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1 Introduction

In the last decade of the 19th century, Hermann Minkowski (1864–1909) initiated new
geometric methods in number theory, which culminated with the celebrated Geometrie
der Zahlen1. Minkowski’s work is referred to several times by David Hilbert in his
1900 ICM lecture [15], in particular in the introduction Hilbert declares:

The agreement between geometrical and arithmetical thought is shown also in that we
do not habitually follow the chain of reasoning back to the axioms in arithmetical, any
more than in geometrical discussions. On the contrary we apply, especially in first
attacking a problem, a rapid, unconscious, not absolutely sure combination, trusting
to a certain arithmetical feeling for the behavior of the arithmetical symbols, which
we could dispense with as little in arithmetic as with the geometrical imagination
in geometry. As an example of an arithmetical theory operating rigorously with
geometrical ideas and signs, I may mention Minkowski’s work, Die Geometrie der
Zahlen.

Regarding the influence of this book on the birth of metric geometry, let us mention
the following from the paper [10] by Busemann and Phadke, p. 181:

1Minkowski’s first paper on the geometry of numbers was published in 1891. A first edition of his book
Geometrie der Zahlen appeared in 1896, and a more complete edition was posthumously edited by Hilbert and
Speiser and published in 1910 [23]. This edition was reprinted several times and translated, and it is a major
piece of the mathematical literature of the early 20th century.
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Busemann had read the beginning of Minkowski’s Geometrie der Zahlen in 1926
which convinced him of the importance of non-Riemannian metrics.

An early result of Minkowski in that theory, related to number theory, states that
any convex domain in R2 which is symmetric around the origin and has area greater
than four contains at least one non-zero point with integer coordinates. One step in
Minkowski’s proof amounts to considering a metric on the plane for which the unit
ball at any point in R2 (in fact in Z2) is a translate of the initial convex domain. Such a
metric is not Euclidean, it is translation-invariant and the Euclidean lines are shortest
paths. The geometric study of this type of metrics is called (since Hilbert’s writings)
Minkowski geometry. We refer to [4], [12], [20], [21], [27] for general expositions of
the subject. Minkowski formulated the basic principles of this geometry in his 1896
paper [22], and these principles are recalled in Hilbert’s lecture [15] (Problem IV).

An express description of Minkowski geometry is the following: choose a convex
set� in Rn that contains the origin. For points p and q in Rn, define a number ı > 0
as follows. First dilate� by the factor ı and then translate the set in such a way that 0
is sent to p and q lies on the boundary of the resulting set. In other words, ı is defined
by the condition

q 2 @.p C ı ��/: (1.1)

We denote by ı.p; q/ the number defined in this way. The function ı W Rn�Rn !
RC is what we call a weak metric. It satisfies the triangle inequality and ı.p; p/ D 0.
It is not symmetric in general and it can be degenerate in the sense that ı.p; q/ D 0

does not imply p 6D q. On the other hand, the straight lines are geodesics for this
metric and ı is translation-invariant. Minkowski geometry is the study of such weak
metrics. It plays an important role in convexity theory and in Finsler geometry, where
Minkowski spaces play the role played by flat spaces in Riemannian geometry.

There is a vast literature on Minkowski metrics, and the goal of the present chapter
is to provide the reader with some of the basic definitions and facts in the theory of
weak Minkowski metrics, because of their relation to Hilbert geometry, and to give
some examples. We give complete proofs of most of the stated results. We end
this chapter with a discussion about the relations and analogies between Minkowski
geometry and Funk and Hilbert geometries.

2 Weak metric spaces

We begin with the definition of a weak metric space.

Definition 2.1 (Weak metric). A weak metric on a setX is a map ı W X �X ! Œ0;1�

satisfying the following two properties:

a) ı.x; x/ D 0 for all x in X ;

b) ı.x; y/C ı.y; z/ � ı.x; z/ for all x, y and z in X .
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We often require that a weak metric satisfies some additional properties. In partic-
ular one says that the weak metric ı on X is

c) separating if x ¤ y implies ı.x; y/ > 0,

d) weakly separating if x ¤ y implies max fı.x; y/; ı.y; x/g > 0,

e) finite if ı.x; y/ < 1,

f) reversible (or symmetric) if ı.y; x/ D ı.x; y/,

g) quasi-reversible if ı.y; x/ � Cı.x; y/ for some constant C ,

for all x and y in X .
One sometimes says that ı is strongly separating if condition b) holds, in order

to stress the distinction with condition d). Observe that for reversible metrics both
notions of separation coincide.

A metric in the classical sense is a reversible, finite and separating weak metric.
Thus, it satisfies

0 < ı.x; y/ D ı.y; x/ < 1
for all x ¤ y in X .

Definition 2.2. Let U � X be a convex subset of a real vector space X . A weak
metric ı in U is said to be projective (or projectively flat) if satisfies the condition

ı.x; y/C ı.y; z/ D ı.x; z/ (2.1)

whenever the three points x, y and z in U are aligned and y 2 Œx; z�, the affine
segment from x to z (equivalently, if y D tx C .1 � t /z for some 0 � t � 1). The
weak metric is strictly projective if it is projective and

ı.x; u/C ı.u; z/ > ı.x; z/

whenever u 62 Œx; z�.

Definition 2.3 (Weak Minkowski metric). A weak Minkowski metric on a real vector
space X is a weak metric ı on X that is translation-invariant and projective.

Example 2.4. Let X be a real vector space and ' W X ! R a linear form. Define
ı'.x; y/ D maxf0; '.y � x/g. Then ı is a weak Minkowski metric. It is finite, but it
is neither reversible nor weakly separating.

We note that in functional analysis, given a real vector space X , the collection of
sets

B.';x;r/ D fy 2 X j ı'.x; y/ < rg � X;

where x 2 X is an arbitrary point, r > 0 and ' 2 X� is an arbitrary linear form
generates a topology which is called the weak topology on X . This observation is a
possible justification for the name “weak metric” that we give to such functions. The
terminology has its origin in the work of Ribeiro who was interested around 1943 [26]
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in some generalization of the Urysohn metrization theorem for the topology associated
to ı.

