Decomposing random graphs into few cycles and edges

Dániel Korándi

Department of Mathematics, ETH Zürich

September 18, 2014

joint work with Michael Krivelevich and Benny Sudakov
Path decompositions

Gallai's conjecture: Every connected graph on \(n \) vertices can be decomposed into \(\lfloor \frac{n + 1}{2} \rfloor \) paths.

Theorem (Lovász, 1968): Every graph on \(n \) vertices can be decomposed into at most \(\frac{n}{2} \) cycles and paths. Hence also into at most \(n \) paths.

Theorem (Yan, 1999; Dean–Kouider, 2000): Every graph on \(n \) vertices can be decomposed into at most \(\frac{2n}{3} \) paths.
Path decompositions

Gallai’s conjecture
Every connected graph on n vertices can be decomposed into $\lfloor \frac{n+1}{2} \rfloor$ paths.
Path decompositions

Gallai’s conjecture

Every connected graph on n vertices can be decomposed into $\lfloor \frac{n+1}{2} \rfloor$ paths.

Theorem (Lovász, 1968)

Every graph on n vertices can be decomposed into at most $\frac{n}{2}$ cycles and paths.
Path decompositions

Gallai’s conjecture
Every connected graph on \(n \) vertices can be decomposed into \(\lfloor \frac{n+1}{2} \rfloor \) paths.

Theorem (Lovász, 1968)
Every graph on \(n \) vertices can be decomposed into at most \(\frac{n}{2} \) cycles and paths.

- And hence also into at most \(n \) paths.
Path decompositions

Gallai’s conjecture

Every connected graph on n vertices can be decomposed into $\left\lfloor \frac{n+1}{2} \right\rfloor$ paths.

Theorem (Lovász, 1968)

Every graph on n vertices can be decomposed into at most $n/2$ cycles and paths.

- And hence also into at most n paths.

Theorem (Yan, 1999; Dean–Kouider, 2000)

Every graph on n vertices can be decomposed into at most $2n/3$ paths.
Path decompositions

Gallai’s conjecture
Every connected graph on n vertices can be decomposed into $\left\lfloor \frac{n+1}{2} \right\rfloor$ paths.

Theorem (Lovász, 1968)
Every graph on n vertices can be decomposed into at most $n/2$ cycles and paths.

- And hence also into at most n paths.

Theorem (Yan, 1999; Dean–Kouider, 2000)
Every graph on n vertices can be decomposed into at most $2n/3$ paths.
Path decompositions

Gallai’s conjecture
Every connected graph on \(n \) vertices can be decomposed into \(\left\lfloor \frac{n+1}{2} \right\rfloor \) paths.

Theorem (Lovász, 1968)
Every graph on \(n \) vertices can be decomposed into at most \(n/2 \) cycles and paths.

\[\text{▶ And hence also into at most } n \text{ paths.} \]

Theorem (Yan, 1999; Dean–Kouider, 2000)
Every graph on \(n \) vertices can be decomposed into at most \(2n/3 \) paths.
Cycle decompositions

Erdős–Gallai conjecture

The edge set of every graph on \(n \) vertices can be decomposed into \(O(n) \) cycles and edges.

Claim (folklore)

Every graph can be decomposed into \(O(n \log n) \) cycles and edges.

Proof.

A graph of average degree \(d \) contains a cycle of length at least \(d \).

Dropping to average degree \(d/2 \) takes at most \(n \) cycles.

After removing \(O(n \log n) \) cycles, a forest remains.
Cycle decompositions

Erdős–Gallai conjecture
The edge set of every graph on \(n \) vertices can be decomposed into \(O(n) \) cycles and edges.
Erdős–Gallai conjecture
The edge set of every graph on n vertices can be decomposed into $O(n)$ cycles and edges.

Claim (folklore)
Every graph can be decomposed into $O(n \log n)$ cycles and edges.
Cycle decompositions

Erdős–Gallai conjecture
The edge set of every graph on n vertices can be decomposed into $O(n)$ cycles and edges.

