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Series 1 & 2

Recall that if f, g : X—Y are continuous functions, we say that f is homo-
topic to g, denoted by f ~ g, if there exists a continuous function H : X x [—Y
such that H(x,0) = f(x) and H(z,1) = g(z) for each z € X. Such a func-
tion H is called a homotopy from f to g. Hence, in terms of diagrams, f
is homotopic to g if and only if there exists a continuous function H which

makes the diagram
X f
iol \
H

X x1I >Y
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commute. Here, io(z) := (2,0) and i;(x) := (z,1) for each x € X. We will
refer to this diagram in a later exercise. Sometimes we use the term space
to denote a topological space. Sometimes we use the term map of spaces, or
simply map, to denote a continuous function.

Exercise 1. Let X,Y be topological spaces. Prove that the homotopy
relation ~ is an equivalence relation on the set of all continuous functions
f: X—Y.

Hence the set of all maps f : X—Y is partitioned into equivalence classes
via ~ . The equivalence classes are called homotopy classes, and the set of
all homotopy classes is denoted by [X,Y]. If f: X—Y is a map, then the
homotopy class of f is denoted by [f].

Exercise 2. Let X,Y be based topological spaces. Prove that the based
homotopy relation ~, is an equivalence relation on the set of all based
continuous functions X —Y .

Recall that a based homotopy is a continuous function H : X x I—Y such
that H(*,t) = * for each t € I. Here we use the notation * to denote the
basepoint of X and the basepoint of Y. The set of all based maps f : X—Y
is partitioned into equivalence classes via ~, . The equivalence classes are
called based homotopy classes, and the set of all based homotopy classes is
denoted by [X,Y].. If f: X—Y is a based map, then the homotopy class
of f is denoted by [f]..

Exercise 3. Prove that composites of homotopic maps are homotopic. In
other words, if f,g: X—Y and f/,¢ : Y—Z are maps such that f ~ ¢
and f' ~ ¢, verify that f'o f ~ ¢ og.
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Exercise 4. Prove that composites of based homotopic maps are based
homotopic. In other words, if f,g: X—Y and f',¢ : Y—Z are based
maps such that f ~, g and f’ ~, ¢/, verify that f'o f ~, ¢ og.

A map f: X—Y is a homotopy equivalence if there existsamap g : Y —X
such that go f ~id and f o g ~ id. Two spaces X and Y are homotopy
equivalent if there exists a homotopy equivalence f : X—Y.

A topological space X is contractible if the identity map id : X— X is ho-
motopic to the constant map ¢, : X—X of some point zp € X. Here,
Czo(z) 1= xp for each z € X. In particular, any one-point space is con-
tractible, but the empty space () is not contractible.

Exercise 5. Let X be a space and let Y be a convex subset of R"™. Suppose
f,g: X—Y are maps such that f(zg) = g(x¢) for some zp € X. Use a
straight-line homotopy to prove that f ~, g. Use this to prove that R™ and
I are contractible.

Exercise 6. Suppose Y is a contractible space. Prove that any two maps
f,g: X—Y are homotopic. Use this to prove that any two constant maps
Cyo 1 Y—Y and ¢, : Y—Y are homotopic and that the identity map
id : Y—Y is homotopic to any constant map ¢, : ¥ —Y.

Exercise 7. Prove that a space is contractible if and only if it has the same
homotopy type as a one-point space. Use this to prove that two contractible
spaces have the same homotopy type, and that any map between contractible
spaces is a homotopy equivalence.

Let n > 0. The n-sphere is defined by S™ := {z € R""!||z|| = 1} regarded
as a subspace of R™"*1. In particular, S¥ is the two-point subspace {—1,1}
of R. The n-disk is defined by D" := {z € R"||jz| < 1} regarded as a
subspace of R”. Denote by i : S"—D"*! the obvious inclusion map. The
following is a useful relation between homotopy and the extension of certain
maps.

Exercise 8. Let f:S"—Y be a map and consider any point xy € S™.
Prove that the following are equivalent:

(a) f is homotopic to a constant map

(b) there exists a map f which makes the diagram

f

St—Y

l. 3 7
7 "
7

Dn—l—l

commute
(c) fis based homotopic to a constant map, with the basepoint of S™
defined to be xg.



Exercise 9. Suppose Y is a contractible space. Use the above exercise to
prove that any map f : S”"—Y has a continuous extension over D"t

Homotopy theory and algebraic topology involve mappings from topology
to algebra, and category theory gives a useful language to express this. Here
we record some basic terminology, following very closely the summary given
in [2, Chapter 2].

A category C consists of a collection of objects, a set hom¢(X,Y’) of mor-
phisms (also called maps) between any two objects, an identity morphism
id € hom¢ (X, X) for each object X, and a composition pairing

o : hom¢(Y, Z) x homc(X,Y)—homc(X, Z)
vLzxLy — x%£Ly

for each triple of objects X,Y,Z. Composition must be associative and
identity morphisms must act as two-sided identities:

ho(gof)=(hog)of, idof=f foid=f

whenever the indicated composites are defined. For example, there is the
category Set of sets and functions, the category Top of topological spaces
and continuous functions, the category Top, of based topological spaces and
based continuous functions, the category Grp of groups and homomorphisms,
the category Ab of abelian groups and homomorphisms, and so on.

