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Abstract

cgDNA+ is an enhanced version of a sequence-dependent coarse-grain model of double-
stranded DNA called cgDNA. The cgDNA model has previously been used to compute sequence-
dependent equilibrium shapes of closed loops of DNA called minicircles, which are an exper-
imentally important motif. The goal of this thesis is to adapt the existing computational
approach from the cgDNA model to the cgDNA+ model, which is more physically accurate.
The computational issue is that the number of unknowns is roughly doubled due the explicit
description of phosphate groups in cgDNA+ added to the rigid base description adopted in
cgDNA. We successfully extend the existing algorithmic approach, and also add some enhance-
ments associated with the precise boundary conditions used to model minicircles. Our code is
validated by computing equilibria of a number of minicircle fragments of length 94 to 339 base
pairs whose sequences have been published in the experimental literature.
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0 INTRODUCTION

Part I

Introduction
0.1 Interest for DNA
The existence of deoxyribonucleic acid, or DNA, was discovered in 1869 by Swiss researcher Friedrich
Miescher [8]. However, it is Crick and Watson that first described the double helix structure of
DNA in 1953 [24]. Since then, DNA has been a subject of great interest for scientific research.
It has been observed to be the molecule responsible for much of the functioning of organic cells.
Therefore, studying the behaviour of DNA is a key aspect to fully understand the molecular processes
happening in the cells of any living organism [3].

0.2 Structure of DNA
DNA is a molecule with a double strand structure. Each strand is composed of nucleic bases
connected to a sugar-phosphate backbone. Each base is one of four types: adenine (A), thymine (T),
guanine (G) and cytosine (C). The backbones are linked together through hydrogen bonds between
two complementary bases. A always forms two hydrogen bonds with T while C forms three bonds
with G. A combination of two complementary bases is called a base pair. The two backbones have
orientations, specified by the detailed chemical structure of the sugar rings. DNA is such that the
two strands have an anti-parallel double helical structure meaning that the reading directions on
each strand are opposite. The conventional reading direction for a single strand is referred to as the
5′ → 3′ direction.

0.3 DNA modelling
A key feature of DNA is its intrinsic or ground-state shape. It has been shown that the average
overall shape of a DNA double helix is strongly modulated by its sequence [3, 14, 22]. Some specific
sequences of bases have been observed to have a strong intrinsic bend, whereas other sequences
have a tendency to stay in an exceptionally straight double helix. Another important feature is the
dependence of the local stiffness of the molecule on the base sequence. Combining both properties,
one can characterise the overall sequence-dependent deformations and fluctuations of the DNA
molecule. It is therefore important to be able to model and predict the shape and local stiffness
sequence-dependence. Models for DNA structure can be separated in two main groups: atomic
level models and coarse-grain models. Atomic models are developed to obtain the finest description
of the molecule, they model the atoms directly. An issue with this kind of model is that they are
computationally extremely demanding and they are therefore limited to rather short sequences (less
than 100 base pairs) and relatively few simulations. Even for 10 base pairs, there exist 410

2 ∼
106

2
different sequences. Molecular dynamic simulations cannot compute them all. The alternative is
coarse-grain models. In order to reduce the computation costs, atoms are grouped in chosen rigid
bodies and interactions are then assumed to happen between the rigid bodies. These models rely
on one of two main simplifying assumptions: rigid base-pair or rigid-base. Furthermore, they often
assume that the molecule energy is the sum of local energies. This further simplifies the model and
allows for efficient sequence-dependent modelling of a large number of sequences. These models
contain less information than atomic alternatives (they only model rigid bases instead of atoms) but,

1



0.4 Minicircles 0 INTRODUCTION

Type of model Advantages Inconveniences

Atomic-level Finer description of the
molecule

Computationally expensive:
- low variety of sequences
- limited to short sequences
- Small simulation durations

Coarse-grain

Less expensive, allows bigger
simulations:
- multitude of sequences
- longer sequences
- longer simulation duration

Loss of information:
- Group atoms as rigid bases.

Table 1: Strengths and Weaknesses of Atomic-level and Coarse-grain models for DNA.

from all tested cases, e.g. Patelli’s thesis [21], they are believed to provide a good approximation to
efficiently and closely represent sequence-dependence of shape and stiffness, the key properties of
DNA. They are therefore preferred over atomic level models if the atom positions are not specifically
needed. Table 1 summarises the strengths and weaknesses of both types of model.

Here we adopt the cgDNA model [14, 22], a coarse-grain model for DNA. It is based on the
rigid base assumption and works for sequences of a few hundred base pairs on a conventional laptop
or via the cgDNAweb interface1. Recently, Patelli [21] proposed a new adaptation of the cgDNA
model that treats the backbones explicitly: the cgDNA+ model. In addition to the bases, it models
phosphate groups as rigid objects. It is now believed to be more accurate than the standard cgDNA
model.

0.4 Minicircles
An important study case in DNA modelling is the formation of DNA minicircles [1, 2, 6, 7, 9, 10,
13, 15, 16, 17, 23]2. Therefore it is important to be able to model the sequence-dependent shape
and stiffness of such DNA loops to understand the processes under way. We hence have to adapt
the existing coarse-grain models to take into account the cyclized shape of the DNA strands. There
are two ways of modelling a DNA minicircle depending on the question we are interested to solve. If
we are interested in the formation of DNA minicircles, we are interested in the probability that both
ends of the fragment are sufficiently close to each other to bond. This is done without taking into
account any periodicity within the interactions between the two ends. We will call it non-continuous
closure (NCC) minicircles. The other question we may be interested in is the shape of said DNA
circles after their formation. In this case we have to take into account the interactions between the
two end base-pairs to form a continuous loop. We will call this periodic closure (PC) minicircles.

Energy minimization for minicircles have been done in the past within the cgDNA model by
Manning [15]. He combined continuum DNA modelling with a discrete energy minimization to obtain
discrete DNA minicircle shapes. For continuum modelling, he used the birod model [12] together
with the bBDNA software [10] that allows computation and visualization of families of equilibria

1https://cgdnaweb.epfl.ch/
2These are only a few examples amongst the mass of articles.

EPFL library online search engine outputs about 5000 articles related to DNA minicircles

2
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0.5 Plan for this thesis 0 INTRODUCTION

for the birod model. He used discretizations of continuum equilibria as initial guesses for a cgDNA
energy minimization algorithm called cgDNAmin. However, the discrete energy minimization step
has not yet been done for the cgDNA+ model. Hence the goal of this thesis is to adapt the minicircle
energy minimization procedure to include the cgDNA+ coordinates, and the more accurate cgDNA+
energy.

0.5 Plan for this thesis
The main goal of this thesis is to implement a cgDNA+ adaptation of cgDNAmin. Here, we focus
mainly on the practical implementation of cgDNA+min. We test our code implementation of the
enhanced algorithm on sequences that have been published in the experimental literature, but a full
discussion of the experimental consequences of our simulations is outside the scope of this Masters
thesis.

In order to explain the cgDNA+ minicircle energy minimization, we have to set up the basics of
DNA modelling. In the first part of this thesis, we detail the existing work on DNA modelling. We
start by describing a discrete coarse-grain model of DNA: the cgDNA model [14, 22]. We detail its
main assumptions and characteristics and we also explain the adaptation that exists to account for
full periodicity [10]. Furthermore, we will highlight the key properties of the cgDNA+ model that
takes into account the contributions of the phosphate groups to the local energy of the molecule [21].
We then follow with a description of a continuum model: the birod model and the bBDNA software
that allows one to find continuum energy equilibria for minicircle configurations [10, 12]. This
code is used to obtain initial guesses for the cgDNA and cgDNA+ minicircle energy minimization.
We describe the existing work of Manning [15] about the minimization of the discrete energy for
DNA minicircles starting from a continuum solution. In the second part of the thesis we detail the
construction of the minicircle energy minimization algorithm for the cgDNA+ model. We present
different case studies with observations and conclusions from our implementation. This includes
comparison of solutions between cgDNA and cgDNA+ minicircle energy minimization.

Along with this thesis we provide a webpage3 where all results and figures can be found. We also
provide the 2D coordinate plots for a more precise analysis of the results. Finally, we provide the
MATLAB scripts to run both periodic and non-continuous closure cgDNA and cgDNA+ energy
minimization (also found on the webpage).

3If the hyperlink is not supported, the full link can be found in Appendices A.

3
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1 DISCRETE MODEL

Part II

Previous Work
In this first Chapter, we will explain the existing results in DNA modelling. This will be separated
into three main parts: the discrete model, the continuum model and the bridge between the two
provided by cgDNAmin. This chapter establishes the starting point for our work. We detail
the standard cgDNA model, its adaptation to support periodic sequences and its evolution into
cgDNA+ to take the phosphate groups into consideration. We follow with the continuum model,
the birod model. We also describe the bBDNA software, used to obtain minicircle continuum
energy equilibrium. Finally we go through cgDNA minicircle energy minimization, a discrete energy
minimization procedure starting from an equilibrium configuration of the continuum model.

1 Discrete Model
1.1 cgDNA, rigid-base coarse-grain DNA model
This section explains the cgDNA model, a rigid base pair model detailed in [14, 22].4 For a given
sequence and parameter set, the cgDNA model is a coarse-grain model that predicts a probability
density function for the configuration of the molecule. Formally, the output of the cgDNA model is

ρ(w;S,P),

where w is the cgDNA coordinates, S is the sequence of DNA to be modelled and P is the parameter
set. The parameter set is built such that we can use it to reconstruct µ, the shape or ground-state,
and K, the cgDNA stiffness matrix corresponding to the given sequence S.

1.1.1 Main assumptions

The cgDNA model relies on three major assumptions: it considers Rigid bases, it models a Gaussian
probability density and the molecule energy is assumed to have double local dependence, i.e. locality
in sequence dependence, and each base is assumed to only interact with its five nearest neighbours.

Rigid Bases. As mentioned in Section 0.3, the cgDNA model is a rigid base coarse-grain model
of DNA. This means that each base is represented by a rigid body that is best fit to the atoms of
the base. The interactions inside the molecule are then simplified to only consider the contributions
of the rigid bases. This limits the number of free variables and allows for better computational
efficiency.

