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Hopf-Galois extensions of rings: Data

Commutative ring k

Homomorphism of augmented k-algebras ϕ : B → A

k-bialgebra H, seen as a B-algebra with trivial
B-action

Coassociative, counital morphism ρ : A→ A⊗k H of
B-algebras
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Hopf-Galois extensions of rings: Maps

The Galois map βϕ:

A⊗
B

A
A⊗

B
ρ

−−→ A⊗
B

A⊗
k

H
µ⊗H−−−→ A⊗

k
H.

The corestriction map iϕ:

B → Aco H := A�
H

k = {a ∈ A | ρ(a) = a⊗ 1}
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Hopf-Galois extensions of rings: Definition

The homomorphism ϕ : B → A is an H-Hopf-Galois
extension if the Galois map

βϕ : A⊗
B

A→ A⊗
k

H

and the corestriction map

iϕ : B → Aco H

are both isomorphisms.
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Hopf-Galois extensions of rings: Examples

1 Let G be a group. Any G-Galois extension ϕ : B → A
is a Hom(Z[G],Z)-Hopf-Galois extension.

2 If H is a Hopf algebra that is flat as a k-module and A
is a flat k-algebra, then

A→ A⊗ H : a 7→ a⊗ 1

is an H-Hopf-Galois extension.



Homotopic
Hopf-Galois
Extensions

Kathryn Hess

History and
motivation

Co-rings and
their comodules

Homotopic
Hopf-Galois
extensions

Descent

Generalization to ring spectra

[Rognes]

The unit map η : S → MU is an S[BU]-Hopf-Galois
extension in a homotopical sense (i.e., replacing
isomorphisms by weak equivalences), where

the diagonal ∆ : BU → BU × BU induces the
comultiplication S[BU]→ S[BU] ∧ S[BU];

the Thom diagonal MU → MU ∧ BU+ gives rise to
the coaction of S[BU] on MU; and

βη : MU ∧MU '−→ MU ∧ S[BU] is the Thom
equivalence.
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Goals

Categorify the ring-level definition à la Morita, in a
homotopical sense:

isomorphisms of objects

��
Quillen equivalences of model categories.

Characterize homotopic Hopf-Galois extensions in
well-known monoidal model categories.

Determine the role of homotopic Hopf-Galois extensions
in descent theory.
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The framework

Let M be a category endowed with
a monoidal structure: −⊗− : M×M→ M and
I ∈ Ob M such that

(A⊗B)⊗C ∼= A⊗ (B ⊗C) and A⊗ I ∼= A ∼= I ⊗A;

a model structure: a framework for defining
homotopy relations on morphisms, involving
distinguished classes of morphisms–weak
equivalences, fibrations and cofibrations–satisfying
axioms analogous to the properties of the continuous
maps with the same names.
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Definition
Let A be a monoid in M.

An A-co-ring is a comonoid in (AModA,−⊗
A
−), i.e., an

A-bimodule W endowed with a coassociative, counital
comultiplication

W →W ⊗
A

W

that is a morphism of A-bimodules.

Example
If A = I, then AModA = M, and an A-co-ring is just a
comonoid in M.

Example
A itself is an A-co-ring, endowed with the comultiplication
A
∼=−→ A⊗

A
A.
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Comodules over co-rings

If W is an A-co-ring, then MW
A is the category of

W -comodules in the category of right A-modules.

An object of MW
A is thus a right A-module M together with

a coassociative, counital morphism of right A-modules

θ : M → M ⊗
A

W .

Example

If A = I and C is a comonoid, then MC
I = ComodC , the

category of right C-comodules.

Example

MA
A
∼= ModA.
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Basic functors

Let γ : W →W ′ be a morphism of A-co-rings.

The forgetful functor UW : MW
A → ModA

The cofree functor −⊗
A

W : ModA → MW
A

The induced functor γ∗ : MW
A → MW ′

A

Remark
The functor UW is the left adjoint to −⊗

A
W , and γ∗ is a

left adjoint if MW
A admits equalizers.
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The trivial/coinvariants adjunction

Let W be an A-co-ring, endowed with a coaugmentation,
i.e., a morphism of A-co-rings η : A→W .

The trivial W -comodule functor is

TrivW = η∗ : ModA → MW
A .

If ModA admits equalizers, then the W -coinvariants
functor

CoinvW : MW
A → ModA

is the right adjoint to TrivW , defined by

Coinv(M, θ) = Mco W = equal(M
M⊗

A
η

⇒
θ

M ⊗
A

W ).
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Homotopy theory in MW
A

Under certain reasonable conditions on the monoidal
model category M and on W , the forgetful functor

UW : MW
A → ModA

left-induces a model category structure on MW
A .