Claim (folklore)

Every graph can be decomposed into $O(n \log n)$ cycles and edges.

Proof.
A graph of average degree d contains a cycle of length at least d.

Erdős–Gallai conjecture
The edge set of every graph on \(n \) vertices can be decomposed into \(O(n) \) cycles and edges.

Claim (folklore)

Every graph can be decomposed into \(O(n \log n) \) cycles and edges.

Proof.
A graph of average degree \(d \) contains a cycle of length at least \(d \). Dropping to average degree \(d/2 \) takes at most \(n \) cycles.
Cycle decompositions

Erdős–Gallai conjecture
The edge set of every graph on \(n \) vertices can be decomposed into \(O(n) \) cycles and edges.

Claim (folklore)
Every graph can be decomposed into \(O(n \log n) \) cycles and edges.

Proof.
A graph of average degree \(d \) contains a cycle of length at least \(d \). Dropping to average degree \(d/2 \) takes at most \(n \) cycles. After removing \(O(n \log n) \) cycles, a forest remains.
Cycle decompositions

Erdős–Gallai conjecture

The edge set of every graph on n vertices can be decomposed into $O(n)$ cycles and edges.
Cycle decompositions

Erdős–Gallai conjecture
The edge set of every graph on n vertices can be decomposed into $O(n)$ cycles and edges.

Theorem (Conlon–Fox–Sudakov, 2013+)

> Every graph breaks up into $O(n \log \log n)$ cycles and edges.
Cycle decompositions

Erdős–Gallai conjecture
The edge set of every graph on n vertices can be decomposed into $O(n)$ cycles and edges.

Theorem (Conlon–Fox–Sudakov, 2013+)
- Every graph breaks up into $O(n \log \log n)$ cycles and edges.
- The conjecture holds for random graphs and graphs of linear minimum degree.
Cycle decompositions

Erdős–Gallai conjecture

The edge set of every graph on n vertices can be decomposed into $O(n)$ cycles and edges.

Theorem (Conlon–Fox–Sudakov, 2013+)

- Every graph breaks up into $O(n \log \log n)$ cycles and edges.
- The conjecture holds for random graphs and graphs of linear minimum degree.

Our result addresses the random graph bound and determines the right asymptotics.
Random graphs

Definition

The Erdős-Rényi random graph $G(n, p)$ is a random subgraph of K_n, where the edges are kept independently with probability p.

Definition

Let $p = p(n)$ be some probability function. We say that some property P holds for $G(n, p)$ with high probability or whp, if

$$\lim_{n \to \infty} P(\text{P holds for $G(n, p)$}) = 1.$$
Random graphs

Definition

The Erdős-Rényi random graph $G(n, p)$ is a random subgraph of K_n, where the edges are kept independently with probability p.

Definition

Let $p(n)$ be some probability function. We say that some property P holds for $G(n, p)$ with high probability or \textit{whp}, if

$$\lim_{n \to \infty} P(P \text{ holds for } G(n, p)) = 1$$
Random graphs

Definition
The Erdős-Rényi random graph $G(n, p)$ is a random subgraph of K_n, where the edges are kept independently with probability p.

Definition
Let $p = p(n)$ be some probability function. We say that some property P holds for $G(n, p)$ with high probability or whp, if

$$\lim_{n \to \infty} \mathbb{P}(P \text{ holds for } G(n, p)) = 1.$$
Some natural lower bounds

Let $\text{odd}(G)$ be the number of odd-degree vertices in G. Each such vertex needs to be the endpoint of an edge. We need at least $\frac{\text{odd}(G(n,p))}{2}$ edges. $G(n,p)$ has about $\binom{n}{2}p$ edges whp. A cycle may contain up to n edges. We need at least $np/2$ cycles. Altogether, at least $\text{odd}(G(n,p))^2 + np^2$ cycles and edges.
Some natural lower bounds

Let $odd(G)$ be the number of odd-degree vertices in G.

Each such vertex needs to be the endpoint of an edge.

We need at least $\frac{odd(G)}{2}$ edges. $G(n, p)$ has about $\frac{n^2p}{2}$ edges whp.

