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XAVIER FERNÁNDEZ-REAL AND ALESSIO FIGALLI

Abstract. It has been recently observed that the training of a single hid-
den layer artificial neural network can be reinterpreted as a Wasserstein
gradient flow for the weights for the error functional. In the limit, as the
number of parameters tends to infinity, this gives rise to a family of para-
bolic equations. This survey aims to discuss this relation, focusing on the
associated theoretical aspects appealing to the mathematical community
and providing a list of interesting open problems.

1. Introduction

The extensive and successful use of machine learning in recent years has been
remarkable. However, from a mathematical viewpoint, an adequate theoreti-
cal understanding of its primary governing principles is still missing in many
situations. Often, each problem needs to be studied individually, even within
the application of the same technique, to obtain the desired visible result.

Recently, a new continuous viewpoint of artificial neural networks has risen,
intending to shine some light on this computing system’s understanding. This
theory has already been developed and shown important results and, roughly
speaking, consists in viewing the gradient descent used to optimize parameters
in a neural network as a gradient flow in the Wasserstein distance for their own
empirical measure.

More precisely, training neural networks can be thought of as discretizations
of a gradient flow with the appropriate metric and functional. This observation
has opened the door to studying (at a theoretical level) the general convergence
properties of such methods deducing properties of the corresponding continu-
ous limit. Most of this study has been conducted from a numerical point of
view, and there are still many open questions that are also interesting from a
purely theoretical perspective.
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In this framework, new mathematical problems and PDE systems have
arisen, which have not yet been fully adopted by the mathematical community.
This short survey aims to bridge this gap to present this fascinating problem
in the gradient flows community’s language.

We refer the interested reader to [CB18, MMN18, JMM19, EMW19, SS20]
and references therein for an in-depth introduction to the topic, and also to
[E17, EHL19] for an approach more focused on dynamical systems and optimal
control problems.

2. Shallow neural network and gradient flows

Given a domain D ⊂ Rn, and a function f : D → R, training a single
hidden layer artificial neural network (or shallow neural network) consists in
approximating f with expressions of the form

fN(x) = fN(x,w1, . . . , wN , θ1, . . . , θN) =
1

N

N∑
i=1

wih(θi, x), (2.1)

where wi ∈ R and θi ∈ Θ ⊂ Rd are parameters to be optimized (usually taken
in pairs (wi, θi)), and h : Θ×D → R is called the activation function, which is
nonlinear. Such construction of approximating functions is often graphically
represented as seen in Figure 2.1, and when the number of layer increases, the
number of interconnections between the neurons increases as well, very loosely
resembling a biological neural network.

In applications, it is usual to assume that

d = n+ 1 and h(θ, x) = σ(θ′ · x+ θ(d)), (2.2)

where θ = (θ′, θ(d)) ∈ Rn × R, for a suitable nonlinearity σ.1 Thus, neural
networks try to approximate a given function with linear combinations of non-
linearities. However, for the sake of generality, here we will not consider a
specific form of h(θ, x), and we focus instead on the general formulation where
h(θ, x) can be arbitrary.

The number N of parameters (w, θ) ∈ Rd+1 used to in (2.1) corresponds to
the number of neurons or hidden units. When training a neural network one
tries to minimize the expected error, sometimes called risk or generalization
error, obtained from approximating f by fN . To do so, one needs to define a
loss function `, that we consider to be

`
(
f, fN

)
=

1

2

∫
D

|f(x)− fN(x)|2dx.

1A typical nonlinearity is the sigmoid function. Namely, if we denote σ(t) = 1
1+e−t , we

consider h(θ, x) = σ(θ ·x). However, nowadays, the most frequently used activation function
in applications is not smooth nor bounded: the ReLU function σ(t) = max{t, 0}.
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Figure 2.1. Graphic representation of the approximating func-
tions given by what is known as a single hidden layer artificial
neural network. The variables are w̃i = 1

N
wi according to the

notation in (2.1).

Let us denote by HN the class of fN that can be obtained as (2.1). Then,
one wants to solve the minimization problem

min
fN∈HN

`
(
f, fN

)
, (2.3)

where ` is as above. The standard approach nowadays is to start from some
choice of weights w̄ = (w̄1, . . . , w̄N) and θ̄ = (θ̄1, . . . , θ̄N), and perform gradient
descent on these parameters (w, θ) in order to (possibly) achieve the minimizer
to (2.3)2: 

d
dt

(w(t), θ(t)) = −N ∇w,θ`
(
f, fN(·, w(t), θ(t))

)
,

(w(t), θ(t)) = (w̄, θ̄),
(2.4)

with w(t) = (w1(t), . . . , wN(t)) and θ(t) = (θ1(t), . . . , θN(t)).3 Unfortunately,
given the structure of the approximating functions (2.1), this problem is non-
convex, and thus one does not expect to arrive to the minimizer in general.

Because of this degeneracy, a recent approach has been to consider a contin-
uum model where one lets the number N of neurons go to infinity. The general
hope is that this limit problem can be studied with PDE techniques, and then
one may try to extract informations also on the original problem (with N
fixed) provided N is sufficiently large. This latter step has been studied, for

2In fact, in reality, one uses stochastic gradient descent, by considering random samples
(xi, f(xi)) of our data or training set.

3Actually, to avoid over-fitting, it is usual to add to the loss function ` a convex potential
on the parameters, see (2.7) or (2.13).
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instance, in [CB18], although many questions are still open (see Section 5 for
more details).

In this note we shall not discuss the consistency of the approximation as
N →∞, but we instead focus on the analysis of the continuum interpretation.
As we shall see, there is more than one way to interpret the limit as N →∞,
and more than one possible formulation exists. In the next sections we first
present the continuum energy functionals that one can obtain by taking the
limit of `

(
f, fN

)
as N → ∞, and then we shall analyze the possible gradient

flows that can arise from this model.

2.1. The µ formulation. We start with the most commonly used interpre-
tation of a neural network, when the number of neurons is allowed to go to
infinity. In this case, we want to treat the two variables w and θ in the same
way. For that, let us slightly reformulate the previous problem.

Set ξ := (w, θ) ∈ R × Θ, Ω := R × Θ ⊂ Rd+1, and let us define Φ(ξ, x) :=
w h(θ, x), so that we can deal with both parameters simultaneously. Thus,
(2.1) can be written as

fN(x) = fN(x, ξ1, . . . , ξN) =
1

N

N∑
i=1

Φ(ξi, x).

Let µN denote the empirical distribution of {ξi}1≤i≤N , namely,

µN(ξ) =
1

N

N∑
i=1

δξi(ξ).

Then the function fN can be expressed in terms of µN as

fN(x) =

∫
Ω

Φ(ξ, x)µN(dξ),

and the gradient descent (2.4) can be rewritten only in terms of the empirical

measure at time t, that is, µN(t) = 1
N

∑N
i=1 δξi(t)(ξ) with ξi(t) = (wi(t), θi(t)).