Gaussian Probability Density Function. As said earlier, the cgDNA model predicts the
relative position and orientation of the bases within the molecule in the form of a probability density
function (pdf). The natural choice for this pdf is a Gaussian distribution. The probability density
depends on the ground-state and the stiffness matrix of the molecule. The ground-state is the most

4This material is also taught by J.H.Maddocks in the "Mathematical modelling of DNA" course at EPFL,
https://lcvmwww.epfl.ch/teaching/modelling_dna/.
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1.1 cgDNA, rigid-base coarse-grain DNA model 1 DISCRETE MODEL

Figure 1: Representation of the nearest neighbour energy contribution. For the yellow base, we only
consider its interactions with the five green bases. Any interaction between the gray bases and the
yellow one are assumed to be negligible.

likely shape of the molecule under no external constraints or loadings, and the stiffness represents
the resistance to change. Formally, we have

ρ(w;S,P) = 1
Z
e−βU(w;S,P), (1)

U(w;S,P) = 1
2
(
w − µ(S,P)

)T
K(S,P)

(
w − µ(S,P)

)
. (2)

Here, Z is the normalization constant, β is inverse temperature energy scale, and U is the shifted
quadratic cgDNA energy of configuration w. Again, w are the configuration coordinates, S is the
sequence, P the parameter set and µ and K are respectively the ground-state and the stiffness
matrix.

Local Energy. We have seen that the output of the cgDNA model depends on the molecule
energy U(w;S,P), which itself depends on the configuration w. In order to limit computational
costs and facilitate parameter estimation, we only consider local contributions of the energy. This
means that a base is assumed to only interact with its nearest neighbours. Figure 1 represents the
nearest-neighbour interactions assumption: when considering the interactions of the yellow base,
the contributions to the energy will only come from the interactions with the green bases, and we
assume that the interactions of the gray with the yellow bases are negligible. We also assume that
the energy depends locally on the sequence. It follows that the stiffness matrix K(S,P) is a banded
matrix with overlapping blocks along the diagonal. The blocks represent all the interactions between
two consecutive base pairs and the overlaps represent the fact that each base pair is interacting with
both the previous and the following base pairs. The interactions between non-neighbouring base
pairs are assumed to vanish. Hence the banded diagonal structure.

1.1.2 cgDNA coordinates

Frame embedding. For any sequence, we have to define coordinates to specify the position and
orientation of the bases. As said in Section 1.1.1, we embed a frame in each base. This frame is

5
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[R−, r−] [R+, r+]

[Q,Q1/2q]

Figure 2: Illustration of the relative displacement between two frames: Equation (3). Here, the
frames are only represented by a right handed set of 3 orthonormal vectors, showing the relative
translation and the relative rotation between the two frames.

represented by an element in SE(3)5. Therefore, for each base we have an associated frame [r,R]
with r ∈ R3 and R ∈ SO(3).

cgDNA coordinates can be separated in two types: intra base pair (or Intras) and inter base
pairs (or Inters). Intras define the relation between the frames of the two bases within base pairs
and Inters specify the relation between two consecutive base pair frames. The final coordinate vector
w, consists of alternating Intras and Inters. For a n base pair sequence

S = X1X2 . . . Xn,

we have the coordinate vector

w = (x1, y1, x2, y2, . . . , xn−1, yn−1, xn),

where xi is the intra coordinate vector for base pair i, i.e. base Xi and its Crick-Watson Complement
Xi, and yi is the inter coordinate vector between base pairs (Xi, Xi) & (Xi+1, Xi+1).

Intras. For a base pair (Xi, Xi), we define the intra coordinates as follows. Let us first consider the
two frames associated to both bases: [r+

i , R
+
i ], [r−i , R

−
i ] ∈ SE(3). We define the relative displacement

[qi, Qi] ∈ SE(3) such that [
R+
i r+

i

0 1

]
=
[
R−i r−i
0 1

] [
Qi Q

1/2
i qi

0 1

]
. (3)

Hence we have Qi = (R−i )TR+
i , qi = (R−i Q

1/2
i )T (r+

i − r
−
i ). Note that the relative translation is

expressed in the mid frame Ri = R−i Q
1/2
i for symmetry. A graphical representation of Equation (3)

is shown in Figure 2.
The final intra coordinates for base i are then the Cayley vector6 of the relative rotation Qi and

the relative translation qi expressed in the mid frame,

xi = [Cay(Qi), qi] ∈ R6. (4)

Figure 3 illustrate the six degrees of freedom for the relation between two base frames. The top line
shows the relative rotations and the bottom lines shows the relative translations.

5See Appendices C for more detail on the SE(3) group.
6See Appendices D for definition of the Cayley vector.
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1.1 cgDNA, rigid-base coarse-grain DNA model 1 DISCRETE MODEL

Figure 3: Graphical representation of the 6 degrees of freedom for the relative displacement between
two frames: the intra coordinates. Figure taken from Głowacki [10].

Inters. The inter coordinates between base pairs (Xi, Xi) and (Xi+1, Xi+1) need a bit more work.
We start by defining the i-th base pair frame as the mid frame:

[ri, Ri] ∈ SE(3), Ri = R−i Q
1/2
i , ri = 1

2(r+
i − r

−
i ).

Let [ji+1/2, Ji+1/2] be the relative displacement between the base pair mid frames [ri, Ri] and
[ri+1, Ri+1].7 The inter coordinate corresponding to junction i is then:

yi = [Cay(Ji+1/2), ji+1/2] ∈ R6. (5)

Figure 4 illustrate the six dimensions of the relative displacement between two base pairs.

3D Reconstruction. For the reconstruction, we fix the first base pair frame:

[r1, R1] = [(0, 0, 0), I3].

The base pair frames of the other bases are then obtained following a tree construction starting from
the first base pair frame. Each set of inter coordinates yi is converted to a corresponding relative
displacement in SE(3) using Euler-Rodrigues formula8, the later can be used to construct every
base pair frame with a chain construction. The base frames are obtained from the base pair frames
and the intra coordinates. The base pair frame is the mid frame between the two bases. Hence
each base frame is obtained from the base pair frame using half of the intra relative displacement.
Figure 5 shows the chain structure of the reconstruction.

1.1.3 Energy

As specified in Section 1.1.1, the local molecule energy is assumed to be quadratic and we consider
only the local interactions between the bases. Furthermore, we suppose that the total energy of the

7The inter relative displacement is obtain using the same procedure as the intra displacement, see Equation (3)
and Figure 2 where we adapt the two compared frames.

8See Appendices D
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1.1 cgDNA, rigid-base coarse-grain DNA model 1 DISCRETE MODEL

Figure 4: Graphical representation of the six cgDNA inter coordinates. Figure taken from Głowacki
[10].

· · ·

5′ 3′

Watson

5′3′

Crick

Figure 5: Chain structure of the cgDNA coordinates. The black dots represent the base frames, the
gray dots the base pair mid frames, the red arrows represent the inter coordinates and the blue ones
represent the intra displacement.
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1.1 cgDNA, rigid-base coarse-grain DNA model 1 DISCRETE MODEL

(a) SParsity pattern

5′X1X2

X2X3

X3X4

Xn−2Xn−1

Xn−1Xn3′

(b) Contruction of K

Figure 6: Sparsity pattern and construction of the cgDNA stiffness matrix K. Each grid delimitation
represent a 6 × 6 block. The two end blocks are shown in a different color in the right panel to
emphasise the fact that they differ from the identical dimer block in the interior.

DNA molecule is the sum of the local energies. Combining these assumptions we obtain that the
energy for a n base pairs sequence is of the form:

U(w;S,P) =
n−1∑
a=1

Ua, (6)

where Ua is the local energy:

Ua = 1
2(wa − µa)TKa(wa − µa), wa = (xa, ya, xa+1). (7)

Here, µa and Ka are respectively the local ground-state and the local stiffness. A sum of shifted
quadratic forms can itself be written as a shifted quadratic form. Hence, we obtain a total energy :

U(w;S,P) = 1
2(w − µ)TK(w − µ) + c, (8)

with K ∈ R(12n−6)×(12n−6) a banded matrix with (n − 1) 18 × 18 blocks with 6 × 6 overlaps, as
shown in Figure 6a, µ ∈ R12n−6 is the molecule’s ground-state. The constant c plays no role and is
therefore not taken into account.

1.1.4 Parameter set

The cgDNA model relies on the use of a pre-computed parameter set. All these parameters are
obtained by fitting the model to match molecular dynamics simulations, see [11] for more details.
The final probability distribution function ρ depends on both the sequence S and the parameter set
P. This parameter set is used to reconstruct the ground-state and stiffness matrix corresponding
to the given sequence S. Through time, the model was improved and the parameter set refined to
be more accurate. Here, we will focus on the latest development of cgDNA and we only give the
description of the cgDNA 2.0 parameter set.

9
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cgDNA 2.0 parameters. For all possible sixteen oligomer steps XY , the cgDNA 2.0 parameter
set contains three types of 18 × 18 symmetric positive definite blocks: KXY , K5′XY and KXY 3′

and three 18× 1 types of vectors: σXY , σ5′XY and σXY 3′ . The KXY stiffness block is for the case
where both X and Y are in the interior of the sequence, the K5′XY and KXY 3′ stiffness blocks
are respectively for the cases where X is the 5’ end or Y is the 3’ end of the sequence. The same
principle apply to the three σ vectors. Parameter block symmetry comes from the fact that we
model a quadratic energy. The energy, the stiffness and the ground-state have to be independent of
the choice of reading strand. This gives us more constraints on the parameters, see [22] for more
details.

For the reconstruction of the stiffness matrix and the ground-state, we start with the stiffness
matrix K. We read the sequence S and build the banded stiffness matrix by adding the dimer
18× 18 parameter blocks in the correct places. Each block has a 6× 6 overlap with the previous
and the following block. The shape vector σ is computed with the same method. Each 18× 1 block
is composed of the vector σXiXi+1 and the contributions of the previous and next dimers for the
6× 1 overlap. Figure 6b illustrates this construction. The ground-state is then obtained using the
relation µ = K−1σ. We construct the shape vector before the ground-state because σ only has
a local dependence on the sequence whereas µ has not. It is therefore necessary to compute the
ground-state from a different variable with a local dependence on the sequence.

1.2 cgDNA for Periodic Sequences
This section highlights Głowacki’s construction for the periodic ground-state and stiffness matrix for
the cgDNA model. For a more detailed description, we refer to his PhD thesis [10].