A cycle may contain up to n edges.

We need at least $np/2$ cycles.

Altogether, at least $odd(G) + np/2$ cycles and edges.
Some natural lower bounds

Let $\text{odd}(G)$ be the number of odd-degree vertices in G. Each such vertex needs to be the endpoint of an edge.
Some natural lower bounds

Let $\text{odd}(G)$ be the number of odd-degree vertices in G. Each such vertex needs to be the endpoint of an edge.

- We need at least $\text{odd}(G(n, p))/2$ edges.
Some natural lower bounds

Let $odd(G)$ be the number of odd-degree vertices in G. Each such vertex needs to be the endpoint of an edge.

- We need at least $odd(G(n, p))/2$ edges

$G(n, p)$ has about $\binom{n}{2} p$ edges whp.
Let \(\text{odd}(G) \) be the number of odd-degree vertices in \(G \). Each such vertex needs to be the endpoint of an edge.

- We need at least \(\text{odd}(G(n, p))/2 \) edges

\(G(n, p) \) has about \(\binom{n}{2} p \) edges whp. A cycle may contain up to \(n \) edges.
Some natural lower bounds

Let $\text{odd}(G)$ be the number of odd-degree vertices in G. Each such vertex needs to be the endpoint of an edge.

- We need at least $\text{odd}(G(n, p))/2$ edges

$G(n, p)$ has about $\binom{n}{2} p$ edges whp. A cycle may contain up to n edges.

- We need at least $np/2$ cycles
Some natural lower bounds

Let $odd(G)$ be the number of odd-degree vertices in G. Each such vertex needs to be the endpoint of an edge.

- We need at least $\frac{odd(G(n, p))}{2}$ edges

$G(n, p)$ has about $\binom{n}{2} p$ edges whp. A cycle may contain up to n edges.

- We need at least $np/2$ cycles

Altogether, at least $\frac{odd(G(n,p))}{2} + \frac{np}{2}$ cycles and edges.
Our result

Theorem (K–Krivelevich–Sudakov, 2014+)

If \(p \gg \frac{\log \log n}{n} \) then whp, \(G(n, p) \) can be decomposed into

\[
\text{odd}(G(n, p)) + \frac{np}{2} + o(n)
\]

cycles and edges.
Our result

Theorem (K–Krivelevich–Sudakov, 2014+)

If $p \gg \frac{\log \log n}{n}$ then whp, $G(n, p)$ can be decomposed into

$$\frac{\text{odd}(G(n, p))}{2} + \frac{np}{2} + o(n)$$

cycles and edges.

Remark. In most of the probability range, $\text{odd}(G(n, p)) \sim n/2$.
Sparse random graphs \(\left(\frac{\log n}{n} \ll p \leq \frac{\log^{10} n}{n} \right) \)

We need to show odd \((G(n, p))\) 2 + o\((n)\) cycles and edges are enough.

Plan:
1. Remove edges to obtain an Euler graph.
2. Then remove long cycles to get an Euler graph on linearly many edges.
3. Break it up into cycles arbitrarily.
Sparse random graphs \(\left(\frac{\log n}{n} \ll p \leq \frac{\log^{10} n}{n} \right) \)

We need to show \(\frac{\text{odd}(G(n,p))}{2} + o(n) \) cycles and edges are enough.
Sparse random graphs \(\left(\frac{\log n}{n} \ll p \leq \frac{\log^{10} n}{n} \right) \)

We need to show \(\frac{\text{odd}(G(n,p))}{2} + o(n) \) cycles and edges are enough.

Plan:

1. Remove edges to obtain an Euler graph.
2. Then remove long cycles to get an Euler graph on linearly many edges.
3. Break it up into cycles arbitrarily.
Sparse random graphs \((\frac{\log n}{n} \ll p \leq \frac{\log^{10} n}{n})\)

We need to show \(\frac{\text{odd}(G(n,p))}{2} + o(n)\) cycles and edges are enough.