Letting N →∞, the space of empirical measures can approximate any prob-
ability measure µ ∈ P(Ω). Hence, this suggests the study of approximating
functions defined as

fµ(x) :=

∫
Ω

Φ(ξ, x)µ(dξ) ∀µ ∈P(Ω). (2.5)

Then, our minimization problem consists in minimizing

F (µ) :=
1

2

∫
D

(f − fµ)2dx

among probability measures µ ∈P(Ω). That is,

min
µ∈P(Ω)

F (µ) = min
µ∈P(Ω)

1

2

∫
D

(
f −

∫
Ω

Φ(ξ, x)µ(dξ)

)2

dx. (2.6)
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In other words, we are looking at the best way of approximating f in L2(D)
using functions of the form (2.5).

Note that, for many choices of Φ, the set of functions of the form (2.5)
may be dense in L2(D), so that the minimum may be zero (and we want to
study ways to attain or approximate it). Moreover, oftentimes, to avoid over-
fitting in the training space, it is common to add a potential term used as
a renormalization in the optimization of the neural networks. Therefore, the
energy that we want to minimize over µ ∈P(Ω) becomes

F (µ) =
1

2

∫
D

(
f −

∫
Ω

Φ(ξ, x)µ(dξ)

)2

+

∫
Ω

V (ξ)µ(dξ), (2.7)

for some fixed function V : Ω → R. A natural choice of V is given by the
quadratic potential

V (ξ) =
λ

2
|ξ|2, with λ > 0. (2.8)

Notice that, with this additional term, the minimum of our functional will not
be zero anymore.

We remark that, by considering probability measures instead of discrete
parameters, we are not losing information. Indeed, if we restrict our problem
to the set of atomic measures with N atoms, then we go back to formulation
(2.1).

Remark 2.1. One might benefit from the convex structure of the functional F
with respect to the classical linear structure of P(Ω), namely,

F (αµ1 + (1− α)µ2) ≤ αF (µ1) + (1− α)F (µ2) ∀α ∈ [0, 1].

In particular, from here one can show that if µ1 and µ2 are two local minimizers
then

∫
D

Φ(ξ, x)µ1(dξ) =
∫
D

Φ(ξ, x)µ2(dξ) for all x ∈ D and their potential
energy is the same, i.e.,

∫
Ω
V (ξ)µ1(dξ) =

∫
Ω
V (ξ)µ2(dξ).4 In particular, local

minimizers are unique under Φ.

An advantage of the continuous formulation is that the invariance with re-
spect to permutations of neurons is included in the model. Also, assuming
that one already knows symmetries for the objective function (for example,

4Indeed, suppose that µ1 and µ2 are two local minimizers, and for α ∈ [0, 1] consider
µα := (1− α)µ0 + αµ1. Then, we can compute d

dαF (µα), which equals

d

dα
F (µα) = α

∫
D

|f−f1|2−(1−α)

∫
D

|f−f0|2 +(1−2α)

∫
D

(f−f0)(f−f1)−
∫
V (µ0−µ1).

Since µ0 and µ1 are local minimizers we have d
dα

∣∣
α=0

F (µα) ≥ 0 and d
dα

∣∣
α=1

F (µα) ≤ 0, and
therefore

0 ≥ d

dα

∣∣
α=1

F (µα)− d

dα

∣∣
α=0

F (µα) =

∫
D

|f0 − f1|2

thus f0 = f1. This implies that d
dαF (µα) = −

∫
V (µ0−µ1), so it follows from d

dα

∣∣
α=0

F (µα) ≥
0 and d

dα

∣∣
α=1

F (µα) ≤ 0 that
∫
V µ0 =

∫
V µ1.
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rotational symmetry to identify certain images), they can be incorporated di-
rectly into the minimization problem, much more easily than in the discrete
case.

2.2. Comparison between the continuous and discrete model. At the
discrete level, adding a potential term corresponds to considering the mini-
mization of the loss functional

FN(fN) =
1

2

∫
D

|f(x)− fN(x)|2 dx+
N∑
i=1

V (ξi), (2.9)

for some convex function V . Equivalently, we are considering the discrete
minimization problem

min
ξi∈Ω

FN(fN) for fN(x) =
1

N

N∑
i=1

Φ(ξi, x). (2.10)

We have seen that this minimization problem can be interpreted as a particular
case of the more general problem for probability measures. Namely, if we
consider F given by (2.7), then Problem (2.10) generalizes to

min
µ∈P(Ω)

F (µ). (2.11)

Notice also that, while Problem (2.10) is heavily non-convex, Problem (2.11)
has a convex structure (see Remark 2.1).

2.2.1. Consistency. The consistency between Problems (2.10) and (2.11) has
generated some research in the recent years. These are some results:

(i) If µN is the empirical distribution of a minimizer of FN , and µ is a
minimizer of F , then FN(µN) = F (µ) + O(N−1). In addition, if V
is coercive, then µN converges weakly∗ to a minimizer µ of F (up to
subsequences).

(ii) The Wasserstein gradient flow of F with initialization µN is the same
as the corresponding gradient descent of the discretized problem, cf.
(2.4) (see [CB18]).

(iii) As shown in [MMN18] (see also [RV18]), the stochastic gradient de-
scent for (2.10) (cf. (2.4)) converges to the gradient flow of (2.11) with

its own initialization. More precisely, if one denotes by µ
(k)
N the empir-

ical distribution of the parameters (ξki )1≤i≤N in the stochastic gradient
descent for FN at step k, then one can prove quantitative convergence

of µ
(t/ε)
N to µt as N →∞ and ε ↓ 0, where µt is the gradient flow in the

Wasserstein metric for the functional F .
(iv) In [CB18] the authors proved that if one approximates an initial mea-

sure µ0 by N atoms, the corresponding gradient descents converge,
under some conditions on the initial measure, to the gradient flow for
F with initial measure µ0, also as t → ∞. Thus, they showed that
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one does actually benefit from the convex structure in (2.11): given
a nice enough initial measure (initial configuration of weights, with
enough neurons), its gradient descent will converge to a configuration
of parameters very close to a minimizer for F . This is currently a non-
quantitative result that checks the consistency of the problem posed.

All these facts show that studying the minimization problem (2.11) could be
very useful in trying to derive properties for the discrete problem (2.10).

On the other hand one should keep in mind that, in general, the Wasserstein
gradient flow of (2.6) may not converge to a global minimizer, but just to a
stationary point. For example, given an initial configuration with a fixed
number of deltas, the corresponding gradient flow never increases the amount
of deltas, and thus it converges to some measure that has at most the same
number of deltas as the initial configuration. In particular, this limit will not
generally be a global minimizer of F . Still, the result in [CB18] says that such
limiting configuration will approximate a minimizer, under suitable conditions.

2.3. The (ρ,H) formulation. An alternative approach to the previous gen-
eralization (what we called “the µ formulation”) consists in taking advantage
of the structure of Φ, where the weights w and positions θ have asymmetric
roles. One can think of this approach as a charged particles system, where we
can discretize in θ (positions of the particle) assigning a coefficient w to each
atomic measure of the discretization (charge of the particle). We refer to some
examples in [EMW19].

While these continuous methods a priori do not necessarily arise from a dis-
crete gradient descent, they yield other evolution equations whose discretiza-
tion could benefit from additional properties. As we will see, some of these
associated PDE systems also dissipate energy, suggesting that alternative gra-
dient flow formulations are possible and interesting.