1.2.1 Interest in Periodicity

In Nature, we observed that some DNA sequences are composed by multiple, end-to-end repetitions
(more than 2) of a smaller sequence, the base sequence [20]. Such sequences are called Tandem
repeats (even when there are more than two repeats). In order to improve computations for this
particular type of sequence, Głowacki [10] and Grandchamp [12] proposed an adaptation of the
cgDNA ground-state and stiffness matrix. They created the so-called periodic ground-state and
stiffness matrix for the base sequence. This allows to characterize infinite tandem repeats using only
one period of the base sequence. As we saw in Section 1.1, the cgDNA reconstruction procedure has
a physically justified end effect. However, in the case of a periodic sequence, the end effects can be
removed at the junctions between two repeats of the base sequence. This method turns out to be
very helpful in our case as it can also be used to reconstruct the shape and stiffness matrix of a
closed DNA loop. Indeed a closed loop can be seen as an infinite repeat of the same sequence. The
main difference between periodic and standard ground-state and stiffness lies on the extremities. In
order to account for periodicity, we have to consider the interactions between the first and last base
pairs.

We note that sequence periodicity does not imply periodicity in the positions of the bases in
general. Sequence periodicity only signifies that the sequence repeats itself a high number of times.
The overall shape of a periodic sequence is therefore an infinite helix. In the special case of minicircles,
the sequence appears only once but we enforce a cyclized shape. The base coordinates are then
periodic when repeating the sequence. But, all periodic coordinates certainly do not correspond to
closed loops.

10



1.3 The explicit phosphate model, cgDNA+ 1 DISCRETE MODEL

(a) Block structure.

X1X2

X2X3

X3X4

Xn−2Xn−1

Xn−1Xn

XnX1

(b) Construction of Kp.

Figure 7: Structure (on the left) and construction (on the right) of the cgDNA periodic Stiffness
matrix Kp. Each square of the grid is of size 6× 6. The highlighted blocks on the right panel are
the blocks representing the interaction between the first and last base pairs.

1.2.2 Construction of periodic stiffness matrix

The construction of the periodic stiffness Kp of a base sequence S is similar to the construction of
the standard stiffness matrix of cgDNA model explained in Section 1.1. The difference is that we
need to replace the contributions of the end base pairs to consider them as interior bases and we
have to add the contribution of the relation between the first and last base pairs. For that purpose,
the periodic stiffness contains an extra set of inter coordinates. For a sequence of length n, Kp is
of size 12n× 12n with overlapping 18× 18 blocks and 6× 6 overlaps. The last block is truncated
to be 12 × 12. The extra entries are added to the first 6 × 6 block, the 6 × 12 upper right and
12× 6 bottom left corners. The extra blocks in the anti-diagonal corners represent the interactions
between the last and first base pairs and are taken from the KXnX1 parameter block. The schematic
construction is shown in Figure 7.

1.3 The explicit phosphate model, cgDNA+
In 2019, Patelli proposed a new version of the cgDNA model with explicit treatment of the backbones
[21]. They consist of alternating phosphates groups and sugar rings. The new model, called cgDNA+,
adds the contribution of the phosphate groups to the molecule energy while the contributions of
the sugar rings remain implicit. This adaptation is currently believed to be more accurate than
the standard cgDNA model [21]. In this section we explain the basics of the cgDNA+ model using
Patelli’s ideas. For more details, we refer to Patelli’s thesis [21].

1.3.1 Explicit Backbones

The rigid base assumption of the cgDNA model is carried over to the phosphate groups. For a
sequence S = X1X2 . . . Xn, we represent each base by a frame [r±i , R

±
i ] ∈ SE(3). Each phosphate

group is also represented by a frame [p±i , P
±
i ] ∈ SE(3). The result of such a parametrization is

illustrated in Figure 8. The coordinates of each phosphate are a relative SE(3) displacement from
the associated base.

11
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Figure 8: Double strand representation with explicit backbones of five base pairs within a sequence.
The gray frames are the bases and the purple shapes are the explicit phosphates groups. The sugar
rings are also shown in this figure even if they are not explicit in the cgDNA+ model. This figure is
taken from Patelli’s thesis [21].
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· · ·

5′ 3′

Watson

5′3′

Crick

Figure 9: Chain structure of the cgDNA+ coordinates. We reuse the color code of Figure 5 for the
cgDNA coordinates: Intras in blue, Inters in red, base frames in black and base pair frames in gray.
We add the phosphate coordinates in green and the phosphate frames in purple dots.

cgDNA+ coordinates. We recall that we used the relative displacement between the two base
frames in a base pair as intra coordinates in the standard cgDNA model. The inter base pairs
coordinates were defined as the relative displacement between the two base pair frames [ri, Ri]
and [ri+1, Ri+1]. Both sets of coordinates remain unchanged in the cgDNA+ model. In order to
implement the phosphates frames, we construct the base pair level coordinates by adding the relative
displacements between the base frames and both Crick and Watson phosphate groups to the intra
coordinates. Let [m±i ,M

±
i ] be the relative displacements between the Crick (-) or Watson (+)

phosphate group [p±i , P
±
i ] and the base frame [r±i , R

±
i ], expressed in the corresponding base frames.9[

Ri ri
0 1

] [
M±i m±i

0 1

]
=
[
P±i p±i
0 1

]
. (9)

We note that the Crick phosphate is associated to the unflipped Crick frame. The base pair level
coordinates at base pair i then become

x̃i = [Cay(M+
i ),m+

i︸ ︷︷ ︸
Watson Phosphate

, Cay(Qi), qi︸ ︷︷ ︸
Strandard intras

, Cay(M−i ),m−i︸ ︷︷ ︸
Crick Phosphate

] ∈ R18, (10)

where Cay(A) is the Cayley vector of A detailed in Appendices D and xi = [Cay(Qi), qi] is the
standard cgDNA intra coordinate at base pair i. We can adapt Figure 5 to cgDNA+ coordinates
and we obtain the new tree structure shown in Figure 9.

End bases. When modelling the explicit phosphates groups, we have to be particularly careful
when modelling the ends of the sequence. Each phosphate group is associated to a base pair, however
phosphates are not exactly aligned with the bases. They sit in between two base pairs. This induces
a problem at the ends: we cannot model accurately the position of a phosphate group that is not
lying in between two bases using a Gaussian probability density function. Therefore we remove the
extra phosphate groups at the end bases only to keep the phosphates that are inside junctions of

9The relative translation between a phosphate group and its associated base is expressed in the base frame. This
is similar to the cgDNA relative translation being expressed in the mid frame.
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2 CONTINUUM MODEL

the sequence. This correspond to so-called blunt ends in the chemistry literature. Then, the end
base pair level coordinates are:

x̃1 = [Cay(Q1), q1, Cay(M−1 ),m−1 ] ∈ R12 and
x̃n = [Cay(M+

n ),m+
n , Cay(Qn), qn] ∈ R12.

Figure 10 shows the deleted end phosphate groups. The dimension of the cgDNA+ stiffness is then
18(n− 2) + 6(n− 1) + 12 · 2 = 24n− 18.

Parameter set. The cgDNA+ parameter set is very similar to the standard cgDNA 2.0 parameter
set. For each dimer XY , it contains three stiffness blocks and three shape vector blocks. In the case
of cgDNA+ the size of the interior stiffness blocks is 42× 42 and the end blocks are 36× 36 due
to the outer phosphates not being modelled. Similarly, the shape vector blocks are 42× 1 for the
interior and 36× 1 for the ends. The parameter set is obtained with a similar construction to the
standard cgDNA construction detailed in Section 1.1.4 with the difference lying in the dimensions of
the blocks. The diagonal blocks of the cgDNA+ stiffness matrix are now 42× 42 (except for the end
blocks that are 36× 36) and the overlap becomes 18× 18. We refer to Patelli [21] for more details
on parameter estimation.

cgDNA+ energy. In the explicit backbone model the assumptions about local dependence on the
sequence and local contributions for the total energy remain unchanged. Hence the only difference
is coming from the change in the local energies that now include the contributions of the phosphate
groups. Since each phosphate group is associated with a base pair, the nearest neighbour assumption
is still valid. The phosphate groups interact with its associated base as well as its five nearest
neighbour bases and their phosphate groups. Hence the definition of the energy does not change
fundamentally between the cgDNA and cgDNA+ models, we still model with a quadratic energy.

1.3.2 Periodic cgDNA+

Similarly to the periodization of the cgDNA model in Section 1.2, Patelli’s work can be adapted to
support periodic sequences. The construction is the same with the only difference being the size
of the base pair level coordinates. The periodic stiffness for cgDNA+ is then a 24n× 24n matrix
with 42 × 42 overlapping blocks and 18 × 18 overlaps. There are also an added 24 × 18 block in
the upper right corner and its transpose in the bottom left corner. The new sparsity pattern and
construction of the periodic cgDNA+ stiffness matrix is shown in Figure 11. We highlighted the
parameter blocks differing from the standard cgDNA+ stiffness matrix construction.

2 Continuum Model
2.1 Birod DNA
This section highlights the key aspects of the continuum birod model for DNA [12]. Since we use
the birod model as a black box together with the bBDNA software, we do not develop its detailed
construction here. We only mention the guidelines for birod modelling of DNA. The DNA birod
model was first introduced by Moakher and Maddocks as a continuum model for DNA molecules [19]
and was then refined by Grandchamp [12]. In perticular he established a procedure for passing from
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2.1 Birod DNA 2 CONTINUUM MODEL

Figure 10: Ends of the cgDNA+ representation with dropped outer phosphate groups (marked with
red crosses). This figure is a modified version of Figure 8.2 of Patelli’s thesis [21].
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(a) Block structure.

X1X2

X2X3

X3X4

Xn−2Xn−1

Xn−1Xn

XnX1

(b) Construction of the periodic cgDNA+ stiffness
matrix.

Figure 11: Structure (on the left) and construction (on the right) of the cgDNA+ periodic Stiffness
matrix. Each square of the grid is of size 6 × 6. The highlighted blocks on the right panel are
the blocks representing the interaction between the first and last base pairs. They are the blocks
changing from the standard cgDNA+ stiffness matrix.

discrete cgDNA energy to continuum birod coefficients. We then refer to these original publications
for a more precise description.

2.1.1 Birod configuration

We start by describing a single rod. A rod is a continuum path g(s) = (R(s), r(s)) ∈ SE(3) for
s ∈]0, L[. The rotation matrix R(s) represents the orientation of the rod cross sections and the
vector r(s) ∈ R3 represents the position of the rod centerline.10

A birod configuration (g,P) is described by two structures at two different levels. First, g(s),
the macrostructure, is a continuum rod configuration that represents the average of the double
rod configuration. Second, P(s), the microstructure, represents the relative rotation and the
relative translation and allows the reconstruction of the double rods g± from the macrostructure.
Grandchamp [12] adapted the proposed model of Moakher and Maddocks [19] and parametrized
the microstructure P using the discrete cgDNA model detailed in Section 1.1. This allowed him to
obtain a continuum sequence-dependent birod model for DNA.

