1. Let R be a commutative ring such that $K_0(R)$ is a cyclic group. Prove that the only idempotents of R are 0 and 1. What if R is noncommutative?

2. Let C_2 denote the cyclic group of order 2. Compute $K_0(\mathbb{Q}[C_2])$.

3. Apply restriction of scalars to proving that if R and S are isomorphic rings, then $K_0(R)$ and $K_0(S)$ are isomorphic abelian groups.

4. (A first glimpse of the Morita invariance of K_0.) Let R be any ring. Prove that

$$K_0(\text{Mat}_{m,m}(R)) \cong K_0(\text{Mat}_{n,n}(R))$$

as abelian groups for all positive integers m and n. In particular,

$$K_0(R) \cong K_0(\text{Mat}_{n,n}(R))$$

for all n.

Hint: Observe that $\text{Mat}_{k,l}(R) \in \text{Mat}_{k,k}(R) \text{Mod}_{\text{Mat}_{l,l}(R)}$ for all k, l, and prove that

$$\text{Mat}_{k,l}(R) \otimes_{\text{Mat}_{l,l}(R)} \text{Mat}_{l,m}(R) \cong \text{Mat}_{k,m}(R)$$

for all k, l, m.

5. Let R be a ring with IBN, and let $R' = \text{Mat}_{n,n}(R)$. Prove that if $n > 1$, then the short exact sequence

$$0 \to K_0(\mathbb{Z}) \xrightarrow{K_0(n)} K_0(R') \to \tilde{K}_0(R') \to 0$$

does not split.

Hint: Prove that $[R']$ is divisible by n in $K_0(R')$.
