Exercises marked with a ⋄ can be handed in for bonus points. Due date is November 5.

Exercise 1 (⋆)
Show that the VC dimension of the set system consisting of all n-dimensional axis aligned hyperrectangles is 2^n.

Exercise 2
Let \mathcal{C} be a concept class of boolean formulas (e.g. 3-CNF or 3-term DNF) and let \mathcal{C}^m be the restriction of \mathcal{C} to those boolean formulas which do not contain negative literals. Show that if \mathcal{C}^m is efficiently PAC learnable, then \mathcal{C} is efficiently PAC learnable.

Exercise 3
Let \mathcal{C}_n be the set of all algorithms c taking an n-bit string a as input and returning a single bit $c(a)$ in time $\text{size}(c)$. Show that if \mathcal{C} is efficiently PAC learnable, then every (polynomial time evaluable) concept class is efficiently PAC learnable.

Exercise 4
A 1-decision list $L = [(l_1, b_1), \ldots, (l_k, b_k), b]$ is defined by an ordered sequence of pairs (l_i, b_i), where l_i is a literal over boolean variables x_1, \ldots, x_n and b_i is a bit, and a default bit b. Given an n-bit string $a \in \{0, 1\}^n$, the value $L(a)$ is defined to be either b_j where j is the smallest index such that $l_j(a) = 1$, or b if no such j exists.

For example, for $L = [(x_1, 1), (\neg x_4, 0), 1]$, we have $L(0001) = 1$ (using the default bit), $L(0000) = 0$ (because $x_1 = 0$ and $\neg x_4 = 1$), and $L(1000) = 1$ (because $x_1 = 1$).

1. Design an efficient Occam algorithm for the concept class of 1-decision lists.

2. Conclude that 1-decision lists are efficiently PAC learnable. How many samples are required by the PAC learning algorithm?

Exercise 5 (⋆)
Let \mathcal{C} be efficiently PAC learnable. Show that there is an efficient probabilistic Occam algorithm for \mathcal{C}. (It is enough to show that the expected running time of the Occam algorithm is polynomial.)