Recall that we have θ ∈ Θ ⊂ Rd and w ∈ R. Consider the measure in θ
given by

ρN(θ) =
1

N

N∑
i=1

wiδθi(θ)

(observe that now ρN is not necessarily a probability measure, and not even
a positive measure, since the weights wi may be negative). Then the function
fN in (2.1) can be expressed as

fN(x) =

∫
Θ

h(θ, x)ρN(dθ).

This suggests considering functions of the form

fm(x) =

∫
Θ

h(θ, x)m(dθ),

where now m ∈M is a finite (signed) measure.
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Notice that this is related to what we were doing before with probability
measures µ defined on Ω = R × Θ. Indeed, to see the relation between the
two formulations, given µ ∈ P(Ω) consider its disintegration with respect to
θ. Namely, one can write

µ(dξ) = νθ(dw)⊗ ρ(dθ),

where ρ and ν are formally defined as5

ρ(θ) =

∫
R
µ(dw, θ), νθ(w) =

1

ρ(θ)
µ(w, θ).

Then, given Φ(ξ, x) = w h(θ, x), we have∫
Ω

Φ(ξ, x)µ(dξ) =

∫
Θ

(∫
R
w νθ(dw)

)
h(θ, x)ρ(dθ) =

∫
Θ

h(θ, x)m(dθ)

where

m(dθ) =

(∫
R
w νθ(dw)

)
ρ(dθ).

In other words, (2.6) is equivalent to the minimization problem

min
m∈M(Θ)

1

2

∫
D

(
f −

∫
Θ

h(θ, x)m(dθ)

)2

dx,

whereM(Θ) denotes the set of (finite) signed measures on Θ. Equivalently, if
we define

H(θ) =

∫
R
w νθ(dw),

then our problem consists in finding the best approximation of f in L2(D)
with functions of the form

fρ,H(x) =

∫
Θ

H(θ)h(θ, x)ρ(dθ). (2.12)

In addition, keeping the same notation, and assuming to introduce a potential
term of the form V (ξ) = λ

2
|ξ|2 in the µ formulation, then by Jensen’s inequality

we have∫
Ω

|ξ|2µ(dξ) =

∫
Θ

∫
R
w2νθ(dw)ρ(θ) +

∫
Θ

|θ|2ρ(dθ) ≥
∫

Θ

(
H(θ)2 + |θ|2

)
ρ(dθ).

In particular, if we were assuming
∫
|ξ|2µ(dξ) < +∞ (i.e., µ has bounded

second moments) in the previous formulation, then it is natural to assume ρ
to have bounded second moments as well, and H ∈ L2(Θ, ρ)6.

5This definition of the disintegration is correct if µ is absolutely continuous, and therefore
can be identified as a function. Otherwise, the existence and uniqueness of such representa-
tion is provided by the disintegration theorem (see for instance [FG20, Theorem 1.4.10 and
Appendix B]).

6Similarly, if our potential term was given by the p-moments instead, i.e., V (ξ) = λ|ξ|p
for some p ≥ 1 and λ > 0, then it would be natural to assume H ∈ Lp(Θ, ρ).
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Notice that the expression (2.12) is similar to (2.5), the one appearing in
the µ formulation. There are however, two main differences: on the one hand,
the number of parameters has been reduced (from ξ = (w, θ) to simply θ); on
the other hand, we are optimizing not only over probability measures ρ but
also over functions H ∈ L2(Θ, ρ). Thus, by looking at the explicit expression
Φ(ξ, x) had in the previous formulation, we are trading off the amount of
parameters of our problem with a new variable to optimize. We can do so
because, in reality, the freedom given to the measure νθ(dw) was limited: since
Φ(ξ, x) = w h(θ, x), we only see it through its first moment. In particular,
given µ = νθ(dw) ⊗ ρ(dθ), one can replace it with δH(θ)(dw) ⊗ ρ(dw) and the
problem remains the same. This is the idea behind what we call “the (ρ,H)
formulation”.

In conclusion, in the (ρ,H) formulation we are considering the functional

G(ρ,H) =
1

2

∫
D

(
f −

∫
Θ

H(θ)h(θ, x)ρ(dθ)

)2

dx+

∫
Θ

V̄ (H, θ)ρ(dθ), (2.13)

where now we have removed the dependence on the variable w, and we have
added a potential term V̄ : R × Θ → R. Note that, in this case, the L2

regularization induced by (2.8) corresponds to V̄ (H, θ) = λ
2
(H2 + |θ|2).

3. PDE Formulations

In this section we first compute the Wasserstein gradient flow in the µ for-
mulation (see Section 3.1). Then we discuss some evolution equations in the
(ρ,H) formulation, as introduced in [EMW19] (Section 3.2). Finally, in Sec-
tion 3.3, we present a new original approach to the problem of defining a
gradient flow (ρ,H) formulation, based on propagation of chaos.

3.1. Gradient flow in the µ formulation. Recall that Ω = R×Θ ⊂ Rd+1,
and ξ = (w, θ) ∈ Ω denotes the parameters in this setting. Let D ⊂ Rn, and
let h(θ, x) : Θ×D → R be a given function, and let Φ(ξ, x) = w h(θ, x).

We consider the minimization problem

min
µ∈P(Ω)

F (µ), (3.1)

where

F (µ) =
1

2

∫
D

(∫
Ω

Φ(ξ, x)µ(dξ)− f(x)

)2

dx+

∫
Ω

V (ξ)µ(dξ). (3.2)

Note that this expression can be rewritten as

F (µ) = F̄ +

∫
Ω×Ω

K(ξ, ξ̄)µ(dξ)µ(dξ̄) +

∫
Ω

S(ξ)µ(dξ) +

∫
Ω

V (ξ)µ(dξ), (3.3)
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where

K(ξ, ξ̄) =
1

2

∫
D

Φ(ξ, x)Φ(ξ̄, x)dx, S(ξ) = −
∫
D

Φ(ξ, x)f(x) dx, (3.4)

and F̄ = 1
2
‖f‖2

L2(D) is a constant. We remark that the smoothness of Φ(ξ, x)

is related to the smoothness of S (in particular, if Φ is smooth, then S is a
smooth).

The first variation of F with respect to µ at fixed measure µ∗ ∈ P(Ω) is
given by7

δF

δµ
(µ∗) =

∫
D

Φ(·, x)

[∫
Ω

Φ(ξ̄, x) dµ∗(ξ̄)− f(x)

]
dx+ V

= 2

∫
Ω

K(·, ξ̄)µ∗(dξ̄) + S + V,

(3.5)

so that the Wasserstein subdifferential on the support of µ∗ is

∇δF
δµ

(µ∗) =

∫
D

∇ξΦ(·, x)

[∫
Ω

Φ(ξ̄, x) dµ∗(ξ̄)− f(x)

]
dx+∇V

= 2

∫
Ω

∇ξK(·, ξ̄)µ∗(dξ̄) +∇S +∇V

(see for instance [AGS08, Chapter 10] or [FG20, Chapter 4.2]). Also, the
Wasserstein gradient flow of F is by definition (see [FG20, Chapter 4.2]

∂tµt = div

(
µt∇

δF

δµ
(µt)

)
, (3.6)

therefore the formulas above give us the following PDE:

∂tµt = div (µt∇L(µt)) + div (µt∇S) + div(µt∇V ), (3.7)

with

L(µt)(ξ) = 2

∫
Ω

K(ξ, ξ̄)µt(dξ̄). (3.8)

Notice that L is an integral operator that is positive semi-definite.8 Also, it can
be checked by a direct computation that a solution µt(ξ) of the PDE satisfies

7By definition, δF
δµ (µ∗) is defined as the unique element such that

d

dε

∣∣∣∣
ε=0

F (µ∗ + εϕ) =

∫
Ω

δF

δµ
(µ∗)ϕdξ ∀ϕ ∈ C∞c (Ω).

