Chapter 2
Convex sets

A polyhedron $P \subseteq \mathbb{R}^n$ is a set of the form $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ for some $A \in \mathbb{R}^{m \times n}$ and some $b \in \mathbb{R}^m$. The set of feasible solutions of a linear program $\text{max} \{c^T x : Ax \leq b\}$ is a polyhedron. Polyhedra are convex sets. Convex sets are the main objects of study of this chapter.

Linear, affine, conic and convex hulls

Let $X \subseteq \mathbb{R}^n$ be a set of n-dimensional vectors. The linear hull, affine hull, conic hull and convex hull of X are defined as follows.

Fig. 6 The convex hull of 7 points in \mathbb{R}^2.
\begin{align*}
\text{lin.hull}(X) &= \{ \lambda_1 x_1 + \cdots + \lambda_t x_t \mid t \geq 0, x_1, \ldots, x_t \in X, \lambda_1, \ldots, \lambda_t \in \mathbb{R} \} \quad (7) \\
\text{affine.hull}(X) &= \{ \lambda_1 x_1 + \cdots + \lambda_t x_t \mid t \geq 1, \\
x_1, \ldots, x_t \in X, \sum_{i=1}^{t} \lambda_i = 1, \lambda_1, \ldots, \lambda_t \in \mathbb{R} \} \quad (8) \\
\text{cone}(X) &= \{ \lambda_1 x_1 + \cdots + \lambda_t x_t \mid t \geq 0, \\
x_1, \ldots, x_t \in X, \lambda_1, \ldots, \lambda_t \in \mathbb{R}_{\geq 0} \} \quad (9) \\
\text{conv}(X) &= \{ \lambda_1 x_1 + \cdots + \lambda_t x_t \mid t \geq 1, \\
x_1, \ldots, x_t \in X, \sum_{i=1}^{t} \lambda_i = 1, \lambda_1, \ldots, \lambda_t \in \mathbb{R}_{\geq 0} \} \quad (10)
\end{align*}

Fig. 7 Two points with their convex hull on the left and their affine hull on the right.

Fig. 8 Two points with their conic hull
Proposition 2.1. Let $X \subseteq \mathbb{R}^n$ and $x_0 \in X$. One has

$$\text{affine.hull}(X) = x_0 + \text{lin.hull}(X - x_0),$$

where for $u \in \mathbb{R}^n$ and $V \subseteq \mathbb{R}^n$, $u + V$ denotes the set $u + V = \{u + v \mid v \in V\}$.

Proof. Let x_0 be a point in X. Let $x \in \text{affine.hull}(X)$, i.e., there exists a natural number $t \geq 1$ and $\lambda_1, \ldots, \lambda_t \in \mathbb{R}$, with $x = \lambda_1 x_1 + \cdots + \lambda_t x_t$ and $\sum_{i=1}^t \lambda_i = 1$. Now

$$x = x_0 - x_0 + \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_t x_t$$
$$= x_0 - \lambda_1 x_0 - \cdots - \lambda_t x_0 + \lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_t x_t$$
$$= x_0 + \lambda_1 (x_1 - x_0) + \cdots + \lambda_t (x_t - x_0)$$

This shows that $x \in x_0 + \text{lin.hull}(X - x_0)$. If on the other hand $x \in x_0 + \text{lin.hull}(X - x_0)$, then there exist $\lambda_1, \ldots, \lambda_t \in \mathbb{R}$ with $x = x_0 + \lambda_1 (x_1 - x_0) + \cdots + \lambda_t (x_t - x_0)$. With $\lambda_0 = 1 - \sum_{i=1}^t \lambda_i$ one has $\sum_{i=0}^t \lambda_i = 1$ and

$$x = x_0 + \lambda_1 (x_1 - x_0) + \cdots + \lambda_t (x_t - x_0)$$
$$= \lambda_0 x_0 + \cdots + \lambda_t x_t$$

and thus that $x \in \text{affine.hull}(X)$. \qed

Definition 2.1. The convex hull of two distinct points $u \neq v \in \mathbb{R}^n$ is called a line segment and is denoted by \overline{uv}.