Moreover,
γ∗ : MW

A → MW ′

A

is then the left member of a Quillen pair, for all morphisms
γ : W →W ′ of “nice enough” A-co-rings.
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Example: The canonical co-ring I

Let ϕ : B → A be a morphism of monoids.

The canonical co-ring on ϕ, denoted Wϕ, is A⊗
B

A, with

comultiplication equal to the composite

A⊗
B

A ∼= A⊗
B

B ⊗
B

A
A⊗

B
ϕ⊗

B
A

−−−−−→ A⊗
B

A⊗
B

A ∼= (A⊗
B

A)⊗
A

(A⊗
B

A).

The morphism µ̄ : A⊗
B

A→ A induced by the

multiplication map of A is the counit.
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Example: The canonical co-ring II

For any morphism of monoids ϕ : B → A,

MWϕ ∼= D(ϕ),

the descent category associated to ϕ.

An object of D(ϕ) is a right A-module M endowed with a
morphism θ : M → M ⊗

B
A such that the diagrams

M
θ //

θ

��

M ⊗
B

A

θ⊗
B

A

��

M
θ //

=

  A
AA

AA
AA

AA
A

M ⊗
B

A

r̄

��M ⊗
B

A
M⊗

B
ϕ⊗

B
A
// M ⊗

B
A⊗

B
A M

commute.

The pair (M, θ) is a descent datum.
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Canonical descent

Let ϕ : B → A be a morphism of monoids.

The canonical descent functor

Can : ModB → D(ϕ)

is defined on objects by Can(M) = (M ⊗
B

A, θM), with

θM = M ⊗
B
ϕ⊗

B
A.

If M is a “nice enough” monoidal model category, then
Can is the left member of a Quillen pair.
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Example: Comodule algebras and co-rings

Let H be any bimonoid in M.

Let A be an H-comodule algebra.

A⊗ H is naturally an A-co-ring, with left A-action

A⊗ A⊗ H µA⊗H−−−−→ A⊗ H,

and right A-action

A⊗H⊗A A⊗H⊗ρ−−−−−→ A⊗H⊗A⊗H
∼=−→ A⊗A⊗H⊗H µA⊗µH−−−−→ A⊗H

and comultiplication

A⊗ H A⊗∆−−−→ A⊗ H ⊗ H ∼= (A⊗ H)⊗
A

(A⊗ H).

Henceforth, we denote this co-ring Wρ.
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Hopf-Galois data

a bimonoid H

a monoid B

an H-comodule algebra A, with coaction
ρ : A→ A⊗ H

ϕ : TrivH(B)→ A a morphism of H-comodule
algebras

Assume that M and (H,B,A, ϕ) are “nice enough” to
ensure the existence of all the necessary model category
structures.
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The Galois functor

The Galois map βϕ, which is equal to the composite

A⊗
B

A
A⊗

B
ρ

−−→ A⊗
B

A⊗ H
µ⊗H−−−→ A⊗ H,

underlies a morphism of A-co-rings, from Wϕ to Wρ.

The Galois map therefore induces

(βϕ)∗ : D(ϕ)→ MWρ

A ,

the Galois functor associated to ϕ, which is the left
member of a Quillen pair, under reasonable conditions.
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The corestriction functor
Let j : A ∼−→ A′ be a fibrant replacement in the category of
H-comodule algebras.

A model for the homotopy coinvariants of the H-coaction
on A is then

Ahco H := (A′)co H .

The homotopy corestriction map iϕ : B → Ahco H is equal
to the composite

B ∼=
(

TrivH(B)
)co H ϕco H

−−−→ Aco H jco H

−−→ (A′)co H = Ahco H

and induces a functor

i∗ϕ : ModAhco H → ModB.
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Reminder of the ring case

Recall that ...

...a homomorphism of rings ϕ : B → A is an
H-Hopf-Galois extension if the Galois map

βϕ : A⊗
B

A→ A⊗
k

H

and the corestriction map

iϕ : B → Aco H

are both isomorphisms.
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Definition

The morphism
ϕ : TrivH(B)→ A

of H-comodule algebras is a homotopic H-Hopf-Galois
extension if the Galois functor

(βϕ)∗ : D(ϕ)→ MWρ

A

and the corestriction functor

i∗ϕ : ModAhco H → ModB

are both Quillen equvalences.
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Trivial extensions I

A bimonoid H is a Hopf monoid if the Galois functor

(βη)∗ : D(η)→ MW∆
H

associated to the H-comodule algebra map
η : Triv(I)→ H is a Quillen equivalence.