2.1.2 Internal energy and equilibrium

Continuum rod configurations adapt to the application of local couples and forces. An equilibrium
configuration for a rod is a configuration where the total couple and force densities acting on each
cross section balance. The formal rod equilibrium conditions can be found in [12, Equation 3.2.1].
Similarly to the discrete case discussed in Section 1.1, the internal energy for the rod is also assumed
to be local, see [12] for more details.

10See Appendices C for the description of SE(3).
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2.2 The bBDNA software 2 CONTINUUM MODEL

The equilibrium condition for a double rod model is obtained by considering each strand as a
single continuum rod in an external field. The birod equilibrium configuration is then obtained by
requiring both individual rod equilibrium conditions. The interactions of a rod with the other is
treated as external couple and force from the perspective of the second rod. Similarly to the discrete
case, we assume double locality of the internal energy (local interactions, local dependence on the
sequence). With some work, one can show that the equilibrium conditions for the birod model
satisfy a Hamiltonian structure, we refer to Grandchamp’s thesis [12] for further details. Finding
equilibrium configurations comes back to solving the Hamiltonian system. In his thesis, Głowacki
[10] proposed a procedure to efficiently solve such problems: the bBDNA software.

2.2 The bBDNA software
In this section, we present the bBDNA software developed Głowacki as an important part of his
thesis [10]. This software is “an interactive parameter continuation and visualization tool for the
continuum birod model of DNA.” In particular it provides a graphical user interface (GUI) to
visualize families of solutions for the birod model in a bifurcation diagram. It also provides a 3D
reconstruction of solutions in the diagram through probes.

The complete pipeline consists of MATLAB scripts to prepare the continuum input coefficients
for the particular sequence, before solving the Hamiltonian system of ODE of the birod model from
Section 2.1. The equilibrium configurations are thereby computed. Finally, the family of solutions is
presented through the bBDNA GUI. For this thesis, we decided to use the bBDNA software as a
black box. We only use the computed equilibrium configurations to construct initial guesses for the
discrete energy minimization. For that reason, we do not present the full internal mechanisms of the
software and equilibrium computations. We just present the MATLAB preprocessing script and
bBDNA GUI so that the reader can repeat our procedure.

2.2.1 MATLAB preprocessing bBDNA script

The MATLAB scripts prepare the sequence-dependent birod DNA coefficients. It creates the
Hamiltonian system of the birod model11 via the Lagrangian coefficients12 using the predefined
cgDNA parameter set13.

The MATLAB script to run is the setupcomputations.m script located in the matlab sub-
folder. In that file, one can choose the desired sequence under the seq variable and the name of the
folder in which the parameters will be generated under the name variable. Finally, one can choose
the maximal energy and the step size. For the two last variables, Głowacki gives examples of values
for different length of sequences. More advanced parameters can then be adjusted, but we do not
change any of them so we do not detail them here.

The MATLAB script then produces files for the coefficients and outputs a command to past in
the command prompt to run bBDNA with the correct files. Once run, bBDNA computes the family
of solutions and launches the GUI.

11See Section 2.1
12The stiffness matrix K(s), its boundary conditions and the shape internal parameters.

See [10, 12] for the definitions of the Lagrangian coefficients.
13Note: the parameter set currently used is a cgDNA 1.0 version of the parameters, refer to [10] for the definition

of the parameters
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3 FROM CONTINUUM TO DISCRETE

2.2.2 bBDNA GUI

The solutions of the Hamiltonian system are presented as a bifurcation diagram that shows curves
of equilibrium configurations. In the default projection, the higher the solution the higher the
internal energy and the abscissa represent the force which is constant along the equilibrium and the
internal twist. Examples of bifurcation diagrams can be found on Figures 13, 17, 25 and 31. The
2D projections show Energy versus the twist. To visualize the 3D reconstructions one has to create
a new probe. In our case, we are interested in solutions where the two ends of the sequence are
correctly aligned in the sense that both strands are aligned to form a correctly closed loop14. These
particular solutions are highlighted with crosses in the bifurcation diagram. Those are the solutions
we discretize to use as initial guesses for cgDNAmin. Note that the colors of the crosses represent
the link, roughly the number of twists of the coupled backbones, of the configurations. For more
details on the GUI and for the user commands we refer to Głowacki’s thesis [10].

3 From Continuum to Discrete
This Section describes the work of Manning [15] which we later extend from cgDNA to cgDNA+
model. Manning was interested in the formation of DNA minicircles. As we said in Part I, DNA
minicircles are an important study case in DNA modelling. Amongst the possibilities to model
such configurations, Manning decided to start with a continuum equilibrium obtained through the
bBDNA software. This equilibrium is then discretized to provide an initial configuration and finally
a minimization procedure is done to find the discrete energy minimizer.

3.1 bBDNA initial run
As mentioned before, we start with a run of the bBDNA software detailed in Section 2.2. We input
the sequence and the chosen parameters to build the birod model. We then run bBDNA to find
equilibrium configurations and generate the bifurcation diagram. We finally choose a continuum
energy equilibrium configuration through the GUI. We have to be careful to select a configuration
that is correctly closed (crosses) to be as close as possible to a valid discrete configuration.

Once the continuum configuration is chosen, we discretize it, as mentioned in Section 2.2. We
are now ready to proceed to the next step, the discrete energy minimization.

3.2 cgDNAmin, the Discrete Energy Minimization
After obtaining the continuum energy equilibrium configuration and its discretization, we need a
discrete energy minimization step. Indeed, the assumptions for the continuum model are slightly
different than the discrete case. Moreover, during the discretization process, errors are induced.
Therefore, we apply a cgDNA minicircle energy minimization procedure to ensure that the final
configuration is a proper minimizer for the discrete energy.

We recall that the standard inter cgDNA coordinates represent the relative displacement between
two base pairs. It is then difficult to enforce a closure condition with such coordinates. Closure
expressed in inter coordinates is a highly non-linear and non-local constraint. Therefore, Manning
proposed to change representation and use absolute coordinates for each base pair frame [15]. The
absolute rotation of each base pair frame is represented by a quaternion. The closure assumption

14Both strands must be closed on themselves for a valid configuration.
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then becomes a local condition, the last base pair must be close to the first one. This comes at the
cost of extra computations for computing the relative displacement between base pairs.

3.2.1 Coordinate vector

After the discretization, for each base pair i we have intra coordinates xi ∈ R6 and base pair
coordinates (oi, qi) ∈ R7, where o ∈ R3 is the absolute translation between base pair frame i and the
origin and q ∈ R4 is the absolute rotation of the base pair frame expressed with a quaternion. The
standard cgDNA inter coordinate yi can then be obtained as a function of (oi, qi) and (oi+1, qi+1).
For the minimization procedure, we have to create the vector z containing all coordinates.

z = (x1, o1, q1, x2, o2, q2, . . . , xn−1, on−1, qn−1, xn) ∈ R13n−14, (11)

where n is the length of the sequence. Since the first inter coordinate is our reference point in space,
it is fixed to o1 = (0, 0, 0) and q1 = (0, 0, 0, 1). Therefore we do not need to keep track of it during
the energy minimization procedure.

As we saw in Section 3.2.1, Manning used quaternions to represent the rotation between base
pairs. However, the standard cgDNA energy uses relative displacement expressed in R3 with the
help of Cayley vectors.15 This means that he had to first convert the quaternion coordinates into
relative rotation and then into vectors in R3. Manning also detailed the explicit formulas for the
gradient and the Hessian matrix of the energy with respect to the vector of unknowns z [15]. The
standard i-th inter coordinate is obtained from the absolute coordinates of the base pair frames
(oi, qi) and (oi+1, qi+1). The relative rotation between the two base pair frames is defined by the
rotation matrix represented by (q−1

i ◦ qi+1)16 The relative translation between base pair frames
is then (oi + oi+1) expressed in the junction frame. The later can be obtained from the absolute
rotation induced by the quaternion (qi ◦

√
q−1
i ◦ qi+1) = qi + qi+1.

3.2.2 Energy

We here detail the description of the molecule configuration energy with its dependence on the
coordinate vector z. We recall Equation (8)and write the energy as

U(w) = 1
2(w − µ)TK(w − µ),

with µ ∈ R(12n−6) being the ground-state and K ∈ R(12n−6)×(12n−6) the banded stiffness matrix.
With the transformation of quaternions to Cayley vectors, the energy is then

U(w) = U(F (z)) = 1
2(F (z)− µ)TK(F (z)− µ), (12)

where, F (z) = w is the function that recovers the original cgDNA coordinates from the vector z of
Equation (11). Intras remain unchanged and inters are obtained with the construction explained in
Section 3.2.1, see Appendices E for the explicit formula.

For the purpose of enforcing ‖qi‖ = 1, ∀i = 1 . . . , n, we add a penalty factor

E = p

n∑
i=1

(‖qi‖2 − 1)2, (13)

15See Appendices D for the relation between rotations and R3.
16Here, ◦ represents quaternion multiplication, see [15] for the detailed formula.
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(a) Non-continuous closure (NCC) (b) Periodic closure (PC)

Figure 12: Differences between the non-continuous (NCC) and periodic (PC) closure assumptions.
On the left: the non-continuous case, we add an extra phantom base pair (in red) at the coordinates
of the first base pair (in green) (o1 = on+1 and q1 = ±qn+1). The junction is modelled through the
interactions between the last (blue) and the phantom (red) base pairs. The last base pair is shown
in blue. On the right: the periodic case, we treat the first (green) and last (blue) base pairs as if
they were interior bases.

where p is a constant scalar penalty weight. In our case, we use p = 100. Since the energy is
invariant under a scaling of the qi, Equation (13) enforces the unit norm condition. The function to
be minimized is then

Ũ(z) = 1
2(F (z)− µ)TK(F (z)− µ) + p

n∑
i=1

(‖qi‖2 − 1)2. (14)

In order to speed up the process, we feed explicit expressions for the gradient and the Hessian
matrix to the minimization algorithm. Detailed expressions for the gradient and the Hessian due to
Manning can be found in Appendices F.

3.3 Periodic cgDNAmin
In his work, Manning was interested in the formation of minicircles. Hence, he modelled non-
continuous closure (NNC) DNA minicircles. He did this by introducing an additional phantom base
pair representing the first base pair at the end of the sequence and requiring that the first and
last base pair frames overlap. However, another interesting question is to model the shape of an
already fully formed DNA minicircle. We can do this using Głowacki’s work, see Section 1.2. Using
the periodic cgDNA construction, we can adapt NNC cgDNAmin to model a periodic interaction
between the two end base pairs. We will denote it PC cgDNAmin for "Periodic Closure". The
difference in the relation between the first and last base pairs is shown in Figure 12.

