n$ tridiagonal linear systems and a small-scale Sylvester equation.

![Figure 9: Convergence behavior for the Lyapunov equation arising from 2D Poisson equation with non-low-rank righthand side.](image-url)
6 Conclusions

In principle, greedy low-rank methods are applicable to any linear matrix equation whose solution admits good low-rank approximations. In practice, however, it turns out that these methods need to be combined with Galerkin projection and preconditioning strategies to attain reasonable convergence. The resulting solver, Algorithm 4, seems to perform quite well on a range of problems. For more challenging problems that feature larger ranks, the need for constructing and solving the Galerkin systems (16)–(17) may become a bottleneck. One way to overcome this is to stop our method when a certain rank is reached and use the approximate result as an initial guess for the iterative methods discussed in [6].

7 Acknowledgments

We thank Tobias Breiten for sending us a MATLAB implementation of Example 5.3.

References

