
PART 9

INTEGER PROGRAMMING
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Primary objectives:

Ï Capital budgeting: Modelling with integer programming

Ï Branch-and-Bound

Ï Cutting planes

Ï Modelling: Combinatorial Auctions and Constructing an index

fund
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A capital budgeting problem

Ï We want to invest $19’000

Ï Four investment opportunities which cannot be split (take it or
leave it)

1. Investment of $6’700 and net present value of $8’000

2. Investment of $10’000 and net present value of $11’000

3. Investment of $5’500 and net present value of $6’000

4. Investment of $3’400 and net present value of $4’000

Ï Since investments cannot be split up, we cannot model this

with continuous variables as in linear programming

An integer program

max8x1 +11x2 +6x3 +4x4

subject to

6.7x1 +10x2 +5.5x3 +3.4x4 É 19

xi ∈ {0,1}
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Solving the integer program

Encode problem in lp-format (or mps format):

Maximize

obj: 8 x1 + 11 x2 + 6 x3 + 4 x4

Subject to

c1: 6.7 x1 + 10 x2 + 5.5 x3 + 3.4 x4 <= 19

Binary

x1 x2 x3 x4

End

Integer programs can, for example, be solved with SCIP

Optimal solution: x1 = 0, x2 = x3 = x4 = 1
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Definition of integer programming

Mixed integer program (MIP)

maxcT x

Ax É b

xi ∈Z for i = 1, . . . ,p.

Here A ∈Qm×n, b ∈Qm and c ∈Qn. If p = n (all variables have to be

integral), then we speak about pure integer program.

x ∈Rn is integer feasible, if x satisfies all linear constraints and the

constraints xi ∈Z for i = 1, . . . ,p.

P

b
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Solving MIPs

LP-relaxation

Ignoring constraints xi ∈Z for i = 1, . . . ,p yields linear program,

called the LP-relaxation. The value of LP-relaxation is upper bound

on the optimum value of the MIP.
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Example of branch and bound

Consider pure IP

Maximize

obj: x1 + x2

Subject to

c1: -x1 + x2 <= 2

c2: 8 x1 + 2 x2 <= 19

Bounds

x1 x2 >= 0

Integer

x1 x2

End
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Example of branch and bound

LP-relaxation

Maximize

obj: x1 + x2

Subject to

c1: -x1 + x2 <= 2

c2: 8 x1 + 2 x2 <= 19

Bounds

x1 x2 >= 0

End

Solution of LP-relaxation
Ï x1 = 1.5, x2 = 3.5

Ï Value: x = 5
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Example of branch and bound

LP-relaxation

Maximize

obj: x1 + x2

Subject to

c1: -x1 + x2 <= 2

c2: 8 x1 + 2 x2 <= 19

Bounds

x1 x2 >= 0

End

Solution of LP-relaxation
Ï x1 = 1.5, x2 = 3.5

Ï Value: z = 5
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Example of branch and bound

Create two sub-problems:

Left sub-problem

Maximize

obj: x1 + x2

Subject to

c1: -x1 + x2 <= 2

c2: 8 x1 + 2 x2 <= 19

Bounds

x1 x2 >= 0

x1 <= 1

End

Solution of left subproblem

Ï x1 = 1, x2 = 3 (integral feasible)

Ï Value: z = 4
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Example of branch and bound

Right sub-problem

Maximize

obj: x1 + x2

Subject to

c1: -x1 + x2 <= 2

c2: 8 x1 + 2 x2 <= 19

Bounds

x1 x2 >= 0

x1 >= 2

End

Solution of right subproblem

Ï x1 = 2, x2 = 1.5 (integral infeasible)

Ï Value: z = 3.5
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Optimal solution

Ï Each integer feasible solution of right sub-problem has value

bounded by 3.5.

Ï Since value of integer feasible solution x1 = 1, x2 = 3 is 4, we

can prune the right sub-problem

Ï Since integer feasible solution x1 = 1, x2 = 3 is also optimal

solution of left sub-problem, each integer feasible solution of

left-subproblem has value at most 4.

