Syllabus

1. Introduction: motivations and relations with other fields [Week 1]

2. K_0 and classification of modules
 (a) Definition and elementary properties of K_0 [Weeks 1 to 5]
 i. Group completion
 ii. Grothendieck groups
 iii. Devissage
 iv. The Resolution Theorem
 v. Stability
 vi. Multiplicative structure
 (b) Functoriality of K_0 [Weeks 6 to 8]
 i. Exact functors
 ii. Naturality of $K_0(R)$
 iii. Localization

3. K_1 and classification of invertible matrices [Weeks 9 to 11]
 (a) Elementary matrices and commutators
 (b) Definition and elementary properties of K_1
 (c) Generalized determinants
 (d) K_1 as a Grothendieck group

4. K_2 and relations among matrices
 (a) Definition and elementary properties of K_2 [Week 12]
 (b) Exact sequences [Weeks 13]
 i. The relative sequence
 ii. Excision and the Mayer-Vietoris sequence
 iii. The localization sequence
 (c) Matsumoto’s Theorem [Week 14]
Bibliography

This course will be based primarily on Chapters 3, 4, 5, 6, 9, 12, 13, and 14 of the following text.