8Indeed, it follows by (3.4) that∫
Ω

L(µ)(ξ)µ(dξ) =
1

2

∫
D

(∫
Ω

Φ(ξ, x)µ(dξ)

)2

dx ≥ 0.
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an energy dissipation from the gradient flow structure, that is, the energy is
monotone non-increasing along trajectories:

d

dt
F (µt) = −

∫
Ω

∣∣∣∣∇δFδµ (µt)

∣∣∣∣2 µt(dξ). (3.9)

In particular, stationary points corresponds to measures for which the deriva-
tive of the energy is zero. This motives the following:

Definition 3.1. We say that measure µ∗ is a stationary point of our functional
F (in the Wasserstein sense) if

∇δF
δµ

(µ∗) = 0 on supp(µ∗). (3.10)

Notice that, if we consider the natural potential term V (ξ) = λ
2
|ξ|2, then

our PDE (3.7) becomes

∂tµt = div (µt∇L(µt)) + div (µt∇S) + λ div(µt ξ).

Let us conclude this subsection by observing that, in general, the previous
PDEs are posed when the domain Ω = Rd+1. If, instead, one considers Θ a
bounded smooth domain, an extra zero Neumann-boundary condition (so that
the mass cannot escape) needs to be imposed:

ν · ∇ (L(µt) + S + V ) µt = 0 on ∂Ω, (3.11)

where ν denotes the unit outer normal vector to ∂Ω.

3.2. A first PDE approach in the (ρ,H) formulation. As discussed be-
fore, an alternative approach is based on the (ρ,H) formulation described in
subsection 2.3. So, it makes sense to design an appropriate evolution system
of PDEs with good convergence properties, which could potentially lead to a
nice particle method in the discrete case.

Let Θ ⊂ Rd be the parameter space in this setting. Let D ⊂ Rn and let
h(θ, x) : Θ×D → R be a fixed activation function.

We consider now the functional

G(ρ,H) =
1

2

∫
D

(∫
Θ

H(θ)h(θ, x)ρ(dθ)− f(x)

)2

dx+

∫
Θ

V̄ (H, θ)ρ(dθ),

(3.12)
where, as before, f ∈ L2(D) is a given function.

As in (3.3), we can write

G(ρ,H) = Ḡ+

∫
Θ×Θ

K̄(θ, θ̄)H(θ)ρ(dθ)H(θ̄)ρ(dθ̄)

+

∫
Θ

S(θ)H(θ)ρ(dθ) +

∫
Θ

V̄ (H, θ)ρ(dθ),

(3.13)
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where

K̄(θ, θ̄) =
1

2

∫
D

h(θ, x)h(θ̄, x)dx, S(θ) = −
∫
D

h(θ, x)f(x) dx, (3.14)

and Ḡ = 1
2
‖f‖2

L2(D) is a constant. Notice that, also as before, the function S
is smooth if h is smooth with respect to θ.

We shall directly focus on the quadratic potential

V̄ (H, θ) = V̄λ(H, θ) :=
λ

2

(
H2 + |θ|2

)
, (3.15)

so that, as discussed in Subsection 2.3, the natural space for H is given by
L2(Θ, ρ), and our minimization problem is given by

min
ρ∈P(Θ)

H∈L2(Θ,ρ)

G(ρ,H). (3.16)

We now want to obtain an evolution system of PDEs for (ρ,H) with nice
properties. As we shall see, this can be performed in more than one way.

We first start with the evolution of ρ ∈P(Θ). As before, it makes sense to
make it evolve according to the Wasserstein gradient flow of G. Namely, if we
denote (ρt, Ht) our evolution variables, we have

∂tρt = div

(
ρt∇

δG

δρ
(ρt, Ht)

)
,

where the first variation density of G with respect to ρ at (ρ∗, H∗) ∈P(Θ)×
L2(Θ, ρ∗) is given by

δG

δρ
(ρ∗, H∗) = 2H∗(·)

∫
Θ

K̄(·, θ̄)H∗(θ̄)ρ∗(dθ̄) + SH∗ + V̄λ(θ,H∗),

so that

∇δG
δρ

(ρ∗, H∗) = 2∇
[
H∗(·)

∫
Θ

K̄(·, θ̄)H∗(θ̄)ρ(dθ̄)

]
+∇

(
SH∗

)
+ ∂H V̄λ(·, H∗)∇H∗ + (∇θV̄λ)(·, H∗).

Thus, recalling (3.15), the evolution of ρt is given by

∂tρt = div
[
ρt∇(HtL(ρt, Ht))

]
+ div

(
ρt∇(SHt)

)
+ λ div

[
ρt
(
Ht∇Ht + θ

)]
,

(3.17)
where

L(ρt, Ht)(θ) := 2

∫
Θ

K̄(θ, θ̄)Ht(θ̄)ρt(dθ̄) (3.18)

is a positive semi-definite integral operator (cf. (3.8)).
This gives the evolution of ρt, and one needs to couple it with an evolution

for Ht. We shall present now two possible approaches.
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3.2.1. Separating variables. The first way to obtain an evolution for the non-
conserved variable Ht is to disregard partially the interaction between H and
ρ: one performs the Wasserstein gradient flow of ρ on the one hand, and the
L2(Θ, ρ) gradient flow of H on the other (see [EMW19, Examples 1 and 2]).

Namely, one considers

∂tHt = − δG
δH

(ρt, Ht)

where, for a fixed ρt,
δG
δH

(ρt, ·) denotes the variation of G(ρt, ·) with respect to
H in L2(Θ, ρt).

9 This is

δG

δH
(ρ∗, H∗) = 2

∫
Θ

K̄(·, θ̄)H∗(θ̄)ρ(dθ̄) + S + ∂H V̄λ(·, H∗)

on supp ρ∗, and therefore the evolution of (ρt, Ht) is given by

∂tρt = div
[
ρt∇(HtL(ρt, Ht))

]
+ div

(
ρt∇(SHt)

)
+ λ div

[
ρt
(
Ht∇Ht + θ

)]
∂tHt = −L(ρt, Ht)− S − λHt

(3.19)
(this is coupled with a Neumann boundary condition for ρt, analogous to (3.11),
whenever the domain Θ is not Rd).