Definition 2.2. A set $K \subseteq \mathbb{R}^n$ is convex if for each $u \neq v$, the line-segment \overline{uv} is contained in K, $\overline{uv} \subseteq K$.

Fig. 9 The set on the left is convex, the set on the right is non-convex.

In other words, a set $K \subseteq \mathbb{R}^n$ is convex, if for each $u, v \in K$ and $\lambda \in [0, 1]$ the point $\lambda u + (1 - \lambda) v$ is also contained in K.

Theorem 2.1. Let $X \subseteq \mathbb{R}^n$ be a set of points. The convex hull, $\text{conv}(X)$, of X is convex.
Proof. Let \(u \) and \(v \) be points in \(\text{conv}(X) \). This means that there exist a natural number \(t \geq 1 \), real numbers \(\alpha_i, \beta_i \geq 0 \), and points \(x_i \in X \), \(i = 1, \ldots, t \) with \(\sum_{i=1}^{t} \alpha_i = 1 \) and \(u = \sum_{i=1}^{t} \alpha_i x_i \) and \(\sum_{i=1}^{t} \beta_i = 1 \) and \(v = \sum_{i=1}^{t} \beta_i x_i \). For \(\lambda \in [0, 1] \) one has \(\lambda \alpha_i + (1 - \lambda) \beta_i \geq 0 \) for \(i = 1, \ldots, t \) and \(\sum_{i=1}^{t} \lambda \alpha_i + (1 - \lambda) \beta_i = 1 \). This shows that for \(\lambda \in [0, 1] \) one has
\[
\lambda u + (1 - \lambda) v = \sum_{i=1}^{t} \left(\lambda \alpha_i + (1 - \lambda) \beta_i \right) x_i \in \text{conv}(X),
\]
and therefore that \(\text{conv}(X) \) is convex.

Theorem 2.2. Let \(X \subseteq \mathbb{R}^n \) be a set of points. Each convex set \(K \) containing \(X \) also contains \(\text{conv}(X) \).

Proof. Let \(K \) be a convex set containing \(X \), and let \(x_1, \ldots, x_t \in X \) and \(\lambda_i \in \mathbb{R} \) with \(\lambda_i > 0 \), \(i = 1, \ldots, t \) and \(\sum_{i=1}^{t} \lambda_i = 1 \). We need to show that \(u = \sum_{i=1}^{t} \lambda_i x_i \) is contained in \(K \). This is true for \(t = 2 \) by the definition of convex sets. We argue by induction. Suppose that \(t \geq 3 \). If one of the \(\lambda_i \) is equal to 0, then one can represent \(u \) as a convex combination of \(t - 1 \) points in \(X \) and, by induction, \(u \in K \). Since \(t \geq 3 \), each \(\lambda_i > 0 \) and \(\sum_{i=1}^{t} \lambda_i = 1 \) one has \(0 < \lambda_i < 1 \) for \(i = 1, \ldots, t \) and thus we can write
\[
u = \lambda_1 x_1 + (1 - \lambda_1) \sum_{i=2}^{t} \frac{\lambda_i}{1 - \lambda_1} x_i.
\]
One has \(\lambda_i / (1 - \lambda_1) > 0 \) and
\[
\sum_{i=2}^{t} \frac{\lambda_i}{1 - \lambda_1} = 1,
\]
which means that the point \(\sum_{i=2}^{t} \frac{\lambda_i}{1 - \lambda_1} x_i \) is in \(K \) by induction. Again, by the definition of convex sets, we conclude that \(u \) lies in \(K \).

