Computer Algebra

Discussions from: April 13, 2010

Spring 2010

Assignment Sheet 4

Exercises marked with a \star can be handed in for bonus points. Due date is April 27.

Exercise 1

Recall the Lemma of the lecture which states that

$$\operatorname{ord}_{p}(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^{i}} \right\rfloor = \frac{n - S_{p}(n)}{p - 1}$$

where $S_p(n)$ is the sum of the digits of n written in base p. Prove the second equality.

Exercise 2 (*)

Determine the number of lines (in Θ -notation) that the following algorithm prints.

SPAM(n)

1 **for** $i \leftarrow 1 \dots n$ 2 **do** Print a line "i/n" 3 **if** n > 14 **then** SPAM(n/2)5 SPAM(n/2)

Exercise 3

Let *R* be a ring, and $\omega \in R$ be a primitive *n*-th root of unity. Show:

- 1. ω^{-1} is a primitve *n*-th root of unity.
- 2. If *n* is even, then ω^2 is a primitive (n/2)-th root of unity. If *n* is odd, then ω^2 is a primitive *n*-th root of unity.
- 3. Let $k \in \mathbb{Z}$ and $d = n/\gcd(n, k)$. Then ω^k is a d-th root of unity.
- 4. Determine the number of primitive n-th roots of unity in \mathbb{C} .

Exercise 4

Let $n \in \mathbb{N}$. Show that 2 is a primitive 2n-th root of unity modulo $2^n + 1$ if and only if n is a power of 2.

Exercise 5 (*)

Update to the latest version of the Subversion repository and find the new functionalities, in particular the placeholder polynomial::multiply_fft and test_polynomial. Implement multiplication of polynomials in $\mathbb{Z}[x]$ using FFT with modular arithmetic and make sure that the tests in test_polynomial run successfully.

Note: Use the new functions of integer for modular arithmetic.