Examples
The monoid of Moore loops on a topological space is a
Hopf monoid in Top.

Any bialgebra in the category of chain complexes over a
commutative ring is a Hopf monoid.
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Trivial extensions II

Proposition
If H is a Hopf monoid and B is a fibrant monoid such that
B ⊗− preserves weak equivalences, then

B
B⊗η−−−→ B ⊗ H

is a homotopic H-Hopf-Galois extension.
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Example: Simplicial monoids

Let H be a simplicial monoid, seen as a simplicial
bimonoid, via the diagonal map.

Let A be a fibrant H-comodule algebra, i.e., a simplicial
monoid endowed with a simplicial homomorphism
p : A→ H that is a Kan fibration.

Let B be a simplicial monoid, and let ϕ : TrivH(B)→ A be
a morphism of H-comodule algebras.

Proposition
ϕ is a homotopic H-Hopf-Galois extension iff it is
homotopy equivalent to a principal fibration of simplicial
monoids.
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Example: Chain algebras I

Let H be a 1-connected bialgebra in the category of
finite-type chain complexes of k-vector spaces.

Let A be a connected H-comodule algebra, with
H-coaction ρ.

Proposition
The algebra map

A→ Ω(A; H; H) : a 7→ ai ⊗ 1⊗ hi ,

where ρ(a) = ai ⊗ hi , is a fibrant replacement of A as an
H-comodule algebra.

[H.-Levi] Ω(A; H; H) admits an algebra structure.
Fibrancy of Ω(A; H; H) proved by showing that it is
the limit of a “Postnikov tower.”
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Example: Chain algebras II

Example
The algebra map induced by the unit of H

ι : Ω(A; H; k) ↪→ Ω(A; H; H)

is a homotopic H-Hopf-Galois extension.

Remark

Ω(A; H; H) ⊗
Ω(A;H;k)

Ω(A; H; H) ∼= Ω(A; H; H)⊗ H

and

Ω(A; H; H)hco H = Ω(A; H; H)co H ∼= Ω(A; H; k),

since Ω(A; H; H) is fibrant. Thus, both iϕ and βϕ are
actually isomorphisms in this case.
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Goal

To prove a structure theorem relating the notions of
homotopic Hopf-Galois extensions,
homotopical faithful flatness, and
descent,

analogous to a well-known and important theorem in the
ring case, due to Schneider.
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Induction

Let H be a bimonoid, and let A be an H-comodule
algebra with H-coaction map ρ.

The ρ-induction functor

Indρ : ModAco H → MWρ

A

is defined on objects by

Indρ(M) = (M ⊗
Aco H

A,M ⊗
Aco H

ρ).

If M is a “nice enough” monoidal model category, then
Indρ is the left member of a Quillen pair.
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Schneider’s structure theorem

Theorem
Let k be a commutative ring, and let H be a k-flat Hopf
algebra.

The following are equivalent for any H-comodule algebra
A, with coinvariant algebra B = Aco H .

The inclusion B ↪→ A is an H-Hopf-Galois extension,
and A is a faithfully flat B-module.

The functor Indρ : ModB → MWρ

A is an equivalence,
where ρ denotes the H-coaction on A.

(A is faithfully flat over B if A is flat over B and
M ⊗

B
A = 0⇒ M = 0.)
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Characterizing faithful flatness

Theorem
Let ϕ : B → A be an inclusion of rings.

The canonical descent functor

Can : ModB → D(ϕ)

is an equivalence of categories if and only if A is faithfully
flat as a B-module.
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Homotopical faithful flatness

Let ϕ : B → A be a morphism of monoids in M.

The monoid A is homotopically faithfully flat over B if

Can : ModB → D(ϕ)

is the left member of a Quillen equivalence.
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The homotopical structure theorem

Theorem
Let M be a monoidal model category. Let
(H,B,TrivH(B)

ϕ−→ A) be Hopf-Galois data.

Under reasonable conditions on M and on the
Hopf-Galois data, the following conditions are equivalent.

The monoid map ϕ is a homotopic H-Hopf-Galois
extension, and A is homotopically faithfully flat over
B.

The functor

Indρ ◦(−⊗
B

Aco H) : ModB → MWρ

A

is a Quillen equivalence.
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