Note that this evolution has some difficulties, since one needs to make sure
that all the terms appearing in the above PDE are well defined, at least in a
weak sense. For instance, one needs to ensure that ρtHt∇Ht is well defined.
Giving a meaning to this expression may be delicate if ρ is a singular measure.
However, at least in the smooth case, this PDE makes sense. In addition, there
is dissipation of the energy G along the path (ρt, Ht), namely

d

dt
G(ρt, Ht) = −

∫
Θ

∣∣∣∣∇δGδρ (ρt, Ht)

∣∣∣∣2 ρt(dθ)− ∫
Θ

∣∣∣∣ δGδH (ρt, Ht)

∣∣∣∣2 ρt(dθ).
In particular, since G(ρt, Ht) controls the L2(Θ, ρt) norm of Ht, if one starts
from a pair (ρ0, H0) with H0 ∈ L2(Θ, ρ0), then Ht ∈ L2(Θ, ρt) (whenever the
evolution is well-defined). Also, integrating the dissipation inequality above
over any time interval implies that∫ ∞

0

[∫
Θ

∣∣∣∣∇δGδρ (ρt, Ht)

∣∣∣∣2 ρt(dθ) +

∫
Θ

∣∣∣∣ δGδH (ρt, Ht)

∣∣∣∣2 ρt(dθ)] dt ≤ G(ρ0, H0),

9Namely, for a fixed ρ∗ ∈P(Θ), δG
δH (ρ∗, H∗) is the unique function in L2(Θ, ρ∗) such that〈

δG

δH
(ρ∗, H∗), ϕ

〉
L2(Θ,ρ∗)

=
d

dε

∣∣∣∣
ε=0

G(H∗ + εϕ) ∀ϕ ∈ L2(Θ, ρ∗).
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which implies in particular that ∇ δG
δρ

(ρt, Ht) and δG
δH

(ρt, Ht) belong to L2(Θ, ρt)

for a.e. t.

3.2.2. Transporting along the flow of ρt. Another way to describe the evolution
of Ht is by incorporating the information that it is transported along the flow
in the corresponding variable to be studied.

More precisely, note that the evolution of ρt in (3.19) can be written as a
continuity equation (see [FG20, Eq. (4.6)]):

∂tρt + div(ρtvt) = 0, where vt = −∇δG
δρ

(ρt, Ht).

Hence, if we define Xt : Θ→ Θ as the flow of vt, namely{
Ẋt = vt ◦Xt

X0 = Id,
(3.20)

then ρt = (Xt)#ρ0, where (Xt)#ρ0 denotes the push-forward measure of ρ0

through the map Xt
10.

Thus, instead of considering simply Ht (which does not see the flow for
ρt), an alternative option consists in rewriting the functional in terms of the
variable Ht ◦ Xt, which corresponds to transporting Ht along the flow of ρt.
Hence, recalling that we are considering the potential V̄λ from (3.15), one
considers the evolution of Ht ◦Xt given by

∂t(Ht ◦Xt) = −(L(ρt, Ht) + S − λHt) ◦Xt.

Noticing that ∂t(Ht ◦Xt) = [∂tHt +vt ·∇Ht] ◦Xt (as a consequence of (3.20)),
one obtains

∂tHt + vt · ∇Ht = −L(ρt, Ht)− S − λHt.

Hence, the evolution system now becomes

∂tρt + div(ρtvt) = 0

∂tHt + vt · ∇Ht = −L(ρt, Ht)− S − λHt,
(3.21)

with

vt = −∇(HtL(ρt, Ht) +HtS)− λHt∇Ht − λθ, (3.22)

and again there is a zero Neumann boundary condition for ρt whenever Θ is
not Rd (see (3.11)).

This corresponds the system introduced in [EMW19, Section 5.4] in the
zero potential case (λ = 0), where they also design a particle method for
this “modified gradient flow”. This is definitely a very interesting model.

10That is, ∫
Θ

ϕ(θ)[(Xt)#ρ0](dθ) =

∫
Θ

ϕ(Xt(θ))ρ0(dθ))

for any Borel function ϕ : Θ→ R.
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However, since this system does not seem to dissipate energy in general, the
mathematical analysis becomes more complicated.

3.3. A gradient flow in the (ρ,H) formulation via propagation of
chaos. Let us give yet another possible evolution for (ρt, Ht) that produces a
dissipative flow and does not rely on the smoothness of the measure. In this
case, we do so by expressing the evolution in the µ formulation in the (ρ,H)
variables, under a propagation of chaos assumption. As we shall explain below,
the resulting system in this case is given by

∂tρt + div(ρtwt) = 0

∂tHt +wt · ∇Ht = −L(ρt, Ht)− S − ∂H V̄ (·, Ht),
(3.23)

where now the vector wt is (cf. (3.22))

wt = −Ht∇(L(ρt, Ht) + S)−∇θV̄ (·, Ht), (3.24)

and with zero Neumann boundary conditions

ν ·wt ρt = 0 on ∂Θ (3.25)

whenever Θ is not Rd. In particular, the evolution of Ht is still given by the
corresponding evolution along the flow transporting ρt, but differently from
before, ρt is not the standard Wasserstein flow. As proved below, this system
has the main advantage that it dissipates energy, see Proposition 3.3.

In order to motivate the previous evolution system for the pair (ρt, Ht), we
start by rewriting the PDE (3.7) as a hierarchy system in the (w, θ) variables.
This is an infinite non-closed system of PDEs that depends on higher moments
for the disintegration νθ and for the first derivatives of the potential.

Lemma 3.2. Let Φ(ξ, x) = w h(θ, x), and Ω = R×Θ with Θ a smooth domain.
Consider µt a (smooth and fast decaying) solution to (3.7), and define the

disintegration into probability measures

µt(ξ) = νθ,t(w)⊗ ρt(θ).

Define Ht,i(θ) :=
∫
Rw

iνθ,t(dw),

V w
t,i(θ) :=

∫
R
wi∂wV (w, θ)νθ,t(dw), V θ

t,i(θ) :=

∫
R
wi∇θV (w, θ)νθ,t(dw),

and consider

L(ρt, Ht)(θ) := 2

∫
Θ

K̄(θ, θ̄)Ht(θ̄)ρt(dθ̄), (3.26)
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and K̄ and S be given by (3.14). Then, we have
∂tρt = divθ

(
ρtHt,1∇θ

[
L(ρt, Ht,1) + S

])
+ divθ(ρtV

θ
t,0)

∂t(Ht,iρt) = divθ
(
ρtHt,i+1∇θ

[
L(ρt, Ht,1) + S

])
+ divθ(ρtV

θ
t,i)

−iHt,i−1ρt(L(ρt, Ht,1) + S)− iV w
t,i−1ρt ∀ i ≥ 1,

(3.27)

with boundary conditions (whenever Θ 6= Rd)

ν ·
{
ρtHt,i∇θ

[
L(ρt, Ht,1) + S

]
+ ρtV

θ
t,i−1

}
= 0 on ∂Θ. (3.28)

Proof. Notice that

L(µt)(ξ) = wL(ρt, Ht,1)(θ), S = wS (3.29)

(recall (3.4), (3.8), (3.14), and (3.18)). Integrating (3.7) with respect to w and
recalling (3.29), we obtain the first equation

∂tρt = divθ(ρtHt,1∇θL(ρt, Ht,1)) + divθ(ρtHt,1∇θS) + divθ(ρtV
θ
t,0)

using that∫
R
wµt(dw, θ) = ρtHt,1,

∫
R
∇θV (w, θ)µt(dw, θ) = ρtV

θ
t,0,

and that µtw has sufficient decay in w so that the terms in ∂w in the divergence
disappear when integrating by parts.