Theorem 2.2 implies that \(\text{conv}(X) \) is the intersection of all convex sets containing \(X \), i.e.,
\[
\text{conv}(X) = \bigcap_{K \subseteq X \text{ convex}} K.
\]

Definition 2.3. A set \(C \subseteq \mathbb{R}^n \) is a cone, if it is convex and for each \(c \in C \) and each \(\lambda \in \mathbb{R}_{\geq 0} \) one has \(\lambda \cdot c \in C \).

Similarly to Theorem 2.1 and Theorem 2.2 one proves the following.

Theorem 2.3. For any \(X \subseteq \mathbb{R}^n \), the set \(\text{cone}(X) \) is a cone.

Theorem 2.4. Let \(X \subseteq \mathbb{R}^n \) be a set of points. Each cone containing \(X \) also contains \(\text{cone}(X) \).

These theorems imply that \(\text{cone}(X) \) is the intersection of all cones containing \(X \), i.e.,
\[
\text{cone}(X) = \bigcap_{C \subseteq X \text{ cone}} C.
\]
Radon's lemma and Carathéodory's theorem

Theorem 2.5 (Radon's lemma). Let $A \subseteq \mathbb{R}^n$ be a set of $n+2$ points. There exist disjoint subsets $A_1, A_2 \subseteq A$ with $\text{conv}(A_1) \cap \text{conv}(A_2) \neq \emptyset$.

Proof. Let $A = \{a_1, \ldots, a_{n+2}\}$. We embed these points into \mathbb{R}^{n+1} by appending a 1 in the $n+1$-st component, i.e., we construct $A' = \{(a_1, 1), \ldots, (a_{n+2}, 1)\} \subseteq \mathbb{R}^{n+1}$.

The set A' consists of $n+2$ vectors in \mathbb{R}^{n+1}. Those vectors are linearly dependent. Let

\[0 = \sum_{i=1}^{n+2} \lambda_i (a_i, 1) \]

be a nontrivial linear representation of 0, i.e., not all λ_i are 0. Furthermore, let $P = \{i : \lambda_i \geq 0, i = 1, \ldots, n+2\}$ and $N = \{i : \lambda_i < 0, i = 1, \ldots, n+2\}$. We claim that $\text{conv}(\{a_i : i \in P\}) \cap \text{conv}(\{a_i : i \in N\}) \neq \emptyset$.

It follows from (11) and the fact that the $n+1$-st component of the vectors is 1 that $\sum_{i \in P} \lambda_i = -\sum_{i \in N} \lambda_i = s > 0$. It follows also from (11) that

\[\sum_{i \in P} \lambda_i a_i = \sum_{i \in N} -\lambda_i a_i. \]

The point $u = \sum_{i \in P} (\lambda_i/s) a_i = \sum_{i \in N} (-\lambda_i/s) a_i$ is contained in $\text{conv}(\{a_i : i \in P\}) \cap \text{conv}(\{a_i : i \in N\})$, implying the claim. \square

Theorem 2.6 (Carathéodory's theorem). Let $X \subseteq \mathbb{R}^n$, then for each $x \in \text{cone}(X)$ there exists a set $\bar{X} \subseteq X$ of cardinality at most n such that $x \in \text{cone}(\bar{X})$. The vectors in \bar{X} are linearly independent.

Proof. Let $x \in \text{cone}(X)$, then there exist $t \in \mathbb{N}_+\times, x_i \in X$ and $\lambda_i \geq 0, i = 1, \ldots, t$, with $x = \sum_{i=1}^t \lambda_i x_i$. Suppose that $t \in \mathbb{N}_+$ is minimal such that x can be represented as above. We claim that $t \leq n$. If $t \geq n+1$, then the x_i are linearly dependent. This means that there are $\mu_i \in \mathbb{R}$, not all equal to 0 with

\[\sum_{i=1}^t \mu_i x_i = 0. \]

By multiplying each μ_i in (12) with -1 if necessary, we can assume that at least one of the μ_i is strictly larger than 0. One has for each $\epsilon \in \mathbb{R}$

\[x = \sum_{i=1}^t (\lambda_i - \epsilon \cdot \mu_i) x_i. \]

(13)
Corollary 2.1 (Carathéodory’s theorem for convex hulls). Let \(X \subseteq \mathbb{R}^n \), then for each \(x \in \text{conv}(X) \) there exists a set \(X \subseteq \mathbb{R}^n \) of cardinality at most \(n + 1 \) such that \(x \in \text{conv}(X) \).