Ï Thus x1 = 1 and x2 = 3 is optimum solution to integer program.
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Branch and Bound

L is list of linear programs, zL is global lower bound on value of MIP,

x∗ is integer feasible solution of MIP

Branch & Bound

1. (Initialize) L = {LP-Relaxation of MILP}, zL =−∞, x∗ =;

2. (Terminate?) If L =;, then x∗ is optimal

3. (Select node) Choose and delete problem Ni from L

4. (Bound) Solve Ni. If Ni is infeasible, then goto 2), else let xi be

its optimal solution and zi be its objective value.

5. (Prune) If zi É zL, then go to 2).

If xi is not integer feasible, then go to step 6)

If xi is integer feasible, then set zL = zi and x∗ = xi. Go to step 2)

6. (branch) From Ni construct linear programs N1
i

, . . . ,Nk
i

with

smaller feasible region whose union contains all integer

feasible solutions of Ni. Add N1
i

, . . . ,Nk
i

to L and go to step 2).
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Branching

Ï Let xi be solution to linear program Ni

Ï Let xi
j

be one of the non-integral components of xi for

j ∈ {1, . . . ,p}

Ï Each integer feasible solution satisfies xj É ⌊xi
j
⌋ or xj Ê ⌈xi

j
⌉.

Ï One way to branch is to create sub-problems

N−
ij

:= {Ni,xj É ⌊xi
j
⌋} and N+

ij
:= {Ni,xj Ê ⌈xi

j
⌉}

Ï Strong branching creates those sub-problems whose sum of

values is as small as possible (tightening the upper bound)
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Cutting planes

Ï Suppose we have pure integer program

max{cT x : Ax É b, x ∈Zn}

Ï Set P = {x ∈Rn : Ax É b} is called polyhedron

Ï Integer hull is convex hull of P∩Zn.

Ï If cT x É δ, c ∈Zn is valid for P, then cT x É ⌊δ⌋ valid for integer

hull PI of P.

Ï Cutting plane cT x É ⌊δ⌋ strengthens LP-relaxation

PI

P
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Cutting planes for mixed integer programs

Ï max{cT x : Ax É b, xi ∈Z for i = 1, . . . ,p} MIP, denote vector first p

variables x1, . . . ,xp by y

Ï Split: Tuple (π,π0), π ∈Zp, π0 ∈Z

Ï Each integer feasible solution x in polyhedron satisfies

πT y Éπ0 or πT y Êπ0 +1

Ï P = {x ∈Rn : Ax É b} polyhedron:

P(π,π0) = conv
(

P∩ (πy Éπ0), P∩ (πy Êπ0 +1)
)

.

Ï Split cut is inequality cT x É δ such that there exists a split

(π,π0) such that cT x É δ is valid for P(π,π0)

πy Éπ0 πy Ê π0 +1

P(π,π0)

cT x É δ
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In practice

Mixed integer linear programs are solved with a combination of

branch & bound and cutting planes
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PART 9.1

APPLICATIONS OF MIXED INTEGER

PROGRAMMING
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Combinatorial auctions

Problem description

Ï Auctioneer sells items M = {1, . . . ,m}

Ï Bid is a pair Bj = (Sj,pj), where Sj ⊆ M and pj is a price

Ï Auctioneer has received n bids B1, . . . ,Bn

Ï Question: How should auctioneer determine winners and

losers in order to maximize his revenue?
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Example

Ï Four items M = {1,2,3,4, }

Ï Bids: B1 = ({1},6), B2 = ({2},3), B3 = ({3,4},12), B4 = ({1,3},12),

B5 = ({2,4},8), B6 = ({1,3,4},16)

Integer program

Maximize

obj: 6 x1 + 3 x2 + 12 x3 + 12 x4 + 8 x5 + 16 x6

Subject to

c1: x1 + x4 + x6 <= 1

c2: x2 + x5 <= 1

c3: x3 + x4 + x6 <= 1

c4: x3 + x5 + x6 <= 1

Binary

x1 x2 x3 x4 x5 x6

End
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Several indistinguishable items