Similarly, given i ≥ 1, we multiply (3.7) by wi and then integrate with
respect to w, to obtain

∂t(Ht,iρt) = divθ
(
ρtHt,i+1∇θ

[
L(ρt, Ht,1) + S

])
+ divθ(ρtV

θ
t,i)

+

∫
R
wi∂w

[(
L(ρt, Ht,1) + S + ∂wV

)
νθ,t(dw)⊗ ρt

]
.

Integrating by parts, we obtain the desired result.
The Neumann boundary conditions follow with the same procedure. �

As noticed above, the previous system (3.27) is not closed, as the i-th equa-
tion depends on Hi+1. Note however that the system could be closed if one
knew that νθ,t(w) = δHt(θ)(w), since in that case

Ht,i(θ) = Ht(θ)
i = H i

t,1(θ) ∀ i ≥ 1.

This suggests a propagation of chaos assumption on the w variable in the
previous expressions: by assuming that µ preserves being a delta in the w-
variable (namely, νθ,t(dw) = δHt(θ) for some Ht(θ) for all t ≥ 0), one gets
a well-defined system of equations that now depends only on (ρ,H) and no
longer sees the µ structure from before. In this case, if we denote Ht = Ht,1,
we have that Ht,2 = H2

t , V w
t,0 = ∂wV (Ht, θ), and V θ

t,i = H i
t∇θV (Ht, θ). Also,

since the equation for Ht,1 is already closed, one does not need to look at the
other equations for i ≥ 2.
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Based on this discussion, our proposed new system is given by the following
evolution equations:

∂tρt = div
(
ρtHt∇

[
L(ρt, Ht) + S

])
+ div(ρt∇θV̄ (θ,Ht))

∂t(Htρt) = div
(
ρtH

2
t∇
[
L(ρt, Ht) + S

])
− ρt(L(ρt, Ht) + S)

+div(ρtHt∇θV̄ (θ,Ht))− ρt∂H V̄ (θ,Ht),

(3.30)

where L is given by (3.26), and it is combined with the zero Neumann boundary
condition

ν ·
{
ρtHt∇

[
L(ρt, Ht) + S

]
+ ρt∇θV̄ (θ,Ht)

}
= 0 on ∂Θ (3.31)

whenever Θ is not Rd (cf. (3.27)-(3.28)).
Note that (3.30)-(3.31) is exactly our proposed model (3.23)-(3.25). In order

to see that this new system is a reasonable candidate for the minimization of
the energy (3.13), we prove now that the energy decreases along this evolution.

Proposition 3.3. Let (ρt, Ht) solve (3.30)-(3.31), and let G be given by (3.13).
Then

d

dt
G(ρt, Ht) = −

∫
Θ

∣∣Ht∇(L(ρt, Ht) + S) +∇θV̄ (θ,Ht)
∣∣2 ρt

−
∫

Θ

(
L(ρt, Ht) + S + ∂H V̄ (θ,Ht)

)2
ρt.

In particular, the energy G is decreasing along (ρt, Ht).

Proof. We compute the derivative of G(ρt, Ht) starting from (3.13). We have

d

dt
G(ρt, Ht) =

∫
Θ

(L(ρt, Ht) + S) ∂t(Htρt)

+

∫
Θ

∂H V̄ (θ,Ht)ρt∂tHt +

∫
Θ

V̄ (θ,Ht)∂tρt

= I + II + III,

so that we can use (3.30) to substitute the time derivatives by the correspond-
ing expressions. In particular, using that ∂t(Htρt) = Ht∂tρt+ρt∂tHt and (3.30),
we deduce that

ρt∂tHt = ρtHt∇Ht · ∇
[
L(ρt, Ht) + S

]
− ρt(L(ρt, Ht) + S)

+ ρt∇Ht · ∇θV̄ (θ,Ht)− ρt∂H V̄ (θ.Ht).

For the sake of readability, let us denote

N t := L(ρt, Ht) + S,
∂H V̄t := (∂H V̄ )(θ,Ht),

V̄t := V̄ (θ,Ht),

∇θV̄t := (∇θV̄ )(θ,Ht).
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Using these formulas, and integrating by parts using (3.31), we get

I =

∫
Θ

N t ∂t(Htρt) = −
∫

Θ

|∇N t|2H2
t ρt −

∫
Θ

N 2

tρt

−
∫

Θ

∇N t · ∇θV̄tHtρt −
∫

Θ

∂H V̄tN tρt,

II =

∫
Θ

∂H V̄t∇Ht · ∇N tHtρt −
∫

Θ

∂H V̄tN tρt

+

∫
Θ

∂H V̄t∇Ht · ∇θV̄tρt −
∫

Θ

|∂H V̄t|2ρt,

and

III = −
∫

Θ

∇θV̄t · ∇N tHtρt −
∫

Θ

∂H V̄t∇Ht · ∇N tHtρt

−
∫

Θ

|∇θV̄t|2ρt −
∫

Θ

∂H V̄t∇Ht · ∇θV̄tρt.

Adding these identities, one finally gets

I + II + III = −
∫

Θ

|∇N t|2H2
t ρt −

∫
Θ

|∇θV̄t|2ρt − 2

∫
Θ

∇N t · ∇θV̄tHtρt

−
∫

Θ

N 2

tρt −
∫

Θ

|∂H V̄t|2ρt − 2

∫
Θ

∂H V̄tN tρt,

from which we obtain the desired result. �

Remark 3.4. The fact that the system (3.23) dissipates energy suggests that
there might be a gradient flow structure associated to it. We claim that this
is the case.

Indeed, denote by Γ(ρ(1), ρ(2)) the set of transport plans between ρ(1) and
ρ(2), namely

Γ(ρ(1), ρ(2)) :=
{
γ ∈P(Θ×Θ) : πj#γ = ρ(j)

}
,

where πj : Θ×Θ→ Θ, j = 1, 2, are the canonical projection onto the first and
second factor respectively. Then, we consider the distance between (ρ(1), H(1))
and (ρ(2), H(2)) given by

D2((ρ(1), H(1)), (ρ(2), H(2))) :=

:= inf
γ∈Γ(ρ(1),ρ(2))

∫
Θ×Θ

(
|θ1 − θ2|2 + |H(1)(θ1)−H(2)(θ2)|2

)
dγ(θ1, θ2).
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Alternatively, one can define it dynamically (à la Benamou-Brenier, see for
instance [FG20, Chapter 4.2]) as

D2((ρ(1), H(1)), (ρ(2), H(2))) :=

:= inf

{∫ 1

0

∫
Θ

|vs|2 (1 + |Ḣs|2)ρs ds : ∂sρs + div(vsρs) = 0,

ρ0 = ρ(1), ρ1 = ρ(2), H0 = H(1), H1 = H(2)

}
.

Then, a classical but tedious computation shows that, at least formally, the
gradient flow of G with the distance D is given by (3.23).