The main adaptation appears in the construction of the gradient and the Hessian. We need to
adapt the closed form expression used in our algorithm and derived by Manning to work with the
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extra upper-right and bottom-left blocks of the periodic stiffness matrix. Fortunately, the entries
are computed similarly to the other diagonal entries. Each part of the block is an intra-intra or
intra-inter relation between the last and first base pairs. Hence we can use the same formulas, being
careful to place the entries at the correct positions. We again refer to Appendices F for the detailed
computations.

To compare the effects of closure assumptions, we refer to the results for the Kahn & Crothers
sequence, Section 3.4.1, Figures 15 and 16. They show the solutions for four different initial guesses
for respectively non-continuous and periodic closure assumptions. By comparing the 3D views of
the solutions, we observe that changing the closure assumption can change the solution slightly.
However, the final configurations remain relatively close to each others. We measure the relative
L2 norm of the difference in cgDNA coordinates to obtain a quantitative comparison. For the four
initial guesses, we get

‖wNCC(K-C, a)− wPC(K-C, a)‖2

‖wNCC(K-C, a)‖2
= 1.42%,

‖wNCC(K-C, b)− wPC(K-C, b)‖2

‖wNCC(K-C, b)‖2
= 1.41%,

‖wNCC(K-C, c)− wPC(K-C, c)‖2

‖wNCC(K-C, c)‖2
= 1.43%,

‖wNCC(K-C, d)− wPC(K-C, d)‖2

‖wNCC(K-C, d)‖2
= 1.48%,

(15)

where wb(g) is the cgDNA coordinate vector of the converged configuration from the minimization
of initial guess g and boundary condition b. Note that in order to compare the results, one has to
remove the last intra and inter coordinates from the NCC solutions and the last inter coordinates
form the PC solutions. This is done to remove the phantom base pair of NCC algorithm and remove
the extra inter coordinates introduced by the periodic closure assumption. The computations of
the relative norm of the differences tell us that the solutions are not changing drastically when
changing the closure assumption. We can compute the relative difference between the coordinates of
the NCC and PC closure assumptions. We find that it is about 1.5%, this is sufficiently big to be
non negligible but we can say that the PC solutions remain relatively close to the original NCC
configurations. If we compare the energies of NCC and PC cgDNAmin solution configurations, we
see that they are very close to each others. Because the results are not fundamentally different, we
will only focus on the non-continuous case (NCC) from now on. This will enhance the comparison
against Manning’s work [15].

3.4 Examples
Now that we saw the process behind cgDNAmin, we show some examples of cgDNA discrete energy
minimization for two particular sequences: the Kahn & Crothers c11t15 sequence already studied in
[6, 7, 18] and the Poly A 158bp sequence. Both sequences have very different ground-states. The
first one is very bent due to the presence of so-called A-tracts, whereas the second one is completely
straight. It is then interesting to compare the behaviour of cgDNAmin with both sequences. We
show the 3D views of 4 initial guesses and their corresponding results for both sequences. For all 3D
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3.4 Examples 3 FROM CONTINUUM TO DISCRETE

Figure 13: bBDNA bifurcation diagram for the Kahn & Crothers sequence. The energies of the
initial configurations are computed and shown together with the 3D views in Figure 14. The crosses
are all the computed closed equilibria along the branches. We note that there could be additional
branches that are entirely missed by the computation.

views, we specify the link17 (number of twists in the coupled backbones) and the cgDNA energy18

of the configuration for further interpretation of the results. We recall that the energy is obtained
using Equation (8). Finally, for all final configurations we compute the smallest eigenvalue of the
Hessian matrix to ensure that the configuration is a minimizer for the discrete energy. We discuss
our observations on the results in Section 3.4.3.

3.4.1 Kahn & Crothers c11t15 sequence

We start with the sequence c11t15 with a strong intrinsic bend. Its strong intrinsic bend may reduces
the stress on the molecule when forced into a minicircle shape, which facilitates the formation of
such loops.

As we explained in Section 3.1, we start by computing equilibria for the continuum model with
the help of bBDNA. The bifurcation diagram is shown in Figure 13. As detailed earlier, it represents
what are believed to be all closed continuum equilibrium configurations. The crosses represent the
configurations where the backbones are correctly aligned to form a correctly closed minicircle. We
recall that, in the default case which is used here, the height (Y-axis, in green) represents the energy
of the solution and the abscissa represent the constant force along the equilibrium on the Z-axis (in
blue, out of the plane) and the internal twist on X-axis (in red). The color of the crosses shows the
link of the configuration. Refer to [10, 12] for more details on the continuum birod model and the
bBDNA software.

For the sake of comparison, we show the 3D views of the final solution as well as the configurations
of the initial guesses. The initial guesses are shown in Figure 15 and the corresponding outputs

17Link is counted by hand, this may induce error.
18Rounded to the closest integer for clarity. The unity is kBT
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3.4 Examples 3 FROM CONTINUUM TO DISCRETE

of NCCcgDNAmin can be seen in Figure 15. For more detailed comparison, we plot the cgDNA
coordinates of the same initial guesses in the dedicated webpage, see Appendices A Finally, we show
the result for the periodic closure assumptions in Figure 16. This allows us to observe the effect of
changing the closure assumption. We refer to Section 3.3 for the differences between the NCC and
PC closure assumptions.
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(a) Link: 15, Energy: 418 (b) Link: 14, Energy: 482

(c) Link: 14, Energy: 481 (d) Link: 15, Energy: 699

Figure 14: 3D views of initial guesses for the Kahn & Crothers sequence. Each initial guess is
the indicated cross in Figure 13. The Link (number of twists of the coupled backbones) is counted
by hand and the energy is obtained using Equation (8).
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3.4 Examples 3 FROM CONTINUUM TO DISCRETE

(a) Link: 15, Energy: 35,
minimum eigenvalue: 1.36e-6

(b) Link: 14, Energy: 84,
minimum eigenvalue: 2.42e-6

(c) Link: 14, Energy: 84,
minimum eigenvalue: 2.41e-6

(d) Link: 15, Energy: 35,
minimum eigenvalue: 1.40e-6

Figure 15: 3D views of the NCCcgDNAmin solutions for the Kahn & Crothers sequence. Each
panel is the solution given by the corresponding initial guess from Figure 14. The Link (number of
turns of the intertwined backbones) is counted by hand. Solutions a) and d) represent the same
configuration and solution b) and c) are similar as well. All four configurations have positive definite
Hessian, hence they all seem to be local minimizers of the energy.
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3.4 Examples 3 FROM CONTINUUM TO DISCRETE

(a) Link: 15, Energy: 35,
minimum eigenvalue: 1.48e-6

(b) Link: 14, Energy: 84,
minimum eigenvalue: 2.23e-6

(c) Link: 14, Energy: 84,
minimum eigenvalue: 2.26e-6

(d) Link: 15, Energy: 35,
minimum eigenvalue: 1.46e-6

Figure 16: 3D views of the PCcgDNAmin solutions for the Kahn & Crothers sequence. From
the 2D coordinates inspection, we have that solutions a) and d) represent the same configuration
and solution b) and c) are similar as well. Compared to the NCCcgDNAmin solutions of Figure 15,
they only differ by 1.5%, which is significant but relatively small.
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3.4 Examples 3 FROM CONTINUUM TO DISCRETE

Figure 17: bBDNA bifurcation diagram for Poly A 158bp. Note all guesses within the small groups
are physically the same up to a symmetry. We also see that the curve is at least double covered.
This may be a result of the solver running twice or more on the same curve but this is not entirely
clear.

3.4.2 Poly A, 158 bp

We repeat the procedure with the Poly A sequence of 158 base pairs. This is a very stiff sequence
with a straight ground-state. The formation of a minicircle require a much higher energy than the
previous example. Once again, we start with an initial run of bBDNA and the bifurcation diagram
is shown in Figure 17. We immediately see that the bifurcation diagram is exceptional. Due to the
high symmetry of the sequence, we can observe four groups of solutions. This explains the special
form of the diagram. All crosses are valid initial guesses for the cgDNAmin energy minimization.
We show four discretized bBDNA equilibrium in Figure 18 and their corresponding NCCcgDNAmin
minimal energy configuration in Figure 19. The 2D plots of the cgDNA coordinates are shown on
the webpage. The straight shape of the ground state is highlighted in the 2D plots and we can
observe the periodicity in the coordinates induced by the cyclization.
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(a) Link: 15, Energy: 132 (b) Link: 14, Energy: 212

(c) Link: 16, Energy: 321 (d) Link: 17, Energy: 219

Figure 18: 3D views of Poly A 158bp initial guesses. Each configuration is represented by a
cross in Figure 17.
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3.4 Examples 3 FROM CONTINUUM TO DISCRETE

(a) Link: 15, Energy: 59,
minimum eigenvalue: 4.44e-7

(b) Link: 14, Energy: 140,
minimum eigenvalue: 3.48e-7

(c) Link: 16, Energy: 59,
minimum eigenvalue: 5.67e-7

(d) Link: 17, Energy: 143,
minimum eigenvalue: 6.26e-7

Figure 19: 3D views of Poly A 158bp NCCcgDNAmin solutions. Each panel is the solution
given by the corresponding initial guess in Figure 18. From 2D coordinates and link inspection, we
find that all four solutions are different. We verify the positive definiteness of the Hessian matrix
and all four configurations appear to be local minima.
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3.4 Examples 3 FROM CONTINUUM TO DISCRETE

3.4.3 Observations on cgDNAmin

The first observation to make is that the obtained solutions are shapes close to circle. We do not see
any highly writhed or non-planar equilibrium configuration regardless of the link of the initial guess.

The second striking observation from both examples is that two different initial guesses can lead
to the same minimization output. For the Kahn & Crothers sequence, initial guesses a) and d) yield
almost the same results and guesses b) and c) are very similar as well. If we compute the relative
L2 norms of the differences, we obtain that

‖w(K-C, a)− w(K-C, d)‖2

‖w(K-C, a)‖2
= 0.19%, (16)

and
‖w(K-C, b)− w(K-C, c)‖2

‖w(K-C, b)‖2
= 0.07%, (17)

where w(K-C, g) is the configuration of the solution given by the Kahn & Crothers sequence and
initial guess g. We immediately see that the difference is relatively small and solutions a) and
d) can be considered the same and configurations b) and c) are also similar. We refer to the 2D
coordinate plots on the webpage for a more detailed inspection of the coordinates. We note that this
similarity is independent of the choice of closure assumption. For both the NCC and PC cgDNAmin
minimizations, pairs of initial guesses yielded the same final configuration.

