Exercice 1

1(a)

Poser

\[\mathcal{T}_1 + \mathcal{T}_2 = \left\{ (U_1 \times \{1\}) \cup (U_2 \times \{2\}) \mid U_1 \in \mathcal{T}_1, U_2 \in \mathcal{T}_2 \right\} \subseteq \mathcal{P}(X_1 \coprod X_2). \]

Affirmation. \(\mathcal{T}_1 + \mathcal{T}_2 \) est la topologie la plus fine sur \(X_1 \coprod X_2 \) telle que \(\iota_1 \) et \(\iota_2 \) soient toutes les deux continues.

Preuve. Soit \(Y \in \mathcal{P}(X) \). Observer d’abord que pour \(i = 1, 2 \),

\[\iota_i^{-1}(Y) = \{ x_i \in X_i \mid (x_i, i) \in Y \}. \]

Ainsi,

\[\iota_1^{-1}(Y) \in \mathcal{T}_1 \quad \text{et} \quad \iota_2^{-1}(Y) \in \mathcal{T}_2 \iff \exists U_1 \in \mathcal{T}_1, U_2 \in \mathcal{T}_2 \text{ tel que } Y = (U_1 \times \{1\}) \cup (U_2 \times \{2\}). \]

Par conséquent les applications \(\iota_1 \) et \(\iota_2 \) sont toutes les deux continues par rapport à une topologie \(\mathcal{T} \) sur \(X_1 \coprod X_2 \) si et seulement si

\[\mathcal{T} \subseteq \mathcal{T}_1 + \mathcal{T}_2. \]

Pour conclure il suffit donc de montrer que \(\mathcal{T}_1 + \mathcal{T}_2 \) est bien une topologie. Vérifions les axiomes.

(T1) Puisque \(\mathcal{T}_1 \) et \(\mathcal{T}_2 \) vérifient (T1), \(\emptyset, X_i \in \mathcal{T}_i, i = 1, 2 \). Par conséquent,

\[\emptyset = (\emptyset \times \{1\}) \times (\emptyset \times \{2\}) \in \mathcal{T}_1 + \mathcal{T}_2 \]

et

\[X_1 \coprod X_2 = (X_1 \times \{1\}) \times (X_2 \times \{2\}) \in \mathcal{T}_1 + \mathcal{T}_2. \]
Corrigé du test du 16.02.2011

(T2) Soit

\[\left\{ (U_1 \times \{1\}) \cup (U_2 \times \{2\}) \mid j \in J \right\} \subseteq T_1 + T_2. \]

Alors

\[\bigcup_{j \in J} (U_1 \times \{1\}) \cup (U_2 \times \{2\}) = \left(\bigcup_{j \in J} U_1 \times \{1\} \right) \cup \left(\bigcup_{j \in J} U_2 \times \{2\} \right), \]

ce qui est un élément de \(T_1 + T_2 \), puisque \(T_1 \) et \(T_2 \) vérifient (T2).

(T3) Soit

\[\left\{ (U_1 \times \{1\}) \cup (U_2 \times \{2\}) \mid 1 \leq j \leq n \right\} \subseteq T_1 + T_2. \]

Alors

\[\bigcap_{1 \leq j \leq n} (U_1 \times \{1\}) \cup (U_2 \times \{2\}) = \left(\bigcap_{1 \leq j \leq n} U_1 \times \{1\} \right) \cup \left(\bigcap_{1 \leq j \leq n} U_2 \times \{2\} \right), \]

ce qui est un élément de \(T_1 + T_2 \), puisque \(T_1 \) et \(T_2 \) vérifient (T3).

\[\square \]

1(b)

Soient \((x,i),(x',j) \in X_1 \coprod X_2\) tels que \((x,i) \neq (x',j)\). Il faut montrer qu'il existent \(W,W' \in T_1 + T_2\) tels que \(W \cap W' = \emptyset\), et \((x,i) \in W\) et \((x',j) \in W'\).

Si \(i \neq j\), alors on peut poser \(W = X_i \times \{i\}\) et \(W' = X_j \times \{j\}\); toutes les conditions nécessaires sont clairement vérifiées.

