Exercises marked with a ⋆ can be handed in for bonus points. Due date is April 27.

Exercise 1
Recall the Lemma of the lecture which states that
\[\text{ord}_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor = \frac{n - S_p(n)}{p - 1} \]
where \(S_p(n) \) is the sum of the digits of \(n \) written in base \(p \). Prove the second equality.

Exercise 2 (⋆)
Determine the number of lines (in \(\Theta \)-notation) that the following algorithm prints.

```
SPAM(n)
1 for i ← 1…n
2 do Print a line “i/n”
3 if n > 1
4 then SPAM(n/2)
5 SPAM(n/2)
```

Exercise 3
Let \(R \) be a ring, and \(\omega \in R \) be a primitive \(n \)-th root of unity. Show:

1. \(\omega^{-1} \) is a primitive \(n \)-th root of unity.
2. If \(n \) is even, then \(\omega^2 \) is a primitive \((n/2)\)-th root of unity. If \(n \) is odd, then \(\omega^2 \) is a primitive \(n \)-th root of unity.
3. Let \(k \in \mathbb{Z} \) and \(d = n/\gcd(n,k) \). Then \(\omega^k \) is a \(d \)-th root of unity.
4. Determine the number of primitive \(n \)-th roots of unity in \(\mathbb{C} \).

Exercise 4
Let \(n \in \mathbb{N} \). Show that 2 is a primitive \(2n \)-th root of unity modulo \(2^n + 1 \) if and only if \(n \) is a power of 2.
Exercise 5 (⋆)
Update to the latest version of the Subversion repository and find the new functionalities, in particular the placeholder `polynomial::multiply_fft` and `test_polynomial`. Implement multiplication of polynomials in $\mathbb{Z}[x]$ using FFT with modular arithmetic and make sure that the tests in `test_polynomial` run successfully.

Note: Use the new functions of `integer` for modular arithmetic.