Ï ui: Number of items of type i

Ï Bid is tuple: Bj = (λ
j
1, . . . ,λ

j
m,pj)

Integer program

max
n
∑

i=1

pjxj

∑

j λ
j

i
xj É ui for i = 1, . . . ,m

xj ∈ {0,1}, j = 1, . . . ,n.
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The lockbox problem

Ï National firm in US receives checks from all over the country

Ï Delay from obligation of customer (check postmarked) to

clearing (check arrives)

Ï Money should be available as soon as possible

Ï Idea: Open offices all over country to receive checks and to

minimize delay
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Example

Ï Receive payments from four regions: West, Midwest, East,

South

Ï Average daily value from each region is: $600 K, $240 K, $720 K,

$ 360 K respectively

Ï Operating Lockbox costs $90 K per year

Clearing times:

From L.A. Pittsburgh Boston Houston

West 2 4 6 6

Midwest 4 2 5 5

East 6 5 2 5

South 7 5 6 3
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Example cont.

Ï Average of 3′600K = 6×600K is in process any given day

considering West sending to Boston

Ï Assuming 5% interest rate per year, this corresponds to a loss

of interest of 180 K per year

Complete table of lost interest in $K:

From L.A. Pittsburgh Boston Houston

West 60 120 180 180

Midwest 48 24 60 60

East 216 180 72 180

South 126 90 108 54
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Example cont.

Integer programming formulation

Ï yj ∈ {0,1} indicates whether lockbox j is open or not

Ï xij = 1 if region i sends checks to lockbox j

Ï Objective is to minimize total yearly loss

min60x11 +120x12 +180x13 +180x14 +48x12 . . .+90y1 + . . .+90y4

Ï Each region is assigned to exactly one lockbox

∑

j

xij = 1 for all i

Ï Regions can only send to open lockboxes:

∑

i

xij É 4yj for all j
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Complete IP

Minimize

obj: 60 X11 + 120 X12 + 180 X13 + 180 X14

+ 48 X21 + 24 X22 + 60 X23 + 60 X24

+ 216 X31 + 180 X32 + 72 X33 + 180 X34

+ 126 X41 + 90 X42 + 108 X43 + 54 X44

+ 90 Y1 + 90 Y2 + 90 Y3 + 90 Y4

Subject to

c1: X11 + X12 + X13 + X14 = 1

c2: X21 + X22 + X23 + X24 = 1

c3: X31 + X32 + X33 + X34 = 1

c4: X41 + X42 + X43 + X44 = 1

c5: X11 + X21 + X31 + X41 - 4 Y1 <= 0

c6: X12 + X22 + X32 + X42 - 4 Y2 <= 0

c7: X13 + X23 + X33 + X43 - 4 Y3 <= 0

c8: X14 + X24 + X34 + X44 - 4 Y4 <= 0

Binary

X11 X12 X13 X14 X21 X22 X23 X24 X31

X32 X33 X34 X41 X42 X43 X44 Y1 Y2 Y3 Y4
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Constructing an index fund

Ï Portfolio should reflect large index (like S&P 500)

Ï However, not all stocks should be bought (transaction costs)

Ï Suppose a measure of similarity is available: 0 É ρij É 1 for i 6= j,

ρii = 1.

Ï Variable xij models i being represented by j

IP model

max
∑

ij ρijxij
∑n

j=1 yj = q
∑n

j=1 xij = 1, i = 1, . . . ,n

xij É yj, i, j = 1, . . . ,n

xij,yj ∈ {0,1}, i, j = 1, . . . ,n
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Constructing an index fund cont.

Ï q stocks are selected

Ï Denote by Vi market value of stock i

Ï Weight of stock j

wj =

n
∑

i=1

Vixij

Ï Fraction to be invested in j is proportional to stocks weight

wj
∑

i wi
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Primary objectives:

Ï Capital budgeting: Modelling with integer programming ✔

Ï Branch-and-Bound ✔

Ï Cutting planes ✔

Ï Modelling: Combinatorial Auctions and Constructing an index

fund ✔
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