Example 2.5 (Counterexample). LetX be a real vector space and let k kW X ! R be
a norm onX . Then ı.x; y/ D maxfky�xk; 1g is a metric that is translation-invariant,
but it is not a Minkowski metric because it is not projective. Indeed, suppose kzk D 1,
then

ı.0; 2z/ D 1 < ı.0; z/C ı.z; 2z/ D 2:

In this example, the metric is “projective for small distances”, in the sense that if
kz � xk � 1 and y 2 Œx; z�, then (2.1) holds. On the other hand, large closed balls
are not compact; in fact any ball of radius � 1 is equal to the whole space X .

Example 2.6 (Counterexample). This is a variant of the previous example. Let again
k kW X ! R be a norm on the real vector space X . Then �˛.x; y/ D ky � xk˛
is a metric if and only if 0 < ˛ � 1. It is clearly translation-invariant, but it is not
projective if ˛ < 1, and thus it is not a Minkowski metric.

Unlike the previous metric ı, the metric �˛ is not projective for small distances (if
˛ < 1). On the other hand, every closed ball is compact.

3 Weak Minkowski norms

Proposition 3.1. Let ı be a weak Minkowski metric on some real vector space X
and set F.x/ D ı.0; x/. Then the function F W X ! Œ0;1� satisfies the following
properties.

i) F.x1 C x2/ � F.x1/C F.x2/ for all x1; x2 2 X .

ii) F.�x/ D �F.x/ for all x 2 X and for all � � 0.

Proof. The first property is a consequence of the triangle inequality together with the
fact that ı is translation-invariant:

F.x C y/ D ı.0; x C y/

� ı.0; x/C ı.x; x C y/

D ı.0; x/C ı.0; y/

D F.x/C F.y/:

To prove the second property, observe for any x 2 X and any �;� � 0 we have

ı.0; �x/C ı.�x; .�C �/x/ D ı.0; .�C �/x/;

because �x belongs to the segment Œ0; .�C�/x�. Since we have ı.�x; .�C�/x/ D
ı.0; �x/ D F.�x/, the previous identity can be written as

F.�x/C F.�x/ D F..�C �/x/ (3.1)
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and we conclude from the next lemma that F.�x/ D �F.x/ for all � > 0. We also
have F.0 � x/ D 0 � F.x/ D 0 since F.0/ D ı.0; 0/ D 0.

Lemma 3.2. Let f W RC ! Œ0;1� be a function such that f .�C�/ D f .�/Cf .�/

for any �;� 2 RC, then
f .�/ D �f .1/

for every � > 0.

Proof. We first assume f .a/ < 1 for every a 2 RC. We have by hypothesis

f .k � a/ D f ...k � 1/C 1/ � a/ D f ..k � 1/ � a/C f .a/

for any k 2 N. We thus have by induction

f .k � a/ D k � f .a/
for any k 2 N and any a 2 RC. Using the above identity with k;m 2 N, we have

m � f
�
k

m

�
D f

�
m
k

m

�
D f .k/ D k � f .1/:

Dividing both sides of the identity by m, we obtain f .˛/ D f̨ .1/ for any ˛ 2 QC.
Consider now � 2 RC arbitrary, and choose ˛1; ˛2 2 QC such that ˛1 < � < ˛2.
Then

f .�/ D f .˛1/C f .� � ˛1/ > f .˛1/ D ˛1f .1/

and

f .�/ D f .˛2/ � f .˛2 � �/ < f .˛2/ D ˛2f .1/:

Since ˛2 � ˛1 > 0 is arbitrarily small, we deduce that f .�/ D �f .1/ for any � > 0.

So far we assumed f .a/ < 1 for any a > 0. Assume now there exists a > 0 such
that f .a/ D 1. Then f .�/ D 1 for any � > 0. Indeed choose an integer k such
that k� > a. Then

kf .�/ D f .k�/ D f .k� � a/C f .a/ � f .a/ D 1:

Therefore f .�/ D f .1/ D 1.

Definition 3.3. A function F W X ! Œ0;1� defined on a real vector spaceX is a weak
Minkowski norm if the following two conditions hold:

i) F.x1 C x2/ � F.x1/C F.x2/ for all x1; x2 2 X ;

ii) F.�x/ D �F.x/ for all x 2 X and for all � � 0.

Proposition 3.1 states that a weak Minkowski metric determines a weak Minkowski
norm. Conversely, a weak Minkowski norm defines a weak Minkowski metric ıF by
the formula

ıF .x; y/ D F.y � x/: (3.2)

We then naturally define a weak Minkowski norm F to be
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• separating if x ¤ 0 implies F.x/ > 0;

• weakly separating if x ¤ 0 implies maxfF.x/; F.�x/g > 0;

• finite if F.x/ < 1;

• reversible (or symmetric) if F.�x/ D F.x/;

for any x 2 X .

Example 3.4. The function F W RN ! Œ0;1� defined by

F..xk// D sup
k2N

maxfxk; 0g

is a weak Minkowski norm which is neither finite, nor separating, nor symmetric. It
is however weakly separating.

A weak Minkowski norm with similar properties also exists in finite dimensions:

Example 3.5. The function F W R2 ! Œ0;1� defined by F.x1; x2/ D maxfx1; 0g
if x2 D 0 and F.x1; x2/ D 1 if x2 ¤ 0 is a weak Minkowski norm with the
same properties: it is neither finite, nor separating, nor symmetric, but it is weakly
separating.

Observe that in both examples F is finite on some vector subspace of R2. This is
a general fact:

Proposition 3.6. Let F W X ! Œ0;1� be a weak Minkowski norm on the real vector
space X and set DF D fx 2 X j F.x/ < 1g. Then DF is a vector subspace of
X . Furthermore, the restriction of F to any finite-dimensional subspace E � DF is
continuous.

Proof. If x; y 2 DF , then F.x/ and F.y/ are finite and therefore F.x C y/ �
F.x/ C F.y/ < 1 and F.�x/ D �F.x/ < 1. Therefore x C y 2 DF and
�x 2 DF , which proves the first assertion.