A functor F': C—D is a map of categories. It assigns to each object X of
C an object F'(X) of D and to each morphism f : X—Y of C a morphism
F(f): F(X)—F(Y) of D in such a way that it respects composition and
identity:

F(id) =id, F(go f)=F(g)o F(f).

A morphism f: X—Y in C is an isomorphism if there exists a g : Y —X
in C such that go f = id and f o g = id. In particular, functors preserve
isomorphisms. A category C has an opposite category C°P with the same
objects as C and with homcer (X,Y") := homc(Y, X). For example, there are
forgetful functors

U:Top—Set, U :Grp—Set, U :Ab—Set

which forget to the underlying category.

A natural transformation ¢ : F—G between functors F,G: C—D is a
map of functors. It consists of a morphism ¢x : F(X)—G(X) for each



object X of C such that the diagram

X

X F(X) —G(X)
Lf F(f)l lam
Y F(Y) -2 G(Y)

commutes for each morphism f of C. The intuition is that the maps ¢x
are defined in a naturally occurring way. For example, let Y be a set and
consider the functors defined objectwise by

— XY : Set—>Set, X+— X XY,
homsget (Y, —) : Set—Set, X — homse (Y, X).

There is an evaluation map ex : homge (Y, X) x Y— X which is natural in
X. In other words, the diagram

X homser (Y, X) x ¥ == X
7z homset (Y, Z) x Y —2> 7

commutes for each morphism f of Set.

Define the homotopy category hTop with objects the topological spaces and
with morphisms the homotopy classes of maps. In particular, homptep(X,Y) :=
[X,Y]. Note that, by an exercise above, the composition pairing [g] o [f] :=

[g o f] is well-defined. There is a functor p defined by

(]

p:Top—hTop, xLy — xLy

which is the identity on objects and which sends each map f to its homotopy
class [f]. The homotopy category hTop is a quotient category in the sense
of the following universal property.

Exercise 10.
(a) Prove that p identifies homotopic maps. In other words, prove that

p(f) = p(g) whenever f ~g.

(b) Prove that p satisfies the following universal property: given any
functor F': Top—C such that F'(f) = F(g) whenever f ~ g, there
exists a unique functor F' which makes the diagram

Top ——~C

J/ e

p
F

hTop

comimute.



The homotopy category hTop satisfies another universal property. The fol-
lowing exercise shows that hTop is the “localization” of Top with respect to
the collection of all homotopy equivalences.

Exercise 11.
(a) Prove that p sends homotopy equivalences to isomorphisms.
(b) Prove that p satisfies the following universal property: given any
functor F': Top—C which sends homotopy equivalences to isomor-
phisms, there exists a unique functor F' which makes the diagram

Top ——~C

J/ e

P
F

hTop

commute.
Checking part (b) amounts to verifying that: if a functor F' : Top—C sends
homotopy equivalences to isomorphisms, then F' identifies homotopic maps.
Here is one approach: consider any f,g: X—Y in Top such that f ~ g.
We want to show that F(f) = F'(g). We know the following diagrams

5 A0S

X x 1 Y X x 1

commute. Note that the projection map o is a homotopy equivalence, apply
the functor F' to both of the diagrams, and argue that F(f) = F(g).

X

Let Y, Z be spaces and define the mapping space Map(Y, Z) to be the set
homtop (Y, Z) equipped with the compact-open topology. Sometimes the
space of maps Map(Y, Z) is denoted by the exponential notation Z¥. Recall
the following properties of this mapping space; sometimes referred to as the
exponential law.

Proposition 12. Let X,Y, Z be spaces. If Y is Hausdorff and locally com-
pact, then there are isomorphisms of sets

homTep (X X Y, Z) = homte (X, Map(Y, Z))
natural in such X,Y, Z.

Let X be a space and consider any z,y € X. Define z ~ y if there exists a
map f: I—X such that f(0) =z and f(1) = y. In other words, x ~ y if
and only if there is a path in X which starts at « and ends at y.

Exercise 13. Prove that ~ defines an equivalence relation on X.



Hence X is partitioned into equivalence classes via ~. The equivalence
classes are called path components of X, and the set of all path components
is denoted by 7(X). If z € X, then the path component of x is denoted by
[x]. If f: X—Y is a map of spaces, define my(f) : mo(X)—mo(Y) to be
the function sending a path component C' of X to the path component of Y
containing f(C).

Exercise 14.

(a) Prove that my : Top—Set is a well-defined functor.

(b) Prove that 7 factors uniquely through the homotopy category hTop.
In other words, prove that m fits into a commutative diagram of the
form

Top — s Set

\L =l 7
P

o o
hTop

(c) Use part (b) to prove that if two spaces X and Y have the same
homotopy type, then 7o(X) = mo(Y).

Exercise 15.

(a) Let X be a space. Prove that mo(X) & [*, X].

(b) Let X be a based space. Prove that mo(X) = [SY, X]..

(c) Let X be a space which is Hausdorff and locally compact. Prove
that mo(Map(X,Y)) = [X,Y].

Part (b) is where the functor 7y gets its name.

Here are some references for this material: [4, Chapter 1], [2, Chapters 1-2],
[1, Chapter 1-2], [3, Chapter 0-1].
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