Plan:

1. Remove edges to obtain an Euler graph.
Sparse random graphs \(\left(\frac{\log n}{n} \ll p \leq \frac{\log^{10} n}{n} \right) \)

We need to show \(\frac{\text{odd}(G(n,p))}{2} + o(n) \) cycles and edges are enough.

Plan:

1. Remove edges to obtain an Euler graph.
2. Then remove long cycles to get an Euler graph on linearly many edges.
Sparse random graphs \(\left(\frac{\log n}{n} \ll p \leq \frac{\log^{10} n}{n} \right) \)

We need to show \(\frac{\text{odd}(G(n,p))}{2} + o(n) \) cycles and edges are enough.

Plan:

1. Remove edges to obtain an Euler graph.
2. Then remove long cycles to get an Euler graph on linearly many edges.
3. Break it up into cycles arbitrarily.
The odd-degree vertices

odd vertices
The odd-degree vertices

\[\alpha(G(n,p)) \leq 2 \log(np) \]

\[\text{diam}(G(n,p)) \leq 2 \log(n \log(np)) \]

For \(p \gg \log n \) the product is \(4 \log n p = o(n) \).
The odd-degree vertices

\[\alpha(G(n,p)) \leq 2 \log(np) \]

\[\text{diam}(G(n,p)) \leq 2 \log n \log(np) \]

For \(p \gg \log n \) the product is \(4 \log n p = o(n) \).
The odd-degree vertices

\[\alpha(G(n, p)) \leq 2 \log(np)\]

\[\text{diam}(G(n, p)) \leq 2 \log n \log(np)\]

For \(p \gg \log n\), the product is \(4 \log n p = o(n)\).
The odd-degree vertices

Two facts

\[\alpha(G(n,p)) \leq 2 \log(np) \]

\[\text{diam}(G(n,p)) \leq 2 \log n \log(np) \]

For \(p \gg \log n \), the product is \(4 \log n p = o(n) \).
The odd-degree vertices

Two facts

\[\alpha(G(n,p)) \leq 2 \log(np) \]

\[\text{diam}(G(n,p)) \leq 2 \log(n \log(np)) \]

For \(p \gg \log n \) the product is \(4 \log n p = o(n) \).
The odd-degree vertices

Two facts:

\[\alpha(G(n, p)) \leq 2 \log(np) \]

\[\text{diam}(G(n, p)) \leq 2 \log n \log(np) \]

For \(p \gg \log n \), the product is

\[4 \log n p = o(n) \]
The odd-degree vertices

Two facts

- \(\alpha(G(n,p)) \leq 2 \log(np) \)
- \(\text{diam}(G(n,p)) \leq 2 \log(n \log(np)) \)

For \(p \gg \log n \) the product is \(4 \log n p = o(n) \).
The odd-degree vertices

Two facts

- $\alpha(G(n, p)) \leq \frac{2 \log(np)}{p}$
The odd-degree vertices

Two facts

- $\alpha(G(n, p)) \leq \frac{2 \log(np)}{p}$
- $\text{diam}(G(n, p)) \leq \frac{2 \log n}{\log(np)}$
The odd-degree vertices

Two facts

\[\alpha(G(n, p)) \leq \frac{2 \log(np)}{p} \]
\[\text{diam}(G(n, p)) \leq \frac{2 \log n}{\log(np)} \]

For \(p \gg \frac{\log n}{n} \) the product is \(\frac{4 \log n}{p} = o(n) \).
Aim: Given a subgraph of $G(n, p)$ of average degree d, find a cycle of length $d \log^2 n$.

Recall: When removing cycles of length d, n cycles were needed to halve the average degree.

Here: We remove cycles of length $d \log^2 n$, so $n \log^2 n$ cycles are enough to halve the average degree.
Finding long cycles

Aim: Given a subgraph of $G(n, p)$ of average degree d, find a cycle of length $d \log^2 n$.

Recall:
When removing cycles of length d, n cycles were needed to halve the average degree.
Finding long cycles

Aim: Given a subgraph of $G(n, p)$ of average degree d, find a cycle of length $d \log^2 n$.