To prove the second assertion, we consider a finite-dimensional subspaceE � DF
and we choose a basis e1; e2; : : : ; em 2 E. Define the constant

C D max
1�j�m.F.ej /C F.�ej //:

For an arbitrary vector x D Pm
jD1 j̨ ej 2 E, we then have

F.x/ �
mX
jD1

F. j̨ ej / � C �
mX
jD1

j j̨ j:

In particular, if x ! 0, then F.x/ ! 0. More generally, if a sequence x� 2 E

converges to some a 2 E, then

lim sup
�!1

F.x�/ D lim sup
�!1

F.aC .x� � a// � F.a/C lim sup
�!1

F..x� � a// D F.a/:
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Since F.a/ � F.x�/C F.a � x�/ we also have

F.a/ � lim inf
�!1 .F.x�/C F.a � x�// D lim inf

�!1 F.x�/:

It follows that
lim sup
�!1

F.x�/ � F.a/ � lim inf
�!1 F.x�/;

and the continuity on E follows.

Corollary 3.7. Any weak Minkowski norm on a finite-dimensional vector space X is
lower semi-continuous.

Proof. We need to prove that F.a/ � lim inf�!1 F.x�/ for every sequence x� 2 X
converging to a. If F.a/ D 1, then a belongs to the open set X n DF . It follows
that x� 62 DF for large enough � and therefore

lim inf
�!1 F.x�/ D 1 D F.a/:

If F.a/ < 1, then two cases may occur. If infinitely many x� belong toDF , then by
the previous proposition we have

F.a/ D lim
�!1;x�2DF

F.x�/ D lim inf
�!1 F.x�/:

If on the other handDF contains only finitely many elements of the sequence x� , then

lim inf
�!1 F.x�/ D 1 > F.a/:

Definition 3.8. Given a weak Minkowski norm F on a vector space X , we define the
open and closed unit balls at the origin as

�F D fx 2 X j F.x/ < 1g and x�F D fx 2 X j F.x/ � 1g:
The set

�F D fx 2 X j F.x/ D 1g
is called the unit sphere or the indicatrix of F .

Proposition 3.9. Let F be a weak Minkowski norm on a finite-dimensional vector
space X . Then the following are equivalent:
(1) F is finite;

(2) F is continuous;

(3) �F is open;

(4) 0 is an interior point of �F .

Proof. The implication (1) ) (2) is Proposition 3.6 and the implications (2) ) (3)
) (4) are obvious. To prove (4) ) (1), we suppose that F is not finite. Then there
exists a 2 X such that F.a/ D 1. Thus, F.�a/ D 1 for all � > 0, in particular
�a 62 �F for all � > 0 and therefore 0 is not an interior point of �F .
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Proposition 3.10. Let F be a weak Minkowski norm on Rn. Then the following are
equivalent:

(1) F is separating (i.e. F.x/ > 0 for all x ¤ 0);

(2) F is bounded below on the Euclidean unit sphere Sn�1 � U;

(3) x�F is bounded.

Proof. (1) ) (2): Suppose that F is not bounded below on Sn�1. Then there exists
a sequence xj 2 Sn�1 such that F.xj / ! 0. Choosing a subsequence if necessary,
we may assume, by compactness of the sphere, that F.xj / < 1 for all j , i.e. xj 2
DF \ Sn�1, and that xj converges to some point x0 2 DF \ Sn�1. Since F is
continuous onDF , we have F.x0/ D limj!1 F.xj / D 0. Since x0 ¤ 0 (it is a point
on the sphere), it follows that F is not separating.

(2) ) (3): Condition (2) states that there exists � > 0 such that F.x/ � � for all
x 2 Sn�1. Therefore F.y/ � 1 implies kyk � 1

�
.

(3) ) (1): Suppose F is non-separating. Then there exists x ¤ 0 with F.x/ D 0.
Therefore F.�x/ D 0 for any � > 0. In particular RCx � x�F which is therefore
unbounded.

Definition 3.11. A Minkowski norm is a weak Minkowski norm that is finite and
separating. It is simply called a norm if it is furthermore reversible.

To a finite and separating norm is associated a well-defined topology, viz. the
topology associated to the symmetrization of the weak metric defined by Equation
(3.2) (which is a genuine metric). For a deeper investigation of various topological
questions we refer to the book [11] by S. Cobzas.

Corollary 3.12. The topology defined by the distance (3.2) associated to a Minkowski
norm on Rn coincides with the Euclidean topology.

Proof. Proposition 3.6 implies that F is continuous. From the compactness of the
Euclidean unit sphere Sn�1 we thus have a constant � > 0 such that � � F.x/ � 1

�

for all points x on Sn�1. It follows that

�kxk � F.x/ � 1

�
kxk (3.3)

for all x 2 Rn and therefore F induces the same topology as the Euclidean norm.

The next result shows how one can reconstruct the weak Minkowski norm from its
unit ball.

Proposition 3.13. Let � � Rn be a convex set containing the origin. Define a
function F W Rn ! Œ0;1� by

F.x/ D infft � 0 W x 2 t ��g: (3.4)



Chapter 1. Weak Minkowski spaces 19

Then F is a weak Minkowski norm and the closure of � coincides with x�F , that is,
x� D fx 2 Rn j F.x/ � 1g:Moreover, if � is open, then� D fx 2 Rn j F.x/ < 1g.

The function F defined by (3.4) is called the Minkowski functional of �.

Proof. We need to verify the two conditions in Definition 3.3. For � > 0, we have

F.�x/ D inffs � 0 W �x 2 s ��g
D inffs � 0 W x 2 s

�
��g

D
.sD�t/

� infft � 0 W x 2 t ��g
D �F.x/:

Now because � is convex we have for s; t > 0

x

s
2 � and

y

s
2 � H) x C y

s C t
D s � x

s
C t � y

t

s C t
2 �:

Therefore
F.x/ < s and F.y/ < t H) F.x C y/ < s C t;

which is equivalent to F.x C y/ � F.x/ C F.y/. This proves the first part of the
proposition.