For the Poly A sequence, we observe a similar behaviour. Guesses a) and c) output configurations
that look very similar in the 3D viewer. However, the relative norm of the difference shows the
opposite result:

‖w(Poly A, a)− w(Poly A, c)‖2

‖w(Poly A, a)‖2
= 10.34%. (18)

We can use this example as a warning, we should not only make our observations on 3D views
alone. We also need to interpret the 2D coordinates plots as they are much more precise. Another
good way to compare solutions is to count the link of the molecule, i.e. the number of twists of the
coupled backbones. It is interesting to see that the cgDNAmin solutions preserve the number of
twists of the initial guess. That means, from our observations, that initial solutions with different
link will not converge to the same final configuration. This need not be the case because the cgDNA
model (and by extension the cgDNA+ model) is a so-called phantom chain model, i.e. remote parts
of the backbones can pass through each others leading to change in link.

Different guesses leading to the same solution can be explained by the fact that some initial
guesses are likely to be unstable equilibria. The minimization procedure then converges probably to
a different stable configuration that can also be obtained from other initial guesses. We also observe
that two initial guesses can seemingly converge to the same solution but the coordinates are not
exactly the same, one possible explanation is that the two energy minimization procedures converge
to the same actual solution but stop at slightly different configurations. Since the minimization
algorithms stopping criteria is based on the objective function improvement19, the step can be
considered too small and the algorithm stop at a sightly different configuration.

19In our case the energy as a function of the configuration.
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4 CGDNA+ NON-CONTINUOUS MINICIRCLES

Part III

cgDNA+ Minicircles
This chapter is focused on the adaptation of the minicircle energy minimization to cgDNA+
coordinates. In other words the adaptation of Manning cgDNAmin algorithm to support Patelli’s
cgDNA+ model. We detail both non-continuous and periodic minicircle configurations. The idea is
to change the coordinates and adapt the discrete energy minimization step to produce minimized
cgDNA+ energy minicircle configurations starting from a discretization of a bBDNA equilibrium.
We present different case studies for sequences from the literature. We use the non-continuous
closure (NCC) cgDNA+min algorithm to validate our model. In order to observe the effect of the
addition of the phosphate groups to the model, we also present a short comparison between the
cgDNAmin and cgDNA+min procedures. Finally, we go through the provided MATLAB package
so that the reader can repeat our results.

4 cgDNA+ Non-Continuous Minicircles
In this section we focus strictly on adapting cgDNAmin20 to support cgDNA+ coordinates. We keep
the discontinuity at the junction between the two ends (NCC condition). The procedure is similar
to the original cgDNAmin pipeline. We start with the continuum minicircle energy minimization,
we discretize the solution and we perform a discrete energy minimization. We note that we do not
change the continuum estimation of coefficients that are input to bBDNA. Thus the initial guesses
for the intra and inter coordinates are the same as in the case of cgDNAmin and initial guesses for
the phosphate coordinates have to be added as the discretization of the continuum equilibrium does
not directly provide information about the positions of the phosphates.

4.1 To cgDNA+ coordinates
As we saw in Section 1.3, the difference between cgDNA and cgDNA+ coordinates lies at the base
pair level. Each set of intra base pair coordinates is now associated to two phosphate groups to
form the new base pair level coordinates. We recall Equation (10) with the special cases i = 1, n:

x̃i = [p+
i , xi, p

−
i ], i = 2, . . . , n− 1,

x̃1 = [x1, p
−
1 ], x̃n = [p+

n , xn],

where xi is the standard cgDNA intra coordinate of Equation (4) and p±i are the coordinates of the
Crick and Watson phosphates associated to base pair i.

The cgDNAmin energy is therefore modified to include the phosphate coordinates. As we see
in Appendices F, the principal difficulty in the discrete energy minimization is the computation of
derivatives with respect to the inter coordinates due to the use of quaternions. In the cgDNA+min
case, the inter coordinates remain unchanged and the difference lies in the dimension of the base pair
level coordinates. The new stiffness matrix is now a (24n−18)× (24n−18) matrix: 18(n−2) + 2 ·12
entries for the base pair level coordinates and 6(n − 1) entries corresponding to inters. The sub-
division of diagonal blocks shown in Equation (42) is slightly modified. The diagonal blocks are now

20detailed in Section 3.
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Figure 20: Sub-block division of the i-th 42× 42 diagonal block of the cgDNA+ stiffness matrix K.
Adaptation of Figure 36 to cgDNA+ coordinates. The full block is the diagonal sub-block of the
stiffness matrix with indices ranging from 1 + 24(i− 1) to 42 + 24(i− 1) in both dimensions.

42× 42 blocks and the sub-division is as follows: the intra-intra blocks Ni and Qi become 18× 18
blocks and the intra-inter and inter-intra blocks Pi and Oi change respectively to 18× 6 and 6× 18
blocks. The adaptation of the sub-division is shown in Figure 20. Once all dimensions are adapted
to add the phosphate components within the intra coordinates, all derivatives are computed using
the cgDNAmin formulas explained in Appendices F.

4.2 Phosphate initial guesses
As mentioned in the beginning of this section, the discretization of the continuum bBDNA solution
does not give any information about the position of the phosphate groups. Hence we have to choose
a valid initial guess. We need to start from coordinates that are sufficiently close to the final solution
to ensure that the energy minimization procedure will converge.

The natural choice is to use the ground-state coordinates for the phosphates as initial guess.
This choice has two motivations. First taking the ground-state phosphate coordinates as initial guess
is the simplest thing to do. Since we work with the shifted coordinates (w − µ) the initial guess for
the shifted phosphates coordinates is simply zero. This reduces the amount of computations before
the minimization procedure. Second, this choice works. The minimization procedure converges with
this choice for initial phosphate coordinates, hence we keep it.

5 cgDNA+ Periodic Minicircles
The adaptation of the periodic closure (PC) cgDNAmin to the cgDNA+ coordinates is straight
forward. As we mentioned in Section 4, the only difference in the coordinates is the dimension of the
base pair level coordinates. They lie in R18 instead of R6 to include phosphates coordinates. Hence,
the periodic cgDNA+ stiffness matrix dimension is 24n× 24n. The issue about initial guesses for
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6 CGDNA+MIN CASE STUDIES

the phosphate coordinates is exactly the same for both periodic and non-continuous cases. Hence
we use the same technique to get the initial phosphates coordinates21.

To represent the interactions between the first and last base pairs, we use the periodic cgDNA+
ground-state and stiffness matrix explained in Section 1.3.2 which are themselves adaptations to
cgDNA+ coordinates of Głowacki’s work shown in Section 1.2. Similarly to the PCcgDNAmin
detailed in Section 3.3, the extra corner blocks introduce new components in the minimization vector
z and the gradient and Hessian matrix. These extra components are computed following the same
construction as the other blocks in the diagonal. Compared to NCCcgDNA+min, the periodic case
has the advantage that there is no external phosphate groups. The intra coordinates of both end
bases are not truncated. This slightly facilitates the implementation as we do not have to take care
of the smaller base pair level coordinates for the two end base pairs.

6 cgDNA+min Case Studies
In this section, we provide different examples of results obtained with the non-continuous closure
(NCC) cgDNA+ discrete energy minimization. We start with the same two examples shown in the
cgDNA case in Section 3.4: the Kahn & Crothers c11t15 and the Poly A 158bp sequences. After
these two examples, we turn to recently studied Pyne et al. sequences [23]. The idea is to compare
the results and see if our final configurations are similar to the ones obtained in the Pyne et al.
study. Finally, we also compute the cgDNA+min result for the well-studied Widom 601 sequence [4].
We will here only focus on the non-continuous closure assumption (NCC) as the difference between
periodic and non-continuous closures are relatively small and analogous to the standard cgDNAmin
case detailed in the examples of Section 3.4.

For each sequence, we show two figures: the 3D views of both chosen initial guesses and their
corresponding NCC cgDNA+min solution. Again, we show the link (hand counted), the energy of
each configuration and the smallest eigenvalue of the Hessian matrix. The idea of showing the initial
guesses configurations is to observe the effect of the discrete cgDNA+ energy minimization. We
also provide the 2D plots of the cgDNA and phosphate coordinates for the ground-state, the initial
guesses and the final solutions on the thesis webpage.22

21We use the ground-state coordinates, see Section 4.2
22We recall that the full link to the webpage can be found in Appendices A.
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6.1 Kahn & Crothers c11t15 sequence 6 CGDNA+MIN CASE STUDIES

6.1 Kahn & Crothers c11t15 sequence
As we do not change the intra and inter coordinates for the initial guesses between the cgDNA
and cgDNA+ cases, we reuse the bifurcation diagram from Figure 13. The only difference is the
presence of phosphate groups in the cgDNA+ case. We recall that the initial guess for the phosphate
coordinates is the ground-state coordinates. Similarly to the standard cgDNA case in Section 3.4.1,
we show the four different initial guesses in Figure 21 and their corresponding solution given by
NCCcgDNA+min in Figure 22.

Similarly to the standard cgDNA case, we observe that initial guesses b) and c) yield similar
configurations and a) and d) also give comparable results. In order to measure the difference between
the two configurations, we compute the relative L2 norm of their coordinate vectors difference. For
the a)-d) difference, we obtain

‖w(K-C, a)− w(K-C, d)‖2

‖w(K-C, a)‖2
= 0.008%, (19)

and for the b)-c) comparison we have

‖w(K-C, b)− w(K-C, c)‖2

‖w(K-C, b)‖2
= 0.19%. (20)

Hence we can say that the solutions obtained represent the same configurations.
One striking observation is that the link is not conserved. For both guesses b) and c) the link

is not the same between the initial guess and the final solution. This is striking since, from our
observations, standard cgDNAmin appears to conserve link. Even if the count of the link is done by
hand, the number of divergences between initial and final links is too big to be a counting mistake.
We then have to ask ourselves the following question: what causes cgDNA+min solutions to change
link? As we mentioned before in Section 3.4.3, both cgDNA and cgDNA+ are phantom chain models
in the sense that the backbones can pass through each others without energy penalty. Therefore,
there is no contradiction in the links of initial and final configuration differing. However, we noted
that the initial and final links were always the same in all cgDNA simulations that have been carried
out. On the contrary, for the cgDNA+ simulations of the same sequences, link does change in two
cases. We note that it would be of interest to understand this phenomenon in greater details. But
such study is beyond the scope of this thesis.
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(a) Link: 15, Energy: 4015 (b) Link: 14, Energy: 4970

(c) Link: 14, Energy: 5051 (d) Link: 15, Energy: 7094

Figure 21: 3D views of the Kahn & Crothers sequence initial guesses with the added phosphate
groups. Each configuration is represented by a cross in Figure 13. Note: the cgDNA coordinates
(intras and inters) are identical to the ones of Figure 14.
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6.1 Kahn & Crothers c11t15 sequence 6 CGDNA+MIN CASE STUDIES

(a) Link: 15, Energy: 46,
minimum eigenvalue: 3.57e-6

(b) Link: 16, Energy: 110,
minimum eigenvalue: 2.46e-6

(c) Link: 16, Energy: 110,
minimum eigenvalue: 2.58e-6

(d) Link: 15, Energy: 46,
minimum eigenvalue: 3.63e-6

Figure 22: 3D views of the Kahn & Crothers solutions with NCCcgDNA+min. Each panel is
the solution given by the corresponding initial guess in Figure 21. After 2D coordinates verifications,
panels a) and d) show the same configuration and panels b) and c) also represent the same solution.
After verification, all four configurations seem to be local minimizers.
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6.2 Poly A, 158 bp
For the Poly A 158bp sequence, we again use the same bBDNA bifurcation diagram as in the
cgDNAmin case, see Figure 17. As done before, we provide 3D MATLAB figures of the initial
guesses in Figure 23. Those are the same as the standard cgDNAmin case in Figure 18 with added
guesses for the phosphate groups. We then show the 3D views of the solutions in Figure 24.

