Exercise 1
What is the smallest number n such that an algorithm A with running time $1000000 \cdot n^2$ is faster than an algorithm B with a running time of 2^n?

Exercise 2
Decide which ones of the following statements are true and give a short explanation:

1. $4n^3 + 3n^2 - n - 100 = O(n^3)$
2. $n = O(n^7)$
3. $n^3 - 100n^2 = \Omega(n^4)$
4. $2^n = O(n^2)$
5. $\sqrt{n} = O(n)$
6. $\log(n) = O(\sqrt{n})$

Exercise 3
Consider the following algorithm. The input is a sequence of n integers $a[1], \ldots, a[n]$.

Require:
1: for $i \leftarrow 1$ to n do
2: for $j \leftarrow n$ downto $i + 1$ do
3: if $a[j] < a[j-1]$ then
4: exchange $a[j] \leftrightarrow a[j-1]$
5: end if
6: end for
7: end for
8: Output $a[1], \ldots, a[n]$.

Give an asymptotic upper bound on the running time of the algorithm (with explanations). What is the output of the algorithm?

Exercise 4
Consider the following graph:
Perform the breath first search algorithm on this graph starting in \(s \). For each node \(v \), give the values \(\pi[v] \) and \(d[v] \) at the end of the algorithm.

Exercise 5

There are two types of professional wrestlers: "good guys" and "bad guys". Between any pair of professional wrestlers, there may or may not be a rivalry. Suppose we have \(n \) professional wrestlers and we have a list of \(r \) pairs of wrestlers for which there are rivalries. Give an \(O(n + r) \)-time algorithm that determines whether it is possible to designate some of the wrestlers as good guys and the remainder as bad guys such that each rivalry is between a good guy and a bad guy.

If it is possible to perform such a designation, your algorithm should produce it.

Hint: Describe the rivalries as a graph and use an algorithm from the lecture to solve the problem.