Computer Algebra
Spring 2010
Assignment Sheet 3

Exercises marked with a ★ can be handed in for bonus points. Due date is April 13.

Exercise 1
Prof. Magma claims that peasant’s multiplication and fast modular exponentiation are the same algorithm. What do you think of that, and why?

Exercise 2 (★)
Determine the remainder that one gets when dividing $2^{15 \times 313 \times 379 \times 409 \times 105}$ by 101.

Exercise 3
Let $N = pq$, where $p \neq q$ are primes. Show that given only N and $\phi(N)$, one can efficiently compute the prime factors p and q.

Exercise 4
Let $N = pq$, where $p \neq q$ are primes, and let $e \neq d$ be natural numbers such that $ed \equiv 1 \mod \phi(N)$.

1. Show that given only N, e, and d, one can efficiently compute the prime factorization of N.

2. What does this say about how hard it is to find the private key in RSA encryption? What about the hardness of breaking RSA encryption? Discuss.

Exercise 5 (★)
Show that if p and $2p - 1$ are both prime and $N = p(2p - 1)$, then exactly half of the elements of \mathbb{Z}_N^* are Fermat liars, namely all those which are squares modulo $2p - 1$.

Exercise 6
Let $N = p^k$ where p is prime. Show that N is not a Carmichael number.