Again, we observe very similar results with different initial guesses. By computing the relative
L2 norm of the difference between the coordinate vectors we get

‖w(Poly A, a)− w(Poly A, d)‖2

‖w(Poly A, a)‖2
= 0.015%, (21)

for the a)-d) and the b)-c) comparison gives

‖w(Poly A, b)− w(Poly A, c)‖2

‖w(Poly A, b)‖2
= 0.75%. (22)

We consider the relative norms and the visual inspection of the 2D coordinates plots sufficient to
conclude that both configurations are representing the same minimum energy configuration. This is
surprising as the cgDNAmin algorithm outputs four different solutions whereas the cgDNA+min
algorithm only outputs two different configurations for the same initial guesses. On the link
conservation, we can again see that two initial guesses yield solutions with different links.
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(a) Link: 15, Energy: 601 (b) Link: 14, Energy: 2003

(c) Link: 16, Energy: 1427 (d) Link: 17, Energy: 4220

Figure 23: 3D views of Poly A 158bp initial guesses with the added phosphate groups. Each
configuration is represented in Figure 17. Note: the coordinates for the bases are identical to the
ones of Figure 18.
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(a) Link: 15, Energy: 72,
minimum eigenvalue: 5.57e-7

(b) Link: 16, Energy: 112,
minimum eigenvalue: 8.84e-7

(c) Link: 16, Energy: 112,
minimum eigenvalue: 9.15e-7

(d) Link: 15, Energy: 72,
minimum eigenvalue: 5.72e-7

Figure 24: 3D views of Poly A 158bp NCCcgDNA+min solutions. Each panel is the solution
given by the corresponding initial guess in Figure 23. Here we have panels a) and d) representing
the same equilibrium configuration and panels b) and c) representing a second equilibrium. All four
configurations have a positive definite Hessian, hence we assume they all are energy minimizer.
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6.3 Pyne et al. sequences
After the two first examples, we focus on two sequences recently studied by Pyne et al. [23]. The
interest to compute the cgDNA+min results for these sequences is to compare Pyne et al. molecular
dynamics observations with our predictions. We show both bifurcation diagrams in Figure 25. The
251 base pairs sequence results can be found in Figures 27 and 28 while the results for the 339 base
pairs sequence are shown in Figures 29 and 30. We provide an example of a 2D coordinate plot in
Figure 26 and all other 2D coordinates plots can be found on the webpage.

For the 251 base pair sequence, we first observe that the result for the first initial guess is a
particularly twisted loop. It is interesting as all previous results were mainly flat. All other three
initial guesses yield more expected solutions, all three very close to each others. We can do the
norm comparison to see that solution b) and d) are the same configuration with the relative norms
of the differences of the coordinate vectors being

‖w(Pyne 251, b)− w(Pyne 251, d)‖2

‖w(Pyne 251, b)‖2
= 0.013%. (23)

Solution c) is slightly more different, we verify this by computing the norms of the difference:

‖w(Pyne 251, b)− w(Pyne 251, c)‖2

‖w(Pyne 251, b)‖2
= 0.24%. (24)

The relative norm is not sufficiently big to assert that initial guess c) gives a different solution from
guesses b) and d). Hence we obtain the same minimum energy configuration for initial guesses b), c)
and d) while a) gives an unexpectedly high energy configuration. When looking at the 2D cgDNA
coordinate plots of Pyne 251 bp sequence in Figure 26, one can observe a particular behaviour:
between approximatively bases 60 and 80 the coordinates vary less than in the rest of the sequence.
This is seen for all guesses and in the cgDNA coordinates as well as in the phosphate coordinates
(The other plots are provided on the webpage). We can therefore assume that this behaviour is
induced by the sequence itself. The corresponding bases are alternating AG, see Appendices B. This
sub-sequence is also seen in the 399 bp and the same effect can be observed.

The 399 base pair results are similar. The first three initial guesses output standard minicircle
shapes. Solutions b) and c) being very close to each others:

‖w(Pyne 251, b)− w(Pyne 251, c)‖2

‖w(Pyne 251, b)‖2
= 0.32%. (25)

Again we observe an intriguing result, the solution obtained starting from initial guess d) is particular.
The output forms some unexpected angles in some places in the sequence. I currently have no
explanation for this phenomenon. This may be induced by A-tracts present close to the highly
bent regions. This result is particularly unexpected and should require a deeper scientific analysis.
On the link, for both sequences we see sequences changing link between the initial guess and the
final solution. With all those observation with diverging links, we can assert that the cgDNA+min
minimization does not conserve the link counter to original cgDNAmin.

We now compare solutions to the images presented in [23]23. We can see that the solutions
we obtain are less twisted than the images shown by Pyne et al. For both sequences, we obtain
solutions with lightly twisted solutions in most cases. The overall energy of our results are, in most

23Fig.1 and Fig.2.a, link to the web article: https://www.nature.com/articles/s41467-021-21243-y.
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(a) 251 base pairs
(b) 339 base pairs

Figure 25: Bifurcation diagrams for both Pyne sequences. Note that for the 339 bp sequence, we
observe two superposed curves, this is due to the bBDNA solver.

cases, lower than the energy of the configurations seen in [23]. However, we still see configurations
with higher energy in the bBDNA equilibriums. This shows that the cgDNA+ energy minimization
converges to a very low energy configuration in most cases, even if the initial guess has a high energy.
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Figure 26: 2D plot of the cgDNA coordinates of the NCCcgDNA+min results for the Pyne 251
sequence, initial guess a). We note the intriguing behaviour between base 60 and 80 which is the
location of a sub-sequence of alternating AG.

42
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(a) Link: 23, Energy: 7356 (b) Link: 24, Energy: 7131

(c) Link: 22, Energy: 8900 (d) Link: 24, Energy: 7941

Figure 27: 3D views of Pyne 251bp sequence initial guesses for cgDNA+min. Each configuration
is represented in Figure 25a.
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6.3 Pyne et al. sequences 6 CGDNA+MIN CASE STUDIES

(a) Link: 23, Energy: 77,
minimum eigenvalue: 2.14e-7

(b) Link: 24, Energy: 33,
minimum eigenvalue: 2.87e-7

(c) Link: 24, Energy: 33,
minimum eigenvalue: 2.63e-7

(d) Link: 24, Energy: 33,
minimum eigenvalue: 2.87e-7

Figure 28: 3D views of Pyne 251bp sequence NCCcgDNA+min solutions. Each panel is the
solution given by the corresponding initial guess in Figure 27. Solutions b), c) and d) are the all
represent the same configuration. All four configurations have positive definite Hessian, hence they
all seem to be local minimum energy configurations.
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6.3 Pyne et al. sequences 6 CGDNA+MIN CASE STUDIES

(a) Link: 31, Energy: 9867 (b) Link: 31, Energy: 10361

(c) Link: 34, Energy: 10654
(d) Link: Too hard to count, we assume it to be 31 as
in a) because of the color code in Figure 25b.
Energy: 40691

Figure 29: 3D views of Pyne 339bp sequence initial guesses for cgDNA+min. Each configuration
is represented in Figure 25b.
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(a) Link: 33, Energy: 31,
minimum eigenvalue: 8.16e-8

(b) Link: 32, Energy: 40.5,
minimum eigenvalue: 1.09e-7

(c) Link: 32, Energy: 40.5,
minimum eigenvalue: 9.09e-8

(d) Link: Too hard to count! Energy: 955,
minimum eigenvalue: 5.39e-5

Figure 30: 3D views of Pyne 339bp sequence NCCcgDNA+min solutions. Each panel is the
solution given by the corresponding initial guess in Figure 29. Solutions b) and c) both show the
same configuration while a) is different. Panel d) shows a particularly interesting solution. All
configurations have positive definite Hessian and are believed to be local energy minimizers. The
equilibrium shown in panel d) is nevertheless quite suspicious.
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6.4 Widom 601 sequence 6 CGDNA+MIN CASE STUDIES

Figure 31: bBDNA bifurcation diagram for the Widom 601 sequence.

6.4 Widom 601 sequence
Finally, we present another well studied sequence: the Widom 601 94bp sequence [4, 13]. This is
a small sequence with a high tendency to form minicircles. As usual, we present the bifurcation
diagram, in Figure 31, and the 3D views of the initial guesses and their corresponding results in
Figures 32 and 33 respectively.