It would be interesting to make this argument rigorous (perhaps using a
scheme à la JKO [JKO98, AGS08]), and to use this gradient flow interpretation
to better study (3.23).

4. Regularized problems

In order to study the behavior of solutions to the PDEs constructed in the
previous sections (namely (3.7), (3.19), (3.21)-(3.22), or (3.23)-(3.24)), it is
sometimes convenient to regularize them by adding a small perturbation to
the energy functional (or the PDE) that regularizes it.

For simplicity, we focus here on (3.7), although similar discussions could be
done to the other PDEs. We present here two possible of such strategies, by
converting the original PDE into a heat-type equation or a porous medium-
type equation.

4.1. Heat regularization. A natural way to control the degeneracy of critical
points of our functional in (2.7) or (3.2), is to add a small entropy term in the
minimization procedure. That is, for τ > 0, consider the functional

Fτ (µ) =
1

2

∫
D

(∫
Ω

Φ(ξ, x)µ(dξ)− f(x)

)2

dx+

∫
Ω

V (ξ)µ(dξ)+τ Ent(µ) (4.1)

where

Ent(µ) :=


∫

Ω
ρ(ξ) log(ρ(ξ))dξ if µ(dξ) = ρ(ξ) dξ,

+∞ if µ 6� dξ.

Adding this entropy term corresponds to a variation in the stochastic gradient
descent in which, when performing discrete in time approximations of (2.4),
one adds a noisy diffusion term. Alternatively, in terms of the PDE describing
the evolution of the gradient flow in the Wasserstein metric of Fτ , the addition
of the entropy corresponds to adding a small diffusive term in the right-hand
side of (3.7) (see for instance [JKO98]). Thus, if µt is the Wasserstein gradient
flow of Fτ , then

∂tµt = div (µt∇L(µt)) + div (µt∇S) + div(µt∇V ) + τ∆µt, (4.2)
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where we are using the notation in (3.4) and (3.8).
As before, when Ω is not Rd+1, we add zero Neumann boundary conditions:

ν · {∇ (L(µt) + S + V ) µt + τ∇µt} = 0 on ∂Ω. (4.3)

The PDE (4.2)-(4.3) presents a nicer structure than the original (3.7), and
it has been studied in the context of training shallow neural networks. In
particular, in [MMN18, JMM19], this equation appears when approximating
functions f by an increasing number of “bumps”. There, the authors prove ex-
istence and uniqueness of solutions (even in domains with Neumann boundary
conditions (4.3)), and they provide some regularity and convergence estimates
for solutions. Observe that, in this case, one gets immediate smoothing (and
also immediate full support) for µt.

It is interesting to rewrite (4.1) in a different way, in terms of stationary
solutions. Indeed, let us denote by µ∗ ∈P(Ω) a stationary solution (namely,
such that the corresponding dissipation vanishes, see Definition 3.1). Then,
we can write

Fτ (µ)− Fτ (µ∗) =

∫
Ω×Ω

K(ξ, ξ̄)µ(dξ)µ(dξ̄)−
∫

Ω×Ω

K(ξ, ξ̄)µ∗(dξ)µ∗(dξ̄)

+

∫
Ω

S(ξ)(µ− µ∗)(dξ) +

∫
Ω

V (ξ)(µ− µ∗)(dξ)

+ τ (Ent(µ)− Ent(µ∗)) .

(4.4)

On the other hand, since µ∗ is a stationary solution, it has full support and
the first variation density of Fτ must be constant everywhere. That is,

δFτ
δµ

(µ∗) = 2

∫
Ω

K(ξ, ξ̄)µ∗(dξ̄) + S(ξ) + V (ξ) + τ log(µ∗) ≡ λ in Ω

for some λ ∈ R. In particular, integrating with respect to both µ∗ and µ, we
get

2

∫
Ω×Ω

K(ξ, ξ̄)µ∗(dξ)µ∗(dξ̄) +

∫
Ω

(S(ξ) + V (ξ))µ∗(dξ) + τ

∫
Ω

log(µ∗)µ∗ = λ,

2

∫
Ω×Ω

K(ξ, ξ̄)µ(dξ)µ∗(dξ̄) +

∫
Ω

(S(ξ) + V (ξ))µ(dξ) + τ

∫
Ω

log(µ∗)µ = λ.

We can now subtract the previous two expressions and substitute in (4.4) to
obtain

Fτ (µ) = Fτ (µ∗)+

∫
Ω×Ω

K(ξ, ξ̄)(µt(dξ)−µ∗(dξ))(µt(dξ̄)−µ∗(dξ̄))+τDKL(µ‖µ∗),

(4.5)
where

DKL(µ‖µ∗) :=


∫

Ω
µ log

(
µ
µ∗

)
if µ� µ∗,

+∞ if µ 6� µ∗,
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is the relative entropy (also called Kullback-Leibler divergence) of µ with re-
spect to µ∗. Note that the middle term in (4.5) is always non-negative (since
K is positive semi-definite), and that DKL(µ‖ν) ≥ 0 with equality if and only
if µ = ν. In particular, F (µ) ≥ F (µ∗) with equality if and only if µ = µ∗.

Hence, besides obtaining a nice expression for Fτ in terms of a stationary
solution, (4.5) also shows that stationary solutions are unique and they coincide
with the unique minimizer of the functional (4.1).

4.2. The porous medium regularization. Another possible regularization,
that has been much less studied in this context, is the one arising from the
porous medium equation.

In this case, we consider the functional

Fτ (µ) =
1

2

∫
D

(∫
Ω

Φ(ξ, x)µ(dξ)− f(x)

)2

dx+

∫
Ω

V (ξ)µ(dξ) +
τ

2

∫
Ω

µ2 (4.6)

for some small parameter τ > 0 (again,
∫

Ω
µ2 = +∞ by definition if µ is not

absolutely continuous). Then, the Wasserstein gradient flow is given by

∂tµt = div (µt∇L(µt)) + div (µt∇S) + div(µt∇V ) + τ div(µt∇µt), (4.7)

(with the analogous Neumann boundary condition when Ω is not Rd+1, cf.
(3.11) and (4.3)).

In this context, one still expects nice properties of the corresponding evolu-
tion of the gradient flow, consistent with those in the porous medium equation
[Vaz06]. In particular, any stationary solution should have full support (since
the support increases with time, up until covering the whole domain). and the
same reasoning as in the case of the heat regularization (which was based on
the full support of a stationary solution µ∗) applies, and we get

Fτ (µ) = F (µ∗) +

∫
K(ξ, ξ̄)(µt(dξ)−µ∗(dξ))(µt(dξ̄)−µ∗(dξ̄)) +

τ

2

∫
Ω

(µ−µ∗)2,

(4.8)
which is similar to (4.5), where the relative entropy is substituted by the L2

distance. Thus, from (4.8) we also get the uniqueness of stationary solutions
(and hence, they coincide with the unique minimizer).

Remark 4.1. The two previous regularizations also make sense in the (ρ,H)
formulation setting. In particular, one could also add a Laplacian or porous
medium term to the PDE transporting ρ in (3.19), (3.21), or (3.23), in order
to obtain improved convergence properties.