Separation theorem and Farkas’ lemma

We recall a basic fact from analysis, see, e.g. [1, Theorem 4.4.1].

Theorem 2.7. Let \(X \subseteq \mathbb{R}^m \) be compact and \(f : X \to \mathbb{R} \) be continuous. Then \(f \) is bounded and there exist points \(x_1, x_2 \in X \) with \(f(x_1) = \sup \{ f(x) : x \in X \} \) and \(f(x_2) = \inf \{ f(x) : x \in X \} \).

Theorem 2.8. Let \(K \subseteq \mathbb{R}^n \) be a closed convex set and \(x^* \in \mathbb{R}^n \setminus K \), then there exists an inequality \(a^T x \geq \beta \) such that \(a^T y \geq \beta \) holds for all \(y \in K \) and \(a^T x^* < \beta \).

Proof. Since the mapping \(f(x) = \| x^* - x \| \) is continuous and since for any \(k \in K \), \(K \cap \{ x \in K : \| x^* - x \| \leq \| x^* - k \| \} \) is compact, there exists a point \(k^* \in K \) with minimal distance to \(x^* \). Consider the midpoint \(m = 1/2(k^* + x^*) \) on the line-segment \(k^*x^* \) and the hyperplane \(a^T x = \beta \) with \(\beta = a^T m \) and \(a = (k^* - x^*) \). Clearly, \(a^T x^* = \beta - 1/2 \| k^* - x^* \|^2 \) and \(a^T k^* = \beta + 1/2 \| k^* - x^* \|^2 \). Suppose that there exists a \(k' \in K \) with \(a^T k' \leq \beta \). The points \(\lambda k^* + (1 - \lambda)k' \), \(\lambda \in [0, 1] \) are in \(K \) by the convexity of \(K \), thus we can also assume that \(k' \) lies on the hyperplane, i.e., \(a^T k' = \beta \). This means that there exist a vector \(x' \) which is orthogonal to \(a \) and \(k' = m + x' \). The distance squared of a point \(\lambda k^* + (1 - \lambda)k' \) with \(\lambda \in [0, 1] \) to \(m \) is, by Pythagoras equal to

\[
\lambda^2 \| a \|^2 + (1 - \lambda)^2 \| x' \|^2.
\]

As a function of \(\lambda \), this is increasing at at \(\lambda = 1 \). Thus there exists a point on the line-segment \(\lambda x^* + (1 - \lambda)k \) which is closer to \(m \) than \(k^* \). This point is also closer to \(x^* \) than \(k^* \), which is a contradiction. Therefore \(a^T k > \beta \) for each \(k \in K \).

Theorem 2.9 (Farkas’ lemma). Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^m$ be a vector. The system $Ax = b$, $x \geq 0$ has a solution if and only if for all $\lambda \in \mathbb{R}^m$ with $\lambda^T A \geq 0$ one has $\lambda^T b \geq 0$.

Proof. Suppose that $x^* \in \mathbb{R}^n$ satisfies $Ax^* = b$ and let $\lambda \in \mathbb{R}^m$ with $\lambda^T A \geq 0$. Then $\lambda^T b = \lambda^T A x^* \geq 0$, since $\lambda^T A \geq 0$ and $x^* \geq 0$.

Now suppose that $Ax = b$, $x \geq 0$ does not have a solution. Then, with $X \subseteq \mathbb{R}^n$ being the set of column vectors of A, b is not in $\text{cone}(X)$. The set $\text{cone}(X)$ is convex and closed, see exercise 5. Theorem 2.8 implies that there is an inequality $\lambda^T y \geq \beta$ for each $y \in \text{cone}(X)$ and $\lambda^T b < \beta$. Since for each $a \in X$ and each $\mu \geq 0$ one has $\mu \cdot a \in \text{cone}(X)$ and thus $\lambda^T (\mu \cdot a) > \beta$, it follows that $\lambda^T a \geq 0$ for each $a \in X$. Furthermore, since $0 \in \text{cone}(X)$ it follows that $0 \geq \beta$ and thus that $\lambda^T b < 0$.

Exercises

1) Let $\{C_i\}_{i \in I}$ be a family of convex subsets of \mathbb{R}^n. Show that the intersection $\bigcap_{i \in I} C_i$ is convex.
2) Show that the set of feasible solutions of a linear program is convex.
3) Prove Carathéodory’s Theorem for convex hulls, Corollary 2.1.
4) Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix and let $a_1, \ldots, a_n \in \mathbb{R}^n$ be the columns of A. Show that $\text{cone}(\{a_1, \ldots, a_n\})$ is the polyhedron $P = \{y \in \mathbb{R}^n : A^{-1} y \geq 0\}$.

Show that $\text{cone}(\{a_1, \ldots, a_k\})$ for $k \leq n$ is the set $P_k = \{y \in \mathbb{R}^n : a_i^{-1} x \geq 0, i = 1, \ldots, k, a_k^{-1} x = 0, i = k + 1, \ldots, n\}$, where a_i^{-1} denotes the i-th row of A^{-1}.
5) Prove that for a finite set $X \subseteq \mathbb{R}^n$ the conic hull $\text{cone}(X)$ is closed and convex. Hint: Use Carathéodory’s theorem and exercise 4.
6) Find a countably infinite set $X \subseteq \mathbb{R}^2$ such that $\text{cone}(X)$ is not closed. Are there any cones that are open?
7) Prove Theorem 2.3.
8) Prove Theorem 2.4.
9) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map.

a) Show that $f(K) = \{f(x) : x \in K\}$ is convex if K is convex. Is the reverse also true?

b) For $X \subseteq \mathbb{R}^n$ arbitrary, prove that $\text{conv}(f(X)) = f(\text{conv}(X))$.
10) Using Theorem 2.9 prove the following variant of Farkas’ lemma: Let $A \in \mathbb{R}^{m \times n}$ be a matrix and $b \in \mathbb{R}^m$ be a vector. The system $Ax \leq b$, $x \in \mathbb{R}^n$ has a solution if and only if for all $\lambda \in \mathbb{R}^m_{\geq 0}$ with $\lambda^T A = 0$ one has $\lambda^T b \geq 0$.
11) Provide an example of a convex and closed set $K \subseteq \mathbb{R}^2$ and a linear objective function $c^T x$ such that $\min \{c^T x : x \in K\} > -\infty$ but there does not exist an $x^* \in K$ with $c^T x^* \leq c^T x$ for all $x \in K$.
12) Consider the vectors.
Let $A = \{x_1, \ldots, x_5\}$. Find two disjoint subsets $A_1, A_2 \subseteq A$ such that

$$\text{conv}(A_1) \cap \text{conv}(A_2) \neq \emptyset.$$

Hint: Recall the proof of Radon’s lemma

13) Consider the vectors

$$x_1 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}, x_3 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, x_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}, x_5 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

The vector

$$v = x_1 + 3x_2 + 2x_3 + x_4 + 3x_5 = \begin{pmatrix} 15 \\ 14 \\ 25 \end{pmatrix}$$

is a conic combination of the x_i.

Write v as a conic combination using only three vectors of the x_i.

Hint: Recall the proof of Carathéodory’s theorem

References