We can see that the solutions given by initial guesses a) and c) are similar. We compute the
relative norm of the difference of the coordinate vectors to verify this:

‖w(Widom, a)− w(Widom, c)‖2

‖w(Widom, a)‖2
= 0.14%. (26)

From the norms, we conclude that both solutions are the same. Solution d) has a shape that look
similar to solutions a) and c), however the solution is different. This can be seen directly by looking
at the link. Once again, the link are not always conserved during the cgDNA+ energy minimization.
Considering the b) and d) comparison, the relative norm is

‖w(Widom, b)− w(Widom, d)‖2

‖w(Widom, b)‖2
= 8.84%. (27)

Hence, we reject the hypothesis that both b) and d) solutions represent the same configuration.
We remark that initial guess b) yields an interesting result. By its position on the bifurcation

diagram, we would expect that the continuum equilibrium is stable, however, it seems not to be the
case. The discrete energy minimization yields a highly twisted minicircle configuration, which is
unexpected with a small sequence.
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6.4 Widom 601 sequence 6 CGDNA+MIN CASE STUDIES

(a) Link: 9, Energy: 2861 (b) Link: 8, Energy: 4327

(c) Link: 9, Energy: 2958 (d) Link: 8, Energy: 4293

Figure 32: 3D views of Widom 601 sequence initial guesses for cgDNA+min. Each configuration
is represented in Figure 31.
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6.4 Widom 601 sequence 6 CGDNA+MIN CASE STUDIES

(a) Link: 9, Energy: 77,
minimum eigenvalue: 1.87e-5

(b) Link: 10, Energy: 212,
minimum eigenvalue: 1.19e-5

(c) Link: 9, Energy: 77,
minimum eigenvalue: 1.83e-5

(d) Link: 10, Energy: 213,
minimum eigenvalue: 5.8e-6

Figure 33: 3D views of Widom 601 sequence NCCcgDNA+min solutions. Each panel is the
solution given by the corresponding initial guess in Figure 32. Panels a) and c) show the same
solution while b) and d) are both different. After verification via the Hessian matrix, all four
configurations are believed to be local energy minima.
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7 COMPARISON BETWEEN CGDNA+MIN VS CGDNAMIN

7 Comparison between cgDNA+min vs cgDNAmin
In this section, we are interested to compare the results obtained with the cgDNA+ adaptation
of the cgDNAmin software to Manning’s original work.24 We follow the same examples detailed
in Section 3.4 to be able to compare the adaptation to cgDNA+ coordinates. We recall that the
intra and inter coordinates of the initial guesses obtained from the discretization of the bBDNA
equilibrium solution remain unchanged in the cgDNA+min adaptation. Hence we refer to Figure 13
for the bifurcations diagram. We note that we compare cgDNA and cgDNA+ energies despite them
having different numbers of degrees of freedom.

7.1 Examples
Looking only at the cgDNA coordinates (ignoring the phosphate groups), the results are, at first
glance, very similar. When looking a bit more in detail, we can observe a few differences in the
coordinates. This is observable in the 2D plots and the differences are shown in Figure 34. These
differences are normal since the cgDNA+ model adds the phosphate groups interactions. However,
for certain initial guesses, the final result obtained with the cgDNA+ adaptation is very different
from the one obtained in the cgDNA case, see Figure 35.

In both examples (Figures 34 and 35), the 2D plots of the coordinate difference show that the
difference is relatively big for the inter rotations, medium for the inter translations, small for the
intra rotations and tiny for the intra translations. This shows that adding the phosphates has a
bigger impact on the inter coordinates and on the relative rotations between frames.

In the first case, the relative norm of the difference is

‖wcgDNA(K-C, a)− w̃cgDNA+(K-C, a)‖2

‖wcgDNA(K-C, a)‖2
= 5.30%, (28)

which is relatively low. The difference in the second case is much bigger:

‖wcgDNA(K-C, c)− w̃cgDNA+(K-C, c)‖2

‖wcgDNA(K-C, c)‖2
= 15.75%. (29)

In both equations w̃cgDNA+ is the marginalized coordinate vector of the cgDNA+ solution. It is the
cgDNA+ configuration vector where the phosphate coordinates are removed. As we can see, in both
case the difference is significant. This is due to the fundamental difference between cgDNA and
cgDNA+. In the first case, this difference is sufficiently small to be seen only as the effect of the
cgDNA+ phosphate coordinates. However, in the second case the difference is too big to be only
the effect of the phosphates.

7.2 Suppositions for explanation
When comparing the results of cgDNA and cgDNA+ energy minimization, some initial guesses
from bBDNA may yield very different results. Additionally, we saw in Section 3.4 that different
initial guesses may lead to similar results after standard cgDNA energy minimization. The supposed
explanation is that the discretization of the bBDNA minimum energy configuration may be unstable
and the discrete energy minimzation will lead to a different stable configuration. Therefore, the

24see Section 3 for the standard cgDNAmin and Sections 4 and 5 for the cgDNA+ adaptations
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(a) cgDNA 3D view (b) cgDNA+ 3D view
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Figure 34: 3D view and 2D coordinates plots of the difference of the cgDNA coordinates between
the cgDNA and cgDNA+ minimization routines, i.e. this is the difference between coordinates of
converged minimizer. Note, we do not plot the phosphate coordinates as we cannot compare them
with the results of cgDNAmin. Usual case: both results are similar, sequence: Kahn & Crothers
c11t15, initial guess a) in Figures 14 and 21. The relative difference between the cgDNA coordinates
of the two configurations is only 5.30%.
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Figure 35: 3D views and 2D plots of the difference of the cgDNA coordinates between the cgDNA
and cgDNA+ minimization routines. Again, the phosphate coordinates are not shown because
we are interested in the comparison between cgDNAmin and cgDNA+min. Particular case: high
differences, sequence: Kahn & Crothers c11t15 initial guess c) in Figures 21 and 14. The relative
difference is 15.75%, which is huge.
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8 THE MATLAB PACKAGE

unstable configuration may converge to a stable equilibrium that can be obtained from another
initial guess. The minimization procedure then outputs configurations that can represent the same
local minima.

We believe that the same phenomenon is behind the differences between the cgDNA and cgDNA+
results. The definition of the energy is different between the cgDNA and cgDNA+ cases. Hence
an unstable equilibrium from bBDNA will not necessary converge to the same stable solution after
the discrete energy minimization. If we start form an unstable configuration, slightly changing the
definition of the energy might change the final solution after the energy minimization.

8 The MATLAB package
Together with this thesis, we provide MATLAB scripts to obtain the results shown above. The
MATLAB files can be found on the thesis webpage. All results can be obtained by running the
main script Energy_min.m. It allows to choose between cgDNA and cgDNA+ models and between
non-continuous and periodic closure assumptions. This section present the method used to get our
results.

Choose the model. The models are chosen through the models and boundaries variables:
models is set to "cgDNAmin" for cgDNA and "cgDNA+min" for cgDNA+. The choices of boundary
assumptions are "NNC" for non-continuous closure and "PC" for periodic assumption. Both variables
support list format, therefore it is possible to request solutions for both models at the same time.
The software will then loop through all specified combinations of models and boundary conditions.

The find_min_e function lying in the folder corresponding to the chosen model is called and
starts the minimization. The objective function with its gradient and Hessian matrix is defined in
the discrete_DNA_penalty_en_grad_hess.m file. Note, the cgDNA parameter sets are stored in
the ParameterSets folder. The chosen sets for our results are cgDNAps4 for the cgDNA model and
cgDNA+ps1 for cgDNA+.

Define the sequence. The sequence must be defined under the seq variable. For each sequence, a
sequence name must be provided under the seq_name variable. This name must be used appropriately
for the names of the initial guesses. Finally, the guess numbers must be provided under the
range_guesses variable under a list format.

Read initial guesses. The script reads bBDNA initial guesses from the Initial_guesses folder.
The initial guesses have to be chosen and saved manually from the bBDNA GUI before running the
discrete energy minimization. Each initial guess must be saved under the format

<seq_name>_guess<guess_nb>.txt.

The sequence name and the guess number must then be given to the main script in the definition of
the sequence.

Outputs. The main scripts then outputs both the 3D view and the 2D coordinates plots of the so-
lution of the chosen minimization problem. Figures are respectively saved in the Results/3D_views
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8 THE MATLAB PACKAGE

and Results/2D_plots folders with the following nomenclature:

<seq_name>_2Dsol<guess_nb>_<boundary><model>.fig,

<seq_name>_3Dsol<guess_nb>_<boundary><model>.fig.

Aside from the figures, the script saves the key variables of the procedure. They can be found inside
the Results/Variables folder, under the name

<seq_name>_sol<guess_nb>_<boundary><model>.mat.

The structure of the saved data is shown in Table 2.

Entry of the data stored variable
data.model Model used
data.seq Sequence tested
data.guess Name of the Guess: <seq_name>_guess<guess_nb>
data.init_inters Intras coordinates of the initial guess
data.init_intras Inters coodrinates of the initial guess
data.sol_inters Inters coordinates of the solution
data.sol_intras Intras coordinates of the solution
data.iter Number of iterations to converge
data.time Running time for the minimization
data.Energy Energy of the final configuration
data.gradient Gradient at the final configuration
data.Hessian Hessian at the final configuration

Table 2: Data stored from the main script Energy_min.m

Produce the figures. In order to generate the exact figures shown in this thesis25, we use the
Visualize_solution.m script. We can choose the model, closure assumption and the sequence
using the nomenclature of Energy_min.m. However, we can only process one model at the time.

The script then reads the values of the solutions within the Results/Variables folder. The
output is the different figures of the solutions: 3D view and 2D coordinates plots with reduced titles for
better text incorporation. The figures are saved in the Results/3D_views and Results/2D_plots
folders under the eps format. For the image names, we use the nomenclature from the main script.
Note: this script is only used to generate the figures, the minimization solutions must be computed
with the main script before.

25The main code generates figures with a slightly different layout and only saves them under the .fig format.
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9 ON THIS THESIS.

Part IV

Conclusion
9 On this thesis.
This thesis presents the adaptation of Manning’s cgDNAmin code [15] to cgDNA+ coordinates. We
also implemented periodic closure in addition to the original non-continuous closure. We started
by detailing the different existing models such as the cgDNA model [14, 22] and its adaptation
to periodic sequences [10]. We presented the latest cgDNA+ model that adds modelling of the
phosphate groups to the standard cgDNA model [21]. Then, we presented the birod DNA model,
a continuum model for DNA [12]. Along with the birod model, we quickly presented the bBDNA
software that allows computation and visualization of continuum solutions [10]. Finally we presented
the starting point of our work, the cgDNAmin software [15]. This combines the continuum model
with a discrete energy minimization to obtain discrete configurations of DNA minicircles.

9.1 Existing model for DNA minicircle
The previously existing pipeline to obtain discrete DNA minicircles configurations comes from
Manning [15]. Starting from a cgDNA parameter set, we compute continuum coefficients to prepare
the computations for a continuum configuration. We use the bBDNA software with the continuum
coefficients and we obtain equilibrium configurations for the continuum energy. These configurations
are discretized to obtain initial guesses for a discrete energy minimization (cgDNAmin). The
minimum discrete energy configuration then outputs the final discrete minicircle configuration.

9.2 New discrete energy minimization
The idea to improve cgDNAmin was to use the recent cgDNA+ coordinates instead of cgDNA as they
represent the molecule more accurately. To