Recall:
When removing cycles of length d, n cycles were needed to halve the average degree.

Here:
We remove cycles of length $d \log^2 n$, so $\frac{n}{\log^2 n}$ cycles are enough to halve the average degree.
Finding long cycles

Aim: Find a cycle of length $d \log^2 n$.

A Posá-type lemma

If G has no cycle of length at least $3t$ then there is a set T of size t with $|N(T)| \leq 2|T|$.

S is too dense to be a subgraph of $G(n, p)$.

$\deg \approx d \frac{1}{6} d^2 \log^2 n$ edges

Density $\approx \frac{1}{\log^2 n}$.
Finding long cycles

Aim: Find a cycle of length $d \log^2 n$.

A Pósa-type lemma
If G has no cycle of length at least $3t$ then there is a set T of size at most t with $|N(T)| \leq 2|T|$.
Finding long cycles

Aim: Find a cycle of length $d \log^2 n$.

A Pósa-type lemma

If G has no cycle of length at least $3t$ then there is a set T of size at most t with $|N(T)| \leq 2|T|$.

T
Finding long cycles

Aim: Find a cycle of length $d \log^2 n$.

A Pósa-type lemma
If G has no cycle of length at least $3t$ then there is a set T of size at most t with $|N(T)| \leq 2|T|$.

\begin{align*}
T & \quad N(T)
\end{align*}
Finding long cycles

Aim: Find a cycle of length $d \log^2 n$.

A Pósa-type lemma
If G has no cycle of length at least $3t$ then there is a set T of size at most t with $|N(T)| \leq 2|T|$.

\begin{figure}
\centering
\begin{tikzpicture}
\node (S) at (0,0) {S};
\node (T) at (-1,-1) {T};
\node (N_T) at (1,-1) {$N(T)$};
\draw (S) edge (T);
\end{tikzpicture}
\end{figure}
Finding long cycles

Aim: Find a cycle of length $d \log^2 n$.

A Pósa-type lemma

If G has no cycle of length at least $3t$ then there is a set T of size at most t with $|N(T)| \leq 2|T|$.

\[
\begin{align*}
S & \quad \text{\text{d log}^2 n \text{ vertices}} \\
T & \quad N(T)
\end{align*}
\]
Finding long cycles

Aim: Find a cycle of length $d \log^2 n$.

A Pósa-type lemma

If G has no cycle of length at least $3t$ then there is a set T of size at most t with $|N(T)| \leq 2|T|$.

\[S \quad \text{\(d \log^2 n\) vertices} \]

\[d \approx d \quad \text{\(d \log^2 n\) vertices} \]

\[T \quad N(T) \]
Finding long cycles

Aim: Find a cycle of length $d \log^2 n$.

A Pósa-type lemma
If G has no cycle of length at least $3t$ then there is a set T of size at most t with $|N(T)| \leq 2|T|$.

$deg \approx d$

S

$d \log^2 n$ vertices

T

$N(T)$

$\frac{1}{6} d^2 \log^2 n$ edges
Finding long cycles

Aim: Find a cycle of length $d \log^2 n$.

A Pósa-type lemma

If G has no cycle of length at least $3t$ then there is a set T of size at most t with $|N(T)| \leq 2|T|$.

$deg \approx d$

$d \log^2 n$ vertices

$\frac{1}{6} d^2 \log^2 n$ edges

density $\approx \frac{1}{\log^2 n}$
Aim: Find a cycle of length $d \log^2 n$.

A Pósa-type lemma

If G has no cycle of length at least $3t$ then there is a set T of size at most t with $|N(T)| \leq 2|T|$.

S is too dense to be a subgraph of $G(n, p)$.
Splitting up the rest into cycles

We are left with an Euler graph with $O(n)$ edges.
Splitting up the rest into cycles

We are left with an Euler graph with $O(n)$ edges. Break it into cycles arbitrarily.
Splitting up the rest into cycles

We are left with an Euler graph with $O(n)$ edges. Break it into cycles arbitrarily.