Si \(i = j\), alors, puisque \((X_i,T_i)\) est de Hausdorff, il existe \(U,U' \in T_i\) tels que \(U \cap U' = \emptyset\) et \(x \in U, x' \in U'\). On peut donc poser \(W = U \times \{i\}\) et \(W' = U' \times \{i\}\).

1(c)

Pour \(i = 1,2\), soit \(d_i : X_i \times X_i \to \mathbb{R}\) une métrique telle que \(T_{d_i} = T_i\). Soit \(\overline{d}_i\) la métrique bornée associée à \(d_i\), i.e.,

\[\overline{d}_i(x,x') = \begin{cases} d_i(x,x') & : d_i(x,x') \leq 1 \\ 1 & : \text{sinon} \end{cases} \]

Par un résultat du cours, \(T_{\overline{d}_i} = T_{d_i} = T_i\).

Définir une fonction

\[d : (X_1 \coprod X_2) \times (X_1 \coprod X_2) \to \mathbb{R} : ((x,i),(x',j)) \to \begin{cases} d_i(x,x') & : i = j \\ \overline{d}_j(x,x') & : i \neq j \end{cases} \]

Il s'agit bien d'une métrique, car
Corrigé du test du 16.02.2011

3

Un calcul simple montre que

Preuve. Un calcul simple montre que

Affirmation. $T_1 + T_2 = T_d$.

Exercice 2

Ecrire $q(x,i) = (x,i)$, pour tout $(x,i) \in X_1 \amalg X_2$.

2(a)

Pour que q soit une application quotient, il faut et il suffit que T_q soit la topologie quotient, i.e., que

$$T_q = \{ U \subseteq X_1 \amalg X_2 \mid q^{-1}(U) \in T_1 + T_2 \}.$$
2(b)
Puisque \((X_i, \mathcal{T}_i)\) est connexe et \(q \circ \iota_i\) est continue pour \(i = 1, 2\), il s'ensuit que \(\text{Im}(q \circ \iota_i)\) est un sous-espace connexe de \(\prod_{X_0} X_2\) pour \(i = 1, 2\). Par ailleurs,

\[
X_1 \prod_{X_0} X_2 = \text{Im}(q \circ \iota_1) \cup \text{Im}(q \circ \iota_2)
\]

e et

\[
\text{Im}(q \circ \iota_1) \cap \text{Im}(q \circ \iota_2) = \{(f_1(x), 1) \mid x \in X_0\} \neq \emptyset,
\]
puisque \(X_0 \neq \emptyset\), et \((x', 1) = (x'', 2)\) si et seulement s'il existe \(x \in X_0\) tel que \(f_1(x) = x'\) et \(f_2(x) = x''\).

On peut donc conclure que \(\prod_{X_0} X_2\) est connexe, par un résultat du cours, qui dit qu'une réunion de sous-espaces connexes est connexe si l'intersection de tous les sous-espaces est nonvide.

2(c)
Considérons les applications

\[
\begin{array}{ccc}
X_1 \prod_{X_0} X_2 & g & Y, \\
\downarrow q & & \downarrow \quad \\
X_1 \prod_{X_0} X_2 & & Y
\end{array}
\]

où \(g(x, 1) = x\) et \(g(x', 2) = x'\) pour tous \(x \in X_1\) et \(x' \in X_2\). Puisque \(Y = X_1 \cup X_2\), l'application \(g\) est surjective.

Montrons maintenant que \(g\) est une application quotient par rapport aux topologies \(\mathcal{T}_1 + \mathcal{T}_2\) et \(\mathcal{T}\). Si \(W \subseteq Y\), alors

\[
g^{-1}(W) \in \mathcal{T}_1 + \mathcal{T}_2 \iff W \cap X_1 \in \mathcal{T}_1 \text{ et } W \cap X_2 \in \mathcal{T}_2
\]

\[
\iff \exists U_1, U_2 \in \mathcal{T} \text{ tq } W \cap X_1 = U_1 \cap X_1 \text{ et } W \cap X_2 = U_2 \cap X_2.
\]

