A characterization of Kerr-Newman space-times and some applications

Willie Wai-Yeung Wong
W.Wong@dpmms.cam.ac.uk
http://www.dpmms.cam.ac.uk/~ww278/

DPMMS
University of Cambridge

12 May, 2010 - Relativity and Cosmology seminar
Queen Mary - University of London
Introduction

- Question: how can we tell whether an electro-vacuum space-time is Kerr-Newman, at least locally?
- Partial answer: in the stationary case, the simultaneous vanishing of two tensor quantities
- Construction based on that of Marc Mars [Mar99]
- Large body of existing literature (list is by no means complete): [HS73, BS81, Sim84a, Sim84b, DKM84, FS99, BJM01, BCJM04]... + recent work on initial data sets (e.g. Valiente-Kroon and Garcia-Parrado [GLK08]).
• No hair theorem? Requires real analyticity
 • In the smooth class, (stationary, non-extremal) black-hole uniqueness reduces to a problem of rigidity of the bifurcate sphere [IK09, Won09a]
 • Or, allowing deformations at the bifurcate sphere, perturbative no-hair theorem (W & Yu, in prep, see also [AIK09]), strengthening [Car73]

• Suitable notion of almost-Killing vector can lead to application in stability of Kerr-Newman
Basic assumptions

We consider a space-time \((\mathcal{M}, g_{ab})\) and a two-form \(H_{ab}\) on \(\mathcal{M}\):

- \(\mathcal{M}\) is 4d, orientable, paracompact, simply-connected manifold; \(g_{ab}\) is a Lorentzian metric tensor \((- + + +)\)
- Einstein-Maxwell field equations are satisfied:
 \[
 Ric(g)_{ab} = 2H_{ac}H^c_b - \frac{1}{2}g_{ab}H_{cd}H^{cd}
 \]
 \[
 = (H + i^*H)_{ac}(H - i^*H)_b^c
 \]
 \[
 \nabla_{[c}(H + i^*H)_{ab]} = 0
 \]
- There exists a non-trivial vector-field \(t^a\) such that \(\mathcal{L}_t g_{ab} = 0, \mathcal{L}_t H_{ab} = 0\).

Note we don’t (yet) need to assume \(\mathcal{M}\) is asymptotically flat nor \(t^a\) is time-like.
Notations

- For an arbitrary tensor Z, $Z^2 := g(Z, Z)$ the induced Lorentzian norm (which can be arbitrarily signed); for complex tensors, “norm” is extended linearly.
- \ast acts on forms as the Hodge dual. On a two-form ω_{ab} we write $\ast \omega_{ab} = \frac{1}{2} \epsilon_{abcd} \omega^{cd}$ where ϵ_{abcd} is the volume form.
- On $\text{Sym}_2(\Lambda^2 T^* M)$ (e.g. a curvature tensor), \ast naturally extends to a left- and a right- Hodge dual, which are in general not equal. We write $\ast R_{abcd} = \frac{1}{2} \epsilon_{abef} R_{efcd}$, and $R^*_{abcd} = \frac{1}{2} R_{abef} \epsilon^{ef}_{\quad cd}$.
- Define the complex tensor
 \[
 I_{abcd} = \frac{1}{4} (g_{ac} g_{bd} - g_{ad} g_{bc} + i \epsilon_{abcd})
 \]
Review of ASD forms

- On a 4d, Lorentzian manifold, $** = -1$ for two-forms
- Factor $\Lambda^2 T^* \mathcal{M} \otimes_{\mathbb{R}} \mathbb{C}$, the space of complex two-forms, into eigenspaces Λ_\pm of eigenvalues $\pm i$, the self-dual (\pm) and anti-self-dual (\mp) spaces.
- An arbitrary (real-valued) two-form H_{ab} can be decomposed
 $$H_{ab} = \mathcal{H}_{ab} + \bar{\mathcal{H}}_{ab}$$
 where $\mathcal{H}_{ab} \in \Lambda_-$ is given by $2\mathcal{H} = H + i^* H$.
- In this notation, Einstein-Maxwell equations can be written
 $$Ric(g)_{ab} = 4 \mathcal{H}_{ac} \bar{\mathcal{H}}_b^c \quad \nabla^a \mathcal{H}_{ab} = 0$$
- The tensor \mathcal{I}_{abcd} is the projection to Λ_- of the induced Lorentzian product on $\Lambda^2 T^* \mathcal{M} \otimes_{\mathbb{R}} \mathbb{C}$
Review of ASD forms II

- The tensors $Sym_2(\Lambda^2 T^* M)$ naturally also factors into diagonal components taking $\Lambda_\pm \to \Lambda_\pm$, and the anti-diagonal component taking $\Lambda_\pm \to \Lambda_\mp$.

- By a calculation first due to Singer and Thorpe [ST69], for a Riemann curvature tensor, the diagonal components are given by the Weyl curvature and the scalar curvature, the anti-diagonal component is given by the trace-free Ricci curvature.

- Einstein-Maxwell: scalar curvature is zero

- The left- and right- Hodge duals of the Weyl tensor are equal, the left- and right- Hodge duals of the Ricci part of the curvature differs by a minus sign.

- So for the Weyl tensor W_{abcd} we can also define an ASD version $C_{abcd} = \frac{1}{2}(W_{abcd} + i^* W_{abcd})$.
Symmetric spinor product

For two ASD two-forms $\mathcal{X}_{ab}, \mathcal{Y}_{ab}$, define

$$(\mathcal{X} \tilde{\otimes} \mathcal{Y})_{abcd} := \frac{1}{2} (\mathcal{X}_{ab} \mathcal{Y}_{cd} + \mathcal{Y}_{ab} \mathcal{X}_{cd}) - \frac{1}{3} I_{abcd} \mathcal{X}_{ef} \mathcal{Y}^{ef}$$

- a symmetric bilinear form acting on two-forms
- trace free
- maps Λ_- into itself, and annihilates Λ_+

\Rightarrow is algebraically ASD Weyl

Call it a symmetric spinor product because, if we use x_{AB} and y_{AB} (symmetric in the spinor indices) to represent \mathcal{X}, \mathcal{Y}, then $\mathcal{X} \tilde{\otimes} \mathcal{Y}$ is represented by $x_{(AB} y_{CD)}$
Ernst two-form and friends

• t^a is Killing $\iff \hat{F}_{ab} := 2\nabla_a t_b$ is antisymmetric

• $\hat{F} = \frac{1}{2}(F + i^*F)$

• \mathcal{H} is closed (Maxwell) $\implies \iota_t \mathcal{H}$ is closed (Cartan) $\implies \exists \Xi$ a complex scalar s.t. $d\Xi = \iota_t \mathcal{H}$ up to a constant c_Ξ.

• Define the ASD Ernst two-form $\mathcal{F} := \hat{F} - 4\Xi \mathcal{H}$. It is Maxwell (Einstein eq. + Jacobi eq. for t) $\implies \ldots \implies \exists \sigma$, the (complex) Ernst potential, s.t. $d\sigma = \iota_t \mathcal{F}$, defined up to a constant c_σ.

• Note: I write c_Ξ and c_σ just to emphasize the fact that we have a freedom in normalization.
The characterization tensors

- The tensors are defined up to four normalizing constants: the complex parameters c_Ξ and c_σ implicitly from before, and a real number $\mu \neq 0$ and a complex number κ

- $B := \kappa F + 2\mu \mathcal{H}$

- $Q := C + \frac{6\kappa \bar{\Xi} - 3\mu}{2\mu\sigma} (F \bar{\otimes} F)$

- The vanishing of B and Q will be the characterizing conditions for a space-time to be Kerr-Newman
Characterization theorems

Local characterization

Under the “basic assumptions”, let $U \subset \mathcal{M}$ be a connected open subset, and suppose $c_{\Xi}, c_{\sigma}, \mu, \kappa$ can be taken so that on U: $\sigma \neq 0$, $B = 0$, and $Q = 0$. Then we have that on U,

$$t^2 + \sigma + \bar{\sigma} + \frac{|\kappa \sigma|^2}{\mu^2} = \text{const.} \quad \mathcal{F}^2 + 4\mu^2 \sigma^4 = \text{const.}$$

If, furthermore, the first expression evaluates to -1, the second to 0, then U is locally isometric to a Kerr-Newman domain with charge κ, mass μ, and angular momentum $\mu \sqrt{\mathcal{A}}$, where

$$\mathcal{A} = \left| \frac{\mu}{\sigma} \right|^2 \left(\mathcal{S} \nabla \frac{1}{\sigma} \right)^2 + \left(\mathcal{S} \frac{1}{\sigma} \right)^2$$

is constant on U.
Characterization theorems

Global characterization

Under the “basic assumptions”, assume in addition that \mathcal{M} is asymptotically flat and t approaches a unit time translation at infinity. Normalize the potentials Ξ and σ to vanish at infinity, and define $(\mu, \kappa) = (M, q)$ to be the (positive) mass and charge respectively at the asymptotic end. Then if $B = 0$ everywhere, and $Q = 0$ whenever $\sigma \neq 0$, we can conclude that \mathcal{M} is locally isometric to Kerr-Newman with angular momentum $M \sqrt{\mathcal{A}}$, where \mathcal{A} is as defined on the previous slide.

Remark: by asymptotic decay and the positive mass, $\sigma \neq 0$ in a neighborhood of infinity, so the hypothesis is not empty. We can “push in” using the fact that $1/\sigma$ cannot blow-up in finite Riemannian distance.
About the proof

- The vanishing of B allows us to compute ∇F^2 by re-expressing F in terms of \hat{F}, the derivative for which we have an expression by virtue of the Jacobi equation for t. From the Jacobi equation we pick up the contribution from the curvature tensor, and using the vanishing of Q connect it back to an algebraic statement about F.
- From the above we obtain $\nabla F^2 = -4\mu^2\nabla \sigma^4$.
- This immediately implies that $(\nabla \frac{1}{\sigma})^2 = -t^2$, and that $\nabla t^2 = \nabla (\sigma + \bar{\sigma}) + \nabla \frac{|\kappa \sigma|^2}{\mu^2}$.
- The derivations are “algebraic”, in the sense that if B and Q were non-vanishing, the three equalities pick up error terms due to only B, ∇B, and Q. (This fact is useful in applications.)
About the proof II

- The main step in the proof of local isometry, after making the assumption about the constants of integration, is to show

Main Lemma

Write $\frac{1}{\sigma} = y + iz$ for real numbers y, z, then $(\nabla y) \cdot (\nabla z) = 0$ and

\[
(\nabla z)^2 = \frac{\mathcal{A} - z}{y^2 + z^2} \quad \quad (\nabla y)^2 = \frac{\mathcal{A} + y^2 + |\kappa|^2 - 2\mu y}{y^2 + z^2}
\]

where \mathcal{A} is the non-negative constant as defined before.

- Remark: In the AHP paper the lemma was proven using a tetrad calculus similar to GHP, but the statement can also be obtained tensorially and algebraically (in the sense above).
About the proof III

- Notice that the vanishing of \mathcal{B} and \mathcal{Q}, along with the condition that $\sigma \neq 0$, gives that the space-time is type D. Let l, l' denote the two PNDs normalized so $g(l, l') = -1$ and $g(t, l) = 1$ (that this can always be done requires proof, but is true outside bifurcate sphere).

- Define the vector fields

$$n = (A + y^2)t + (y^2 + z^2)(t \cdot l l' + t \cdot l' l) \quad b = \nabla z / (\nabla z)^2$$

- By computation: the four vector fields t, n, b, l form a holonomic basis (are linearly independent and commute), so they can be attached to coordinates.

- The metric in the coordinates can be computed from the inner-products of those four vector fields, and verified to be the Kerr-Newman metric in Kerr coordinates.
Wave-like property of the characterization tensors

- For analysis of PDEs, the most useful property of this characterization is the fact that the tensors solve good hyperbolic equations.
- Evident for the tensor $B = \kappa F + 2\mu H$ since it is a constant coefficient linear combination of Maxwell fields.
- That $Q = C + \frac{6\kappa\bar{\Xi} - 3\mu}{2\mu\sigma} (F \tilde{\otimes} F)$ solves some hyperbolic equation is also evident: The Weyl tensor C solves a divergence-curl system with source, σ solves a wave equation, and F is Maxwell.
- The key is in the word “good”.
Wave-like property II: Good equations

For our purpose (obtaining analytical estimates for perturbations of the 0 solution), a good equation should look like

Good wave equation

\[\square_g S = J(x, S, \nabla S) \cdot (S, \nabla S) \]

Where \(S \) is some vector-valued function, and \(J \) some matrix-valued “potential” representing interaction with some background. In particular the source is “at least” linear in \(S \) and its first derivative (no exterior forcing).
Wave-like property III

- Since \mathcal{B} is Maxwell, it has a wave equation
 \[\Box g\mathcal{B}_{ab} = -C_{abcd}\mathcal{B}^{cd} \]

- Commuting the equation with the connection, we see that
 $\nabla\mathcal{B}$ also solves a good wave equation.

- The one for \mathcal{Q} is more complicated; unlike \mathcal{B}’s equation, it
 does not decouple:
 \[\Box g\mathcal{Q} = J \cdot (\mathcal{Q}, \nabla\mathcal{Q}, \mathcal{B}, \nabla\mathcal{B}, \nabla^2\mathcal{B}) \]
 (see [Won09a] for the actual demonstration).

- So need to take $S = (\mathcal{B}, \nabla\mathcal{B}, \mathcal{Q})$ to have a closed system of
 good wave equation.
Evolutionary statements?

- Given that the tensors solve wave equations, one might ask about the evolutionary aspect of the tensors.
- Trivially we have that

Finite speed of propagation

Given a space-like hypersurface Σ, assume B, ∇B, Q and their first normal derivatives vanish at Σ, then they vanish in the domain of dependence of Σ.

So the characterization theorem can have vanishing not on an open set, but on a Cauchy slice.

- In practice, this is not very useful, since whenever t is transverse to the Cauchy slice, just the vanishing of B and Q themselves are enough get vanishing along the orbits.
Rigidity of Kerr-Newman solutions

- Classical proofs of No-Hair theorem require analyticity of the space-time, in order to invoke Hawking’s Rigidity Theorem

Hawking Rigidity

A real-analytic, stationary solution to the Einstein-Maxwell equations with a Killing horizon must be also axially symmetric.

- Assuming that the space-time is stationary and axisymmetric, with a non-degenerate event horizon, the proofs of [Car73, Rob75, Bun83, Maz82] (see also [Cos10]) show that the space-time must be sub-extremal Kerr-Newman. (See also the recent work of Chrusciel and Nguyen for the extremal case.)
Rigidity of Kerr-Newman solutions II

- Can we get out of the analytic category? Is just smoothness enough?
- Yes, if we pose some additional conditions:
 - If a stationary black hole is non-degenerate, it admits a bifurcate sphere. If, roughly speaking, the induced metric on the bifurcate sphere and its first jet in the directions of the horizons are identical to that of Kerr-Newman, then the domain of outer communications is everywhere locally isometric to Kerr-Newman.
 - If a stationary black hole is C^6-close (in the metric) to Kerr-Newman, then it must be axially symmetric.
 - There exist no stationary two-black hole solutions "close" to Kerr-Newman space-time.
- Each of the above uses the characterization presented in the previous section.
Large-data, conditional rigidity

- Three kinds of constraints on the bifurcate sphere:
 - Structural constraints. We need the bifurcate sphere to “look like the one in Kerr-Newman”. So we impose that $B^2 = 0$ and $F^2 + 4M^2\sigma^4 = 0$ (the latter $\Rightarrow Q^2 = 0$).
 - Characterization constraints. The bifurcate sphere is disconnected from infinity, so need to apply local characterization. μ, κ are fixed by asymptotic mass and charge, and c_Ξ, c_σ are fixed at infinity. One derived constant fixed above, the remaining one $t^2 + \sigma + \bar{\sigma} + |\kappa\sigma|^2/\mu^2 = -1$ needs to be fixed at a point.
 - Technical constraints. We need a lower bound condition $y > M$ on the bifurcate sphere: this is to ensure that we are on the event, and not Cauchy horizon, so that if we go in the direction of increasing y, we head into the domain of outer communications.

- Structural constraints \Rightarrow (via null structure equations) B, ∇B, and Q vanish on the event horizon.
Large-data, conditional rigidity II

- Ionescu-Klainerman’s first uniqueness theorem for wave equations implies that in a neighborhood of the bifurcate sphere Q, B vanishes identically.
- The first uniqueness theorem is a statement about wave equations near a bifurcate null boundary, doesn’t use stationarity.
- Bootstrap outwards using Ionescu-Klainerman’s second uniqueness theorem for wave equations and the fact that we already have a local isometry in the region where Q, B vanishes.
- The second uniqueness theorem makes use of stationarity, via considering a foliation by level surfaces of the function y and using its nice properties: hence a bootstrapping is needed.
Perturbative rigidity

• Assume the stationary black-hole space-time is “close” to Kerr-Newman in the sense that B, Q are close to zero. This allows the global construction of the function y.

• “Algebraic” construction implies y still has all the nice properties, up to an error term defined by the smallness of B, Q.

• Since y has no critical points except “at the bifurcate sphere”, a mountain-pass-type lemma or a topological argument gives that a non-extremal event horizon can only have one connected component.

• Once y is constructed, and that the event horizon is sub-extremal and has only one component, then we can apply the argument of [AIK09] to show that the space-time must admit an axial Killing vector field.
Further questions

- Mars simplified his characterization to a global one using purely alignment of principal null directions [Mar00]: can the same be done here? (Presumed yes)
- Can the construction be made using a suitable notion of almost-Killing vectors? Ideally the notion of “suitable” should demand the tensors B and Q still solve good PDEs.
- Do the PDEs satisfied by B and Q have good decay properties? B, probably not (stationary mode); Q maybe (first step: see whether that equation admits a stationary solution). Possible application to linear stability.
- Can we remove bifurcate sphere condition to obtain a full proof of black hole uniqueness? (Perhaps using local rigidity?)
Thank you for your attention.

References II