- At most $O(n/\log \log n)$ cycles have length at least $\log \log n$.
Splitting up the rest into cycles

We are left with an Euler graph with $O(n)$ edges. Break it into cycles arbitrarily.

- At most $O(n/\log \log n)$ cycles have length at least $\log \log n$.

Claim
$G(n, p)$ contains at most \sqrt{n} cycles of length at most $\log \log n$.
Splitting up the rest into cycles

We are left with an Euler graph with $O(n)$ edges. Break it into cycles arbitrarily.

- At most $O(n / \log \log n)$ cycles have length at least $\log \log n$.

Claim

$G(n, p)$ contains at most \sqrt{n} cycles of length at most $\log \log \log n$.

$O(n / \log \log n)$ cycles in total.
Dense random graphs

- Remove odd (\(G(n,p)\)) / 2 + o(n) edges to make the graph Euler
- Remove approximately \(np/2\) Hamilton cycles using a result of Knox–Kühn–Osthus.
- Then a miracle occurs..
- Hence the graph is sparse enough to use our previous tools.
Dense random graphs

- Remove $\text{odd}(G(n, p))/2 + o(n)$ edges to make the graph Euler

- Hence the graph is sparse enough to use our previous tools.
Dense random graphs

- Remove \(\text{odd}(G(n, p))/2 + o(n) \) edges to make the graph Euler.
- Remove approximately \(np/2 \) Hamilton cycles using a result of Knox–Kühn–Osthus.
Dense random graphs

- Remove $\text{odd}(G(n, p))/2 + o(n)$ edges to make the graph Euler
- Remove approximately $np/2$ Hamilton cycles using a result of Knox–Kühn–Osthus.
- Then a miracle occurs..
Dense random graphs

- Remove $\text{odd}(G(n, p))/2 + o(n)$ edges to make the graph Euler.
- Remove approximately $np/2$ Hamilton cycles using a result of Knox–Kühn–Osthus.
- Then a miracle occurs.
- Hence the graph is sparse enough to use our previous tools.
Dense random graphs

- Remove $\text{odd}(G(n, p))/2 + o(n)$ edges to make the graph Euler.
- Remove approximately $np/2$ Hamilton cycles using a result of Knox–Kühn–Osthus.
- Then a miracle occurs.
- Hence the graph is sparse enough to use our previous tools.

“I think you should be more explicit here in step two.”
What kind of miracle?
What kind of miracle?

- Break the remaining edges into matchings
What kind of miracle?

- Break the remaining edges into matchings
- Use the random structure to connect them into cycles

Broder–Frieze–Suen–Upfal give a criterion when a set of vertex pairs can be connected by vertex-disjoint paths in a random graph.

The rest is really sparse
What kind of miracle?

- Break the remaining edges into matchings
- Use the random structure to connect them into cycles
 - Broder–Frieze–Suen–Upfal give a criterion when a set of vertex pairs can be connected by vertex-disjoint paths in a random graph.
What kind of miracle?

- Break the remaining edges into matchings
- Use the random structure to connect them into cycles
 - Broder–Frieze–Suen–Upfal give a criterion when a set of vertex pairs can be connected by vertex-disjoint paths in a random graph.
- The rest is really sparse
Open problems

1. What happens for very small p? ($p = O(\log \log n / n)$)

\triangleright How many edges need to be removed to make $G(n, p)$ Euler?

2. The Erdős–Gallai conjecture: Can any graph on n vertices be decomposed into $O(n)$ cycles and edges?
Open problems

1. What happens for very small p? ($p = O(\log \log n/n)$)
Open problems

1. What happens for very small p? ($p = O(\log \log n/n)$)
 - How many edges need to be removed to make $G(n, p)$ Euler?
Open problems

1. What happens for very small p? ($p = O(\log \log n/n)$)
 ▶ How many edges need to be removed to make $G(n, p)$ Euler?

2. The Erdős–Gallai conjecture:
 Can any graph on n vertices be decomposed into $O(n)$ cycles and edges?
Thank you!