Algebraic K-theory
Exercise Set 5

01.04.2011

1. Let R be a ring, and let $\mathcal{I}(R)$ denote the set of all two-sided ideals of R. Show that $(\mathcal{I}(R), +, 0, *)$ is a semiring, where $I + J = \{x + y \mid x \in I, y \in J\}$ and $I * J = \{xy \mid x \in I, y \in J\}$ for all $I, J \in \mathcal{I}(R)$, and calculate its group completion.

2. Let X be any set, and let $\mathcal{P}(X)$ denote the power set of X. Show that both $(\mathcal{P}(X), \cap, X, \cup)$ and $(\mathcal{P}(X), \cup, \emptyset, \cap)$ are commutative semirings, and calculate their group completions.

3. Prove the following important, elementary properties of the tensor product construction. Let R, S, T and U be any rings.

 (a) If $M \in R\text{Mod}_S$ and $N \in S\text{Mod}_T$, then $M \otimes_S N \in R\text{Mod}_T$.

 (b) If $M \in R\text{Mod}_S$, then $R \otimes_R M \cong M$ as (R, S)-bimodules.

 (c) Let \mathcal{J} be any set. If $M_j \in R\text{Mod}_S$ for all $j \in \mathcal{J}$, and $N \in S\text{Mod}_T$, then
 $$(\bigoplus_{j \in \mathcal{J}} M_j) \otimes_S N \cong \bigoplus_{j \in \mathcal{J}} (M_j \otimes_S N)$$
 as (R, T)-bimodules

 (d) If $L \in R\text{Mod}_S$, $M \in S\text{Mod}_T$ and $N \in T\text{Mod}_U$, then
 $$(L \otimes_S M) \otimes_T N \cong L \otimes_S (M \otimes_T N)$$
 as (R, U)-bimodules.