Or cette dernière condition implique que

\[
W = (W \cap X_1) \cup (W \cap X_2) = (U_1 \cap X_1) \cup (U_2 \cap X_2) \in \mathcal{T},
\]

par axiomes (T2) et (T3) d'une topologie, puisque nous avons supposé que \(X_1, X_2 \in \mathcal{T}\). Donc

\[
g^{-1}(W) \in \mathcal{T}_1 + \mathcal{T}_2 \implies W \in \mathcal{T}.
\]

Par ailleurs

\[
W \in \mathcal{T} \implies W \cap X_i \in \mathcal{T}, i = 1, 2 \implies g^{-1}(W) \in \mathcal{T}_1 + \mathcal{T}_2,
\]

et donc \(g\) est effectivement une application quotient.
Enfin observer que
\[g(x,i) = g(x',j) \iff (i = \text{jet}x = x') \text{ ou } (i \neq j \text{ et } x = x' \in X_0) \iff (x,i) \sim (x',j). \]
Un théorème du cours nous dit dès lors qu’il existe une application continue induite
\[\hat{g} : (X_1 \coprod_{X_0} X_2, T_1 + T_2) \to (Y, T) \]
telle que \(\hat{g} \circ q = g \) et qui est un homéomorphisme, puisque \(g \) est une application quotient.

2(d)
Il faut montrer que quels que soient \((x,i), (x',j) \in X_1 \coprod_{X_0} X_2 \), il existe un chemin qui les relie, i.e., une application continue \(\lambda : [0,1] \to X_1 \coprod_{X_0} X_2 \) telle que \(\lambda(0) = (x,i) \) et \(\lambda(1) = (x',j) \).
Supposons d’abord que \(i = j \). Puisque \(X_i \) est connexe par arcs, il existe un chemin \(\lambda : [0,1] \to X_i \) tel que \(\lambda(0) = x \) et \(\lambda(1) = x' \). On peut alors poser
\[\lambda = q \circ \iota_i \circ \hat{\lambda} : [0,1] \to X_1 \coprod_{X_0} X_2, \]
le qui est une application continue, car la composée de deux applications continues est toujours continue, tandis que
\[\lambda(0) = q \circ \iota_i \circ \hat{\lambda}(0) = q \circ \iota_i(x) = q(x,i) = (x,i) \]
et
\[\lambda(1) = q \circ \iota_i \circ \hat{\lambda}(1) = q \circ \iota_i(x') = q(x',j) = (x',j). \]

Supposons maintenant que \(i \neq j \). Sans perte de généralité, on peut supposer que \(i = 1 \) et \(j = 2 \). Soit \(x_0 \in X_0 \) (c’est ici que l’on a besoin de l’hypothèse que \(X_0 \neq \emptyset \)). Puisque \(X_1 \) et \(X_2 \) sont connexes par arcs, il existe des chemins
\(\hat{\lambda}_1 : [0,1] \to X_1 \) et \(\hat{\lambda}_2 : [0,1] \to X_2 \) tels que \(\hat{\lambda}_1(0) = x \) et \(\hat{\lambda}_1(1) = f_1(x_0) \), tandis que \(\hat{\lambda}_2(0) = f_2(x_0) \) et \(\hat{\lambda}_2(1) = x' \). Ainsi,
\[q \circ \iota_1 \circ \hat{\lambda}_1(0) = (x,1), \]
\[q \circ \iota_1 \circ \hat{\lambda}_1(1) = (f_1(x_0), 1) = (f_2(x_0), 2) = q \circ \iota_2 \circ \hat{\lambda}_2(0), \]
\[q \circ \iota_2 \circ \hat{\lambda}_2(1) = (x',2). \]
L’application
\[\lambda : [0,1] \to X_1 \coprod_{X_0} X_2 : t \mapsto \begin{cases} q \circ \iota_1 \circ \hat{\lambda}_1(2t) & : 0 \leq t \leq \frac{1}{2} \\ q \circ \iota_2 \circ \hat{\lambda}_2(2t - 1) & : \frac{1}{2} \leq t \leq 1, \end{cases} \]
est donc bien définie et, par le Lemme de Recollement, continue aussi. Ainsi \(\lambda \) est le chemin désiré, qui relie \((x,1)\) à \((x',2)\).