To prove the remaining assertions, observe that F.x/ � 1 means that tx 2 � for
any 0 < t < 1 and thus x 2 x�. This shows that

� � fx 2 Rn j F.x/ � 1g � x�:
The converse inclusion x� � fx 2 Rn j F.x/ � 1g follows from the lower semi-
continuity of F (Corollary 3.7). Finally, if � is open, then F is continuous (Proposi-
tion 3.9) and therefore � D fx 2 Rn j F.x/ < 1g.

As a result, we have established one-to-one correspondences between weak Min-
kowski metrics on Rn, weak Minkowski norms and closed convex sets containing the
origin. The closed convex set associated to a weak Minkowski norm F is the set
x�F D fx 2 X j F.x/ � 1g. The associated weak metric is separating if and only if
the associated convex set is bounded and the metric is finite if and only if the origin is
an interior point of the convex set.

Remark 3.14. These concepts have some important consequences in convex geom-
etry. For instance one can easily prove that every unbounded convex set in Rn must
contain a ray. Indeed, let � � Rn be unbounded and convex. One may assume
that� contains the origin. Then, by Proposition 3.10, its weak Minkowski functional
F is not separating, that is, there exists a ¤ 0 in Rn such that F.a/ D 0; but then
F.�a/ D 0 for every � > 0 and therefore the ray � contains the ray RCa.

Let us conclude this section with two important results from Minkowski geometry.
A Minkowski norm on Rn is said to be Euclidean if it is associated to a scalar product.
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Proposition 3.15. Let ı be a Minkowski metric on Rn. Then ı is a Euclidean metric
if and only if the ball

B.a;r/ D fx 2 X j ı.a; x/ < rg � Rn

(for some a 2 Rn and r > 0, or, equivalently, for any a 2 Rn and r > 0) is an
ellipsoid centered at a.

Notice that the above proposition is false if the ellipsoid is not centered at a.

Proof. Recall that, by definition, an (open) ellipsoid is a convex set in Rn that is
the affine image of the open Euclidean unit ball. If the weak metric ı is Euclidean,
then it is obvious that every ball is an ellipsoid. Conversely, suppose that some ball
of an arbitrary Minkowski metric ı is an ellipsoid. Then the ball with the same
radius centered at the origin is also an ellipsoid since ı is translation-invariant, that is,
B.0;r/ D fx 2 X j F.x/ D ı.0; x/ < rg is an ellipsoid. But then

� D B.0;1/ D 1

r
� B.0;1/

is also an ellipsoid. Changing coordinates if necessary, one may assume that

� D ˚
x 2 Rn j P

i x
2
i < 1

�
;

which is the Euclidean unit ball. It follows that

F.x/ D infft > 0 j x 2 t �g D infft > 0 j kxk < tg D kxk
where k � k denotes the Euclidean norm.

We have the following result on the isometries of a Minkowski metric.

Theorem 3.16. Let ı be a Minkowski metric on Rn. Then every isometry of ı is an
affine transformation of Rn, and the group Iso.Rn; ı/ of isometries of ı is conjugate
within the affine group to a subgroup of the group E.n/ of Euclidean isometries of
Rn. Furthermore Iso.Rn; ı/ is conjugate to the full group E.n/ if and only if ı is a
Euclidean metric.

Proof. The first assertion is the Mazur–Ulam Theorem, see [18]. To prove the second
assertion, we recall that every bounded convex set � in Rn with non-empty interior
contains a unique ellipsoid J� � � of maximal volume, called the John ellipsoid of
�, see [1].

Let us consider the unit ball � D B.ı;0;1/ of our Minkowski metric and let us
denote by J its John ellipsoid and by z 2 J its center. We call J � D J � z the
centered John ellipsoid of�. Consider now an arbitrary isometry g 2 Iso.Rn; ı/. Set
Qg.x/ D g.x/� b, where b D g.0/. Then Qg is an isometry for ı fixing the origin. By
construction and uniqueness, the centered John ellipsoid is invariant: Qg.J �/ D J �.
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There exists an element A 2 GL.n;R/ such that AJ � D B is the Euclidean unit ball.
Let us set f WD A B Qg B A�1. Then

f .B/ D B:

By the Mazur–Ulam theorem, Qg is a linear map, therefore f is a linear map preserving
the Euclidean unit ball, which means that f 2 O.n/. We thus obtain

g.x/ D A�1.f .x/C Ab/A

where A is linear and x 7! f .x/C Ab is a Euclidean isometry.
To prove the last assertion, one may assume, changing coordinates if necessary,

that Iso.Rn; ı/ D E.n/. Then the ı-unit ball� is invariant under the orthogonal group
O.n/ and it is therefore a round sphere. We now conclude from Proposition 3.15 that
ı is Euclidean.

4 The midpoint property

Definition 4.1. A weak metric ı on the real vector space X satisfies the midpoint
property if for any p; q 2 X we have

ı.p;m/ D ı.m; q/ D 1

2
ı.p; q/

where m D 1
2
.p C q/ is the affine midpoint of p and q.

To describe the main features of this property, we shall use the notion of dyadic
numbers.

Definition 4.2. A dyadic number is a rational number of the type � D 2�km with
m; k 2 Z. We denote the set of dyadic numbers by

D D
1[
kD0

2�kZ;

and the subset of non-negative dyadic numbers by DC � D:

Proposition 4.3. Let ı be a weak metric on the real vector space X . Then ı satisfies
the midpoint property if and only if for any pair of distinct points p; q 2 X and for
any �; � in D with � � � we have

ı.�.�/; �.�// D .� � �/ � ı.p; q/; (4.1)

where �.t/ D tp C .1 � t /q.
Proof. It is obvious that if (4.1) holds, then ı satisfies the midpoint property. The
proof of the other direction requires several steps. Assume that ı satisfies the midpoint
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property. Then we have

ı.p; �.1
2
// D 1

2
ı.p; q/ and ı.p; �.2/ D 2ı.p; q/:

By an induction argument, we then have

ı.p; �.2m// D 2mı.p; q/ (4.2)

for any k 2 N. Because p is the midpoint of �.�2m/ and �.2m/, we deduce that

ı.�.�2m/; �.2m// D 2mC1ı.p; q/: (4.3)

Now we have, for k 2 Z,

ı.�.k � 1/; �.k// D ı.�.k/; �.k C 1//

since �.k/ is the midpoint of �.k�1/ and �.kC1/. Because ı.p; q/ D ı.�.0/; �.1//,
we deduce that

ı.�.k/; �.k C 1// D ı.p; q/;

and by the triangle inequality we have

ı.�.i/; �.j // � .j � i/ı.p; q/ (4.4)

for any i; j 2 Z with i < j . We show that this inequality is in fact an equality.
Choose m 2 N with 2m � max.ji j; jj j//. Then we have from (4.3) and (4.4)

2mC1ı.p; q/ D ı.�.�2m/; �.2m//
� ı.�.�2m/; �.i//C ı.�.i/; �.j //C ı.�.j /; �.2m//:

Using now (4.4) we have ı.�.i/; �.j // � .j � i/ı.p; q/, but also

ı.�.�2m/; �.i// � .i C 2m/ı.p; q/;

and

ı.�.j /; �.2m// � .2m � j /ı.p; q/:
Since

.i C 2k/C .j � i/C .2m � j / D 2mC1;

all the above inequalities must be equalities. Thus, we have established that

ı.�.i/; �.j // D .j � i/ı.p; q/ (4.5)

for any i; j 2 Z.

Let us now fix k 2 N and set qk D �.2�k/ and

�k.t/ D �.t2�k/ D tp C .1 � t /qk :
Applying (4.5) to �k we have

ı.�k.i/; �k.j // D .j � i/ı.p; qk/ D .j � i/2�kı.p; q/:
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The last equality can be rewritten as

ı.�. i
2k /; �.

j

2k // D . j
2k � i

2k /ı.p; q/

for any i; j 2 Z and k 2 N, which is equivalent to (4.1) for any dyadic numbers �,
� with � � �.

The next result is a generalization to the case of weak metrics of a characterization
of Minkowski geometry due to Busemann, see §17 in [4].

Theorem 4.4. A finite weak metric ı on Rn is a weak Minkowski metric if and only if
it satisfies the midpoint property and if its restriction to every affine line is continuous.
More precisely, the last condition means that if a and b are two points in Rn, then for
any t0 2 R we have

lim
t!t0

ı.�.t/; b// D ı.�.t0/; b//

and

lim
t!t0

ı.a; �.t// D ı.a; �.t0//;

where �.t/ D taC .1 � t /b.

Proof. If ı is a Minkowski metric, then it is projective and since ı is finite (by hypoth-
esis), it follows from Propositions 3.1 and 3.6 that the distance is given by

ı.x; y/ D F.y � x/;
where F is a weak Minkowski norm. The continuity of ı follows now from Proposi-
tion 3.6 and the midpoint property follows from property (ii) in Proposition 3.1.

Conversely, let us assume that the weak metric ı satisfies the midpoint property
and that it is continuous on every line. We need to show that ı is projective and
translation-invariant.

We first observe that if a; b 2 Rn are two distinct points with ı.a; b/ ¤ 0 and if x
and y are two points aligned with a and b such that .y�x/ is a non-negative multiple
of .b � a/, then

ı.x; y/

ı.a; b/
D jy � xj

jb � aj ; (4.6)

where jq � pj denotes the Euclidean distance between p and q in Rn. This follows
from Proposition 4.3 together with the continuity of ı on lines and the density of D
in R.

This immediately implies that ı.p; z/ C ı.z; q/ D ı.p; q/ whenever z 2 Œp; q�,
meaning that the weak metric ı is projective.

To prove the translation invariance, we consider four points p, q, p0, q0 with
.q0 � p0/ D .q � p/. If the four points are on a line, then (4.6) implies that
ı.p0; q0/ D ı.p; q/. If the four points are not on a line, then pqq0p0 is a non-
degenerate parallelogram. Assume also that 0 < ı.p; q/ < 1 and denote by LC

pq the
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ray with origin p through q and by Lqq0 the line passing through q and q0. Choose a
sequence yj 2 LC

pq such that jyj � pj ! 1 and set xj D Lp0yj
\ LC

qq0 .

�

p0

�

p

� q
�q0

�
yj

�
xj

We then have

1 � ı.p; p0/
ı.p; yj /

D ı.p; yj / � ı.p; p0/
ı.p; yj /

� ı.p0; yj /
ı.p; yj /

� ı.p0; p/C ı.p; yj /

ı.p; yj /

D ı.p0; p/
ı.p; yj /

C 1:

Using (4.6), we have ı.p; yj / ! 1, therefore

lim
j!1

ı.p0; xj /
ı.p; q/

D lim
j!1

ı.p0; yj /
ı.p; yj /

D 1:

Because xj ! q0 on the line Lqq0 , we have by hypothesis

lim
j!1 ı.xj ; q

0/ D lim
j!1 ı.q0; xj / D 0;

and since

ı.p0; q0/ � ı.xj ; q0/ � ı.p0; xj / � ı.p0; q0/C lim
j!1 ı.q0; xj /;

we have ı.p0; xj / ! ı.p0; q0/. Therefore

ı.p0; q0/
ı.p; q/

D lim
j!1

ı.p0; xj /
ı.p; q/

D 1:

It follows that for a non-degenerate parallelogram pqq0p0, we have ı.p0; q0/ D
ı.p; q/.

Suppose now that ı.p; q/ D 0. Then we also have ı.p0; q0/ D 0 for otherwise,
exchanging the roles ofp, q andp0, q0 in the previous argument, we get a contradiction.

We thus established that in all cases ı.p0; q0/ D ı.p; q/ if q0 � p0 D q � p. In
other words, ı is translation-invariant. Since it is projective, this completes the proof
that it is a weak Minkowski metric.
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Example 4.5 (Counterexample). Let X a be real vector space and let h W X ! R be
an injective Q-linear map. Then the function ı W X �X ! R defined by

ı.x; y/ D jh.x/ � h.y/j
is a metric which is translation-invariant and satisfies the midpoint property. Yet it is
in general not projective (unless h is R-linear, and thus dimR.X/ D 1).

5 Strictly and strongly convex Minkowski norms

Definition 5.1. (i) Let F be a (finite and separating) Minkowski norm in Rn with
unit ball �F . Then F is said to be strictly convex if the indicatrix @�F contains no
non-trivial segment, that is, if for any p; q 2 @�F , we have

Œp; q� � @� H) p D q:

(ii) The function F is said to be strongly convex if F is smooth on Rn n f0g and the
hypersurface @�F � Rn has everywhere positive Gaussian curvature. Equivalently,
the Hessian

gy.	1; 	2/ D 1

2

@2

@u1@u2

ˇ̌
ˇ
u1Du2D0F

2.y C u1	1 C u2	2/ (5.1)

of F 2.y/ is positive definite for any point y 2 Rn n f0g.

There are several equivalent definitions of strict convexity in Minkowski spaces,
see e.g. [12], [23].

It is clear that a strongly convex Minkowski norm is strictly convex. The converse
does not hold: the Lp-norm

kykp D
� nX
jD1

jyj jp
�1=p

is an example of a smooth strictly convex norm which is not strongly convex.

Proposition 5.2. Let F be a strongly convex Minkowski norm on Rn. Then F can be
recovered from its Hessian via the formula

F.y/ D
q

gy.y; y/; (5.2)

where gy is defined by (5.1).

This result follows by applying twice the following lemma, which is sometimes
called the Euler Lemma.
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Lemma 5.3. Let  W R n 0 ! R be a positively homogeneous functions of degree r .
If  is of class C k for some k � 1, then the partial derivatives @ 

@yi are positively
homogenous functions of degree r � 1 and

r �  .y/ D
nX
iD1

yi
@ 

@yi
:

In particular, yi @ 
@yi D 0 if  is 0-homogenous.

Recall that a function  W Rn n 0 ! R is said to be positively homogenous of
degree r if  .�y/ D �r .y/ for all y 2 Rn n 0 and all � > 0.

Proof. This is elementary: we just differentiate the function t 7!  .ty/ D t r .y/ to
obtain

@ 

@yi
.ty/ � yi D rt r�1 �  .y/;

and we set t D 1.

If F is a strongly convex Minkowski norm on Rn, then Formula (5.1) defines a
Riemannian metric gy on Rn n f0g. Using Lemma 5.3, on gets that gy is invariant
under homothety, that is, we have g�y D gy for every � > 0 and y 2 Rn n f0g.
Furthermore, F is determined from this metric by Equation (5.2). We conclude from
these remarks the following:

Proposition 5.4. There is a natural bijection between strongly convex Minkowski
norms on Rn and Riemannian metrics

This observation can be used as a founding stone for Minkowski geometry, see e.g.
[28], and it plays a central role in Finsler geometry.

6 The synthetic viewpoint

Definition 2.3 of a weak Minkowski space is based on a real vector space X as a
ground space. In fact, only the affine structure of that space plays a role and we could
equivalently start with a given affine space instead of a vector space.

The synthetic viewpoint is to start with an abstract metric space and to try to give
a list of natural conditions implying that the given metric space is Minkowskian. This
question, and similar questions for other geometries, has been a central and recurrent
question in the work of Busemann, and it is implicit in Hilbert’s comments on his
Fourth Problem [15]. Some answers are given in Busemann’s book The Geometry
of Geodesics [4]. In that book Busemann introduces the notions of G-spaces and
Desarguesian spaces. The goal of this section is to give a short account on this
viewpoint. We restrict ourselves to the case of ordinary metric spaces.
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Definition 6.1 (Busemann G-space). A Busemann G-space is a metric space .X; d/,
satisfying the following four conditions:

(1) (Menger Convexity) Given distinct points x; y 2 X , there is a point z 2 X

different from x and y such that d.x; z/C d.z; y/ D d.x; y/.

(2) (Finite Compactness) Every d -bounded infinite set has an accumulation point.

(3) (Local Extendibility) For every point p 2 X , there exists rp > 0, such that for
any pair of distinct points x; y 2 X in the open ball B.p; rp/, there is a point
z 2 B.p; rp/ n fx; yg such that d.x; y/C d.y; z/ D d.x; z/.

(4) (Uniqueness of Extension) Let x; y; z1; z2 be four points inX such that d.x; y/C
d.y; z1/ D d.x; z1/ andd.x; y/Cd.y; z2/ D d.x; z2/. Suppose thatd.y; z1/ D
d.y; z2/, then z1 D z2.

A typical example of a Busemann G-space .X; d/ is a strongly convex Finsler
manifold of class C 2. (In fact class C 1;1 suffices, by a result of Pogorelov.) It follows
from the definition that any pair of points in a BusemannG-space .X; d/ can be joined
by a minimal geodesic and that geodesics are locally unique. It is also known that
everyG-space is topologically homogeneous and that it is a manifold if its dimension
is at most 4. We refer to [2] for further results on the topology of G-spaces.

Among G-spaces, Busemann introduced the class of Desarguesian spaces.

Definition 6.2 (Desarguesian space). A Desarguesian space is a metric space .X; d/
satisfying the following conditions:

(1) .X; d/ is a Busemann G-space.

(2) .X; d/ is uniquely geodesic, that is, every pair of points can be joined by a unique
geodesic.

(3) If the topological dimension2 of X equals 2, then Desargues’ theorem holds for
the family of all geodesics.

(4) If the topological dimension of X is greater than 2, then any triple of points lie
in a plane, that is, a two-dimensional subspace of X which is itself a G-space.

The reason for assuming Desargues’ property in the two-dimensional case as an
axiom is due to the well-known fact from axiomatic geometry that it is possible to
construct exotic two-dimensional planes in which the axioms of real projective or affine
geometry are satisfied but which are not isomorphic to RP2 or R2 (an example of such
exotic object is the Moufang plane); these objects do not satisfy the Desargues property.
Similar objects do not exist in higher dimensions and Desargues’property is a theorem
in all dimensions � 3. In fact, Klein showed in his paper [17] that Desargues’ theorem
in the plane, although a theorem of projective geometry, cannot be proved using only

2On page 46 in [4], regarding this definition of Desarguesian space, Busemann states that he uses the Menger–
Urysohn notion of dimension, but any reasonable notion of topological dimension is equivalent for aG-space.
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two-dimensional projective geometry. Hilbert, in his Grundlagen (2nd. ed., §23),
constructed a plane geometry in which all the axioms of two-dimensional projective
geometry hold but where the theorem of Desargues fails. This theorem follows from
the axioms of three-dimensional projective geometry. Condition (3) in the above
definition could be rephrased as follows: If X is two-dimensional, then it can be
isometrically embedded in a three-dimensional Desarguesian space. We refer to [4]
and to Chapter 15 of this volume [24] for further discussion of Desarguesian spaces.

A deep result of Busemann states that a Desarguesian space can be mapped onto
a real projective space or on a convex domain in a real affine space with a projective
metric. More precisely he proved the following

Theorem 6.3 (Theorems 13.1 and 14.1 in [4]). Given an n-dimensional Desarguesian
space .X; d/, one of the following condition holds:

(1) Either all the geodesics are topological circles and there is a homeomorphism
' W X ! RPn that maps every geodesic in X onto a projective line;

(2) or there is a homeomorphism from X onto a convex domain C in Rn that maps
every geodesic in X onto the intersection of a straight line with C .

Using the notion of Desarguesian space and following Busemann, we now give
two purely intrinsic characterizations of finite-dimensional Minkowski spaces among
abstract metric spaces. Note that a Minkowski space .X; d/ is a G-space if and only
if its unit ball is strictly convex. The first result is a converse to that statement.

Theorem 6.4 ([4], Theorem 24.1). A metric space .X:d/ is isometric to a Minkowski
space if and only if it is a Desarguesian space in which the parallel postulate holds
and the spheres are strictly convex.

We refer the reader to [4], p. 141, for a discussion of the parallel postulate in this
context.

Observe that in a Desarguesian space there are well defined notions of lines and
planes and therefore Euclid’s parallel postulate can be formulated. Using Theorem 6.3
and the parallel postulate, we obtain that .X; d/ is isometric to Rn with a projectively
flat metric. To prove the theorem, Busemann uses the strict convexity of spheres to
establish the midpoint property.

The next result involves the notion of Busemann zero curvature. Recall that a
geodesic metric space is said to have zero curvature in the sense of Busemann if the
distance between the midpoints of two sides of an arbitrary triangle is equal to half the
length of the remaining side. Busemann formulates the following characterization:

Theorem 6.5 ([4], Theorem 39.12). A simply connected finite-dimensional G-space
of zero curvature is isometric to a Minkowski space.

Busemann came back several times to the problem of characterizing Minkowskian
and locally Minkowskian spaces. In his paper with Phadke [9], written 25 years after
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[4], he gave sufficient conditions that are more technical but weaker than those of
Theorem 6.5.

7 Analogies between Minkowski, Funk and Hilbert geometries

Given a Minkowski metric ı in Rn whose unit ball� at the origin is open and bounded,
the distance between two points is obtained by setting ı.x; x/ D 0 for all x in Rn and,
for x 6D y,

ı.x; y/ D jx � yj
j0 � aCj

where j j denotes the Euclidean metric and the point aC is the intersection with @�
of the ray starting at the origin 0 of Rn and parallel to the ray R.x; y/ from x to y.
This formula is equivalent to (1.1) and it suggest an analogy with the formula for the
Funk distance in the domain � (see Definition 2.1 in Chapter 2 of this volume [25]).
It is also in the spirit of the following definition of Busemann ([4], Definition 17.1): A
metric d.x; y/ in Rn is Minkowskian if for the Euclidean metric e.x; y/ the distances
d.x; y/ and e.x; y/ are proportional on each line.

Minkowski metrics share several important properties of the Funk and the Hilbert
metrics, and it is interesting to compare these three classes of metrics. Let us quickly
review some of the analogies.

We start by recalling that in the formulation of Hilbert’s fourth problem which
asks for the construction and the study of metrics on subsets of Euclidean (or of
projective) space for which the Euclidean segments are geodesics, the Minkowski and
Hilbert metrics appear together as the two examples that Hilbert gives (see [15] and
Chapter 15 in this volume [24]).

A rather simple analogy between the Minkowski and the Funk geometries is that
both metrics are uniquely geodesic if and only if their associated convex sets are
strictly convex. (Here, the convex set associated to a Minkowski metric is the unit ball
centered at the origin (Definition 3.8). The convex set associated to a Funk metric is
the set on which this metric is defined.)

Another analogy between Minkowski and Hilbert geometries is the well-known fact
that a Minkowski weak metric on Rn is Riemannian if and only if the associated convex
set is an ellipsoid, see Proposition 3.15. This fact is (at least formally) analogous to the
fact that the Hilbert geometry of an open bounded convex subset of Rn is Riemannian
if and only if this convex set is an ellipsoid (see [16], Proposition 19).

As a further relation between Minkowski and Hilbert geometries, let us recall a
result attributed to Nussbaum, de la Harpe, Foertsch and Karlsson. Nussbaum and de
la Harpe proved (independently) in [19] and [14] that if � � Rn is the interior of the
standard n-simplex and if H� denotes the associated Hilbert metric, then the metric
space .�;H�/ is isometric to a Minkowski metric space. Foertsch and Karlsson
proved the converse in [13], thus completing the result saying that a bounded open
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convex subset � of Rn equipped with its Hilbert metric is isometric to a Minkowski
space if and only if � is the interior of a simplex.

It should be noted that the result (in both directions) was already known to Buse-
mann since 1967. In their paper [8], p. 313, Busemann and Phadke write the following,
concerning the simplex:

The case of general dimension n is most interesting. The (unique) Hilbert geometry
possessing a transitive abelian group of motions where the affine segments are the
chords (motion means that both distance and chords are preserved) is given by a
simplex S , ([5], p. 35). If we realize � [the interior of the simplex] as the first
quadrant xi > 0 of an affine coordinate system, the group is given by x0

i
D ˇixi ,

ˇi > 0 [...] m is a Minkowski metric because it is invariant under the translations
and we can take the affine segments as chords.

We finally mention the following common characterizations of Minkowski–Funk
geometries and of Minkowski–Hilbert geometries:

Theorem 7.1 (Busemann [6], p. 38). Among noncompact and nonnecessarily sym-
metric Desarguesian spaces in which all the right and left spheres of positive radius
around any point are compact, the Hilbert and Minkowski geometries are character-
ized by the property that any isometry between two (distinct or not) geodesics is a
projectivity.

Theorem 7.2 (Busemann [7]). A Desarguesian space in which all the right spheres of
positive radius around any point are homothetic is either a Funk space or a Minkowski
space.

Acknowledgement. The first author is partially supported by the French ANR project
FINSLER.

References

[1] A. Barvinok,A course in convexity. Grad. Stud. in Math. 54,Amer. Math. Soc., Providence,
RI, 2002.

[2] V. N. Berestovskiı̆, D. M. Halverson and D. Repovš, Locally G-homogeneous Busemann
G-spaces. Differential Geom. Appl. 29 (2011), no. 3, 299–318.

[3] H. Busemann, The foundations of Minkowskian geometry. Comment. Math. Helv. 24
(1950), 156–187.

[4] H. Busemann, The geometry of geodesics. Academic Press, New York 1955; reprinted by
Dover in 2005.

[5] H. Busemann, Timelike spaces. Dissertationes Math. (Rozprawy Mat.) 53, Warsaw 1967.

[6] H. Busemann, Recent synthetic differential geometry. Ergeb. Math. Grenzgeb. 54,
Springer-Verlag, Berlin 1970.



Chapter 1. Weak Minkowski spaces 31

[7] H. Busemann, Spaces with homothetic spheres. J. Geometry 4 (1974), 175–186.

[8] H. Busemann and B. B. Phadke, A general version of Beltrami’s theorem in the large.
Pacific J. Math. 115 (1984), 299–315.

[9] H. Busemann and B. B. Phadke, Minkowskian geometry, convexity conditions and the
parallel axiom. J. Geometry 12 (1979), no. 1, 17–33.

[10] H. Busemann and B. B. Phadke, Novel results in the geometry of geodesics. Adv. in Math.
101 (1993), 180–219.

[11] S. Cobzas, Functional analysis in asymmetric normed spaces. Front. Math.,
Birkhäuser/Springer Basel AG, Basel 2013.

[12] M. M. Day, Normed linear spaces. 3rd ed., Ergeb. Math. Grenzgeb. 21, Springer-Verlag,
Berlin 1973.

[13] T. Foertsch, and A. Karlsson, Hilbert metrics and Minkowski norms. J. Geometry 83
(2005), no. 1–2, 22–31.

[14] P. de la Harpe, On Hilbert’s metric for simplices. In Geometric group theory (Graham A.
Niblo et al., eds.,) Vol. 1, London Math. Soc. Lecture Note Ser. 181, Cambridge University
Press, Cambridge 1993, 97–119.

[15] D. Hilbert, Mathematische Probleme. Göttinger Nachrichten 1900, 253–297, reprinted in
Archiv der Mathematik und Physik, 3d. ser., vol. 1 (1901) 44–63 and 213–237; English
version, “Mathematical problems”, reprinted also in Bull. Amer. Math. Soc. (N.S.) 37
(2000), no. 4, 407–436.

[16] D. C. Kay, The Ptolemaic inequality in Hilbert geometries. Pacific J. Math. 21 (1967),
293–301.

[17] F. Klein, Über die sogenannte Nicht-Euklidische Geometrie (Zweiter Aufsatz). Math.
Ann. VI (1873), 112–145.

[18] B. Nica, The Mazur–Ulam theorem. Expo. Math. 30 (2012), no. 4, 397–398.

[19] R. D. Nussbaum, Hilbert’s projective metric and iterated nonlinear maps. Mem. Amer.
Math. Soc. 391 (1988).

[20] H. Martini, K. Swanepoel and G. Weiss, The geometry of Minkowski spaces – a survey. I.
Expo. Math. 19 (2001), no. 2, 97–142.

[21] H. Martini and M. Spirova, Recent results in Minkowski geometry. East-West J. Math.,
Special Vol. (2007), 59–101.

[22] H. Minkowski, Sur les propriétés des nombres entiers qui sont dérivées de l’intuition de
l’espace. Nouvelles annales de mathématiques, 3e série, 15, 1896.

[23] H. Minkowski, Geometrie der Zahlen. B. G. Teubner, Leipzig and Berlin, 1896 and 1910
(several editions and translations).

[24] A. Papadopoulos, Hilbert’s fourth problem. In Handbook of Hilbert geometry
(A. Papadopoulos and M. Troyanov, eds.), European Mathematical Society, Zürich 2014,
391–431.

[25] A. Papadopoulos and M. Troyanov, From Funk to Hilbert geometry. In Handbook of
Hilbert geometry (A. Papadopoulos and M. Troyanov, eds.), European Mathematical So-
ciety, Zürich 2014, 33–67.

[26] H. Ribeiro, Sur les espaces à métrique faible. Portugaliae Math. 4 (1943), 21–40.



32 Athanase Papadopoulos and Marc Troyanov

[27] A. C. Thompson, Minkowski geometry. Encyclopedia Math. Appl. 63. Cambridge Univer-
sity Press, Cambridge 1996.

[28] O. Varga, Zur Begründung der Minkowskischen Geometrie. Acta Univ. Szeged. Sect. Sci.
Math. 10 (1943), 149–163.


	Introduction
	Weak metric spaces
	Weak Minkowski norms
	The midpoint property
	Strictly and strongly convex Minkowski norms
	The synthetic viewpoint
	Analogies between Minkowski, Funk and Hilbert geometries
	References