4.3. An observation without regularization. We can also rewrite the
functional F in (3.3) in terms of a local minimizer (thus removing the explicit
dependence on f in its expression), even in the case without regularization.
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That is, let µ∗ be a local minimizer for F . In particular, it is a stationary
point, and it satisfies11

δF

δµ
(µ∗) ≡ λ in supp(µ∗). (4.9)

Moreover, from the local minimality condition, we also have 12

δF

δµ
(µ∗) ≥ λ in Ω. (4.10)

So, combining (4.9)-(4.10), and proceeding as in the regularized cases, we
obtain

F (µt)− F (µ∗) ≥
∫ (∫

Φ(ξ, x)(µt(dξ)− µ∗(dξ))
)2

dx.

In particular we recover the uniqueness of local minimizers under Φ, that we
already knew by Remark 2.1.

5. Open questions

We conclude this manuscript by discussing some open questions that we
believe to have a mathematical interest.

5.1. Regularity and convergence. One of the main open questions is con-
cerned the convergence properties of our gradient flows, and its relation to the
discrete version of the gradient descent. The main currently known results
in this direction can be found (and referenced) in [CB18], where the authors
are able to prove the consistency between the many neurons limits and the
Wasserstein gradient flow as time goes to infinity, whenever such limits ex-
ist. Nonetheless, many questions remain open in this setting, starting from
a quantitative (uniform) convergence to the Wasserstein gradient flow, in the
limits as N → ∞ and t → ∞. Furthermore, the results in [CB18] use the
specific (homogeneous) structure of the activation function. Thus, the results

11To see this, take ϕ ∈ C∞c (Ω) with
∫

Ω
ϕ(ξ)µ∗(dξ) = 0, and for |ε| � 1 we consider the

variation µε := (1 + εϕ)µ∗ ∈P(Ω). Then, by local minimality, we get

0 =
d

dε

∣∣∣∣
ε=0

F (µε) =

∫
Ω

δF

δµ
(µ∗)(ξ)ϕ(ξ)µ∗(dξ) ∀ϕ ∈ C∞c (Ω) s.t.

∫
Ω

ϕ(ξ)µ∗(dξ) = 0.

By the arbitrariness of ϕ, this implies that δF
δµ (µ∗) is constant on supp(µ∗).

12To see this, given ν ∈P(Ω), for ε ∈ [0, 1] we consider the variation µε := (1−ε)µ∗+εν ∈
P(Ω). Then, by local minimality, we get

0 ≤ d

dε

∣∣∣∣
ε=0

F (µε) =

∫
Ω

δF

δµ
(µ∗)(ξ)ν(dξ)−

∫
Ω

δF

δµ
(µ∗)(ξ)µ∗(dξ)

=

∫
Ω

δF

δµ
(µ∗)(ξ)ν(dξ)− λ =

∫
Ω

[
δF

δµ
(µ∗)(ξ)− λ

]
ν(dξ),

where the second equality follows from (4.9). By the arbitrariness of ν ∈P(Ω), this implies
that δF

δµ (µ∗) is everywhere greater than or equal to λ.
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included in [CB18] in more general settings remain open, even if one assumes
discriminating smooth kernels.

Concerning the continuous formulation (3.7), this PDE pose a series of in-
teresting challenges. For example:

(i) What are reasonable assumptions on µ0 and the data, to expect a con-
servation of its smoothness over time? (That is, to avoid convergence
in finite and/or infinite time to a singular measure.)

(ii) It looks likely to us that one can prove a qualitative rate of conver-
gence, using for instance the approach in [CGW20]. More challenging
and relevant in this setting is to obtain quantitative convergence rates.
Such quantification seems far from being easy in the µ formulation case,
where one would need to find an “entropy-entropy dissipation inequal-
ity”, showing that the dissipation (3.9) controls F (µt)−F (µ∗), at least
when the µt is close to the minimizer µ∗.

(iii) Even in the regularized cases (4.2) or (4.7), finding quantitative rates
of convergence is an interesting open problem.13

5.2. Multi-layer neural networks. Training a multi-layer neural network
corresponds to the approximation problem of a given function f ∈ L2(D),
where the approximating functions are obtained by iterations of the construc-
tion in (2.1).

Assume for simplicity that h(θ, x) = σ(θ·x) and ignore the independent term
(i.e., n = d and θ(d) = 0, see (2.2)). Then, in the two-layer case, given an input
x ∈ Rn, we want to approximate a given output f(x) through a neural network
with two hidden layers, consisting of N1 and N2 neurons each. Let us denote
the parameters in this case as {wj}1≤j≤N2 with wi ∈ R, {θj}1≤j≤N1 with θj ∈
Rn, and {bji}1≤j≤N2,1≤i≤N1 with bji ∈ R. The corresponding approximating
function is then given by

N2∑
j=1

wjσ

( N1∑
i=1

bjiσ(θi · x)

)
, (5.1)

for some activation function σ : R → R (see Figure 5.2 and compare with
Figure 2.1). Thus, we want to optimize the parameters in order to minimize a
functional of the form

13Consider for simplicity the PDE (4.2) with V ≡ 0. Then, assuming that for t large µt
is close in some strong sense to the stationary state µ∗, and that µ∗ is smooth and has full
support, then one can get an inequality of the form

d

dt
Fτ (µt) ≤ −c (Fτ (µt)− Fτ (µ∗) + τF(µt, µ∗))

2

for some suitable function F(µt, µ∗) such that F(µt, µ∗) → 0 as t → ∞. This suggests a
rate of convergence of the form Fτ (µt)− Fτ (µ∗) ∼ 1

t , at least in the regularized case.



24 XAVIER FERNÁNDEZ-REAL AND ALESSIO FIGALLI

σ(θ1 · x)

σ(θ2 · x)

σ(θ3 · x)

σ(θN1
· x)

x

θ1

θ2

θ3

θN

θi ∈ Rd+1
bji ∈ R

σ
(∑N1

i=1b1iσ(θi · x)
)

w1

w2

wN2

wi ∈ R

σ
(∑N1

i=1b2iσ(θi · x)
)

σ
(∑N1

i=1bN2iσ(θi · x)
)

b11

b21

bN21

bN2N1

N2∑
j=1

wjσ

(
N1∑
i=1

bjiσ(θi · x)

)

Figure 5.2. Graphic representation of the approximating func-
tions given by what is known as a 2-layer neural network, (5.1).

1

2

∫
D

( N2∑
j=1

wjσ

( N1∑
i=1

bjiσ(θi · x)

)
− f(x)

)2

dx.

The corresponding expression of the previous functional in the (appropriate)
limit N1, N2 → ∞ is an interesting open problem, and some possible inter-
pretations have recently been suggested in [AOY19, Ngu19, NP20, SS20b].
However, a simple unified connection between multiple layers neural networks
and Wasserstein gradient flows, as the one presented in this paper, seems to
be missing.

In this direction, it might be worth mentioning that the (ρ,H)-approach
seems more adequate when dealing with systems in which one needs to consider
separately each of the layers: already in the single layer case, the (ρ,H)-
formulation is the one that takes advantage of the structure of the activation
functions w h(θ, x). Even there, however, one does not fully take advantage of
the linear structure of h(θ, x) = σ(θ · x) inside the function σ.
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