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Series 1 & 2

Recall that if f, g : X−→Y are continuous functions, we say that f is homo-

topic to g, denoted by f ≃ g, if there exists a continuous function H : X × I−→Y

such that H(x, 0) = f(x) and H(x, 1) = g(x) for each x ∈ X. Such a func-
tion H is called a homotopy from f to g. Hence, in terms of diagrams, f

is homotopic to g if and only if there exists a continuous function H which
makes the diagram

X

i0

f

X × I
H

∃
Y

X

i1

g

commute. Here, i0(x) := (x, 0) and i1(x) := (x, 1) for each x ∈ X. We will
refer to this diagram in a later exercise. Sometimes we use the term space

to denote a topological space. Sometimes we use the term map of spaces, or
simply map, to denote a continuous function.

Exercise 1. Let X,Y be topological spaces. Prove that the homotopy
relation ≃ is an equivalence relation on the set of all continuous functions
f : X−→Y .

Hence the set of all maps f : X−→Y is partitioned into equivalence classes
via ≃ . The equivalence classes are called homotopy classes, and the set of
all homotopy classes is denoted by [X,Y ]. If f : X−→Y is a map, then the
homotopy class of f is denoted by [f ].

Exercise 2. Let X,Y be based topological spaces. Prove that the based
homotopy relation ≃∗ is an equivalence relation on the set of all based
continuous functions X−→Y .

Recall that a based homotopy is a continuous function H : X × I−→Y such
that H(∗, t) = ∗ for each t ∈ I. Here we use the notation ∗ to denote the
basepoint of X and the basepoint of Y . The set of all based maps f : X−→Y

is partitioned into equivalence classes via ≃∗ . The equivalence classes are
called based homotopy classes, and the set of all based homotopy classes is
denoted by [X,Y ]∗. If f : X−→Y is a based map, then the homotopy class
of f is denoted by [f ]∗.

Exercise 3. Prove that composites of homotopic maps are homotopic. In
other words, if f, g : X−→Y and f ′, g′ : Y −→Z are maps such that f ≃ g

and f ′ ≃ g′, verify that f ′ ◦ f ≃ g′ ◦ g.
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Exercise 4. Prove that composites of based homotopic maps are based
homotopic. In other words, if f, g : X−→Y and f ′, g′ : Y −→Z are based
maps such that f ≃∗ g and f ′ ≃∗ g′, verify that f ′ ◦ f ≃∗ g′ ◦ g.

A map f : X−→Y is a homotopy equivalence if there exists a map g : Y −→X

such that g ◦ f ≃ id and f ◦ g ≃ id. Two spaces X and Y are homotopy

equivalent if there exists a homotopy equivalence f : X−→Y .

A topological space X is contractible if the identity map id : X−→X is ho-
motopic to the constant map cx0

: X−→X of some point x0 ∈ X. Here,
cx0

(x) := x0 for each x ∈ X. In particular, any one-point space is con-
tractible, but the empty space ∅ is not contractible.

Exercise 5. Let X be a space and let Y be a convex subset of R
n. Suppose

f, g : X−→Y are maps such that f(x0) = g(x0) for some x0 ∈ X. Use a
straight-line homotopy to prove that f ≃∗ g. Use this to prove that R

n and
I are contractible.

Exercise 6. Suppose Y is a contractible space. Prove that any two maps
f, g : X−→Y are homotopic. Use this to prove that any two constant maps
cy0

: Y −→Y and cy1
: Y −→Y are homotopic and that the identity map

id : Y −→Y is homotopic to any constant map cy0
: Y −→Y .

Exercise 7. Prove that a space is contractible if and only if it has the same
homotopy type as a one-point space. Use this to prove that two contractible
spaces have the same homotopy type, and that any map between contractible
spaces is a homotopy equivalence.

Let n ≥ 0. The n-sphere is defined by Sn := {x ∈ R
n+1| ‖x‖ = 1} regarded

as a subspace of R
n+1. In particular, S0 is the two-point subspace {−1, 1}

of R. The n-disk is defined by Dn := {x ∈ R
n| ‖x‖ ≤ 1} regarded as a

subspace of R
n. Denote by i : Sn−→Dn+1 the obvious inclusion map. The

following is a useful relation between homotopy and the extension of certain
maps.

Exercise 8. Let f : Sn−→Y be a map and consider any point x0 ∈ Sn.
Prove that the following are equivalent:

(a) f is homotopic to a constant map
(b) there exists a map f which makes the diagram

Sn

i

f
Y

Dn+1
f

∃

commute
(c) f is based homotopic to a constant map, with the basepoint of Sn

defined to be x0.



Exercise 9. Suppose Y is a contractible space. Use the above exercise to
prove that any map f : Sn−→Y has a continuous extension over Dn+1.

Homotopy theory and algebraic topology involve mappings from topology
to algebra, and category theory gives a useful language to express this. Here
we record some basic terminology, following very closely the summary given
in [2, Chapter 2].

A category C consists of a collection of objects, a set homC(X,Y ) of mor-
phisms (also called maps) between any two objects, an identity morphism
id ∈ homC(X,X) for each object X, and a composition pairing

◦ : homC(Y,Z) × homC(X,Y )−→homC(X,Z)

Y
g
−→ Z,X

f
−→ Y 7−→ X

g◦f
−−→ Z

for each triple of objects X,Y,Z. Composition must be associative and
identity morphisms must act as two-sided identities:

h ◦ (g ◦ f) = (h ◦ g) ◦ f, id ◦ f = f, f ◦ id = f

whenever the indicated composites are defined. For example, there is the
category Set of sets and functions, the category Top of topological spaces
and continuous functions, the category Top∗ of based topological spaces and
based continuous functions, the category Grp of groups and homomorphisms,
the category Ab of abelian groups and homomorphisms, and so on.

A functor F : C−→D is a map of categories. It assigns to each object X of
C an object F (X) of D and to each morphism f : X−→Y of C a morphism
F (f) : F (X)−→F (Y ) of D in such a way that it respects composition and
identity:

F (id) = id, F (g ◦ f) = F (g) ◦ F (f).

A morphism f : X−→Y in C is an isomorphism if there exists a g : Y −→X

in C such that g ◦ f = id and f ◦ g = id. In particular, functors preserve
isomorphisms. A category C has an opposite category Cop with the same
objects as C and with homCop(X,Y ) := homC(Y,X). For example, there are
forgetful functors

U : Top−→Set, U : Grp−→Set, U : Ab−→Set

which forget to the underlying category.

A natural transformation ϕ : F−→G between functors F,G : C−→D is a
map of functors. It consists of a morphism ϕX : F (X)−→G(X) for each



object X of C such that the diagram

X

f

F (X)

F (f)

ϕX

G(X)

G(f)

Y F (Y )
ϕY

G(Y )

commutes for each morphism f of C. The intuition is that the maps ϕX

are defined in a naturally occurring way. For example, let Y be a set and
consider the functors defined objectwise by

−× Y : Set−→Set, X 7−→ X × Y,

homSet(Y,−) : Set−→Set, X 7−→ homSet(Y,X).

There is an evaluation map eX : homSet(Y,X) × Y −→X which is natural in
X. In other words, the diagram

X

f

homSet(Y,X) × Y

f∗×id

eX

X

f

Z homSet(Y,Z) × Y
eZ

Z

commutes for each morphism f of Set.

Define the homotopy category hTop with objects the topological spaces and
with morphisms the homotopy classes of maps. In particular, homhTop(X,Y ) :=
[X,Y ]. Note that, by an exercise above, the composition pairing [g] ◦ [f ] :=
[g ◦ f ] is well-defined. There is a functor p defined by

p : Top−→hTop, X
f
−→ Y 7−→ X

[f ]
−→ Y

which is the identity on objects and which sends each map f to its homotopy
class [f ]. The homotopy category hTop is a quotient category in the sense
of the following universal property.

Exercise 10.

(a) Prove that p identifies homotopic maps. In other words, prove that
p(f) = p(g) whenever f ≃ g.

(b) Prove that p satisfies the following universal property: given any
functor F : Top−→C such that F (f) = F (g) whenever f ≃ g, there
exists a unique functor F which makes the diagram

Top

p

F
C

hTop

F

∃!

commute.



The homotopy category hTop satisfies another universal property. The fol-
lowing exercise shows that hTop is the “localization” of Top with respect to
the collection of all homotopy equivalences.

Exercise 11.

(a) Prove that p sends homotopy equivalences to isomorphisms.
(b) Prove that p satisfies the following universal property: given any

functor F : Top−→C which sends homotopy equivalences to isomor-
phisms, there exists a unique functor F which makes the diagram

Top

p

F
C

hTop

F

∃!

commute.

Checking part (b) amounts to verifying that: if a functor F : Top−→C sends
homotopy equivalences to isomorphisms, then F identifies homotopic maps.
Here is one approach: consider any f, g : X−→Y in Top such that f ≃ g.
We want to show that F (f) = F (g). We know the following diagrams

X

i0

f

X × I
H

∃
Y

X

i1

g

X

i0

id

X × I
σ

X

X

i1

id

commute. Note that the projection map σ is a homotopy equivalence, apply
the functor F to both of the diagrams, and argue that F (f) = F (g).

Let Y,Z be spaces and define the mapping space Map(Y,Z) to be the set
homTop(Y,Z) equipped with the compact-open topology. Sometimes the

space of maps Map(Y,Z) is denoted by the exponential notation ZY . Recall
the following properties of this mapping space; sometimes referred to as the
exponential law.

Proposition 12. Let X,Y,Z be spaces. If Y is Hausdorff and locally com-

pact, then there are isomorphisms of sets

homTop(X × Y,Z) ∼= homTop(X,Map(Y,Z))

natural in such X,Y,Z.

Let X be a space and consider any x, y ∈ X. Define x ∼ y if there exists a
map f : I−→X such that f(0) = x and f(1) = y. In other words, x ∼ y if
and only if there is a path in X which starts at x and ends at y.

Exercise 13. Prove that ∼ defines an equivalence relation on X.



Hence X is partitioned into equivalence classes via ∼. The equivalence
classes are called path components of X, and the set of all path components
is denoted by π0(X). If x ∈ X, then the path component of x is denoted by
[x]. If f : X−→Y is a map of spaces, define π0(f) : π0(X)−→π0(Y ) to be
the function sending a path component C of X to the path component of Y

containing f(C).

Exercise 14.

(a) Prove that π0 : Top−→Set is a well-defined functor.
(b) Prove that π0 factors uniquely through the homotopy category hTop.

In other words, prove that π0 fits into a commutative diagram of the
form

Top

p

π0

Set

hTop

∃!
π0

(c) Use part (b) to prove that if two spaces X and Y have the same
homotopy type, then π0(X) ∼= π0(Y ).

Exercise 15.

(a) Let X be a space. Prove that π0(X) ∼= [∗,X].
(b) Let X be a based space. Prove that π0(X) ∼= [S0,X]∗.
(c) Let X be a space which is Hausdorff and locally compact. Prove

that π0(Map(X,Y )) ∼= [X,Y ].

Part (b) is where the functor π0 gets its name.

Here are some references for this material: [4, Chapter 1], [2, Chapters 1-2],
[1, Chapter 1-2], [3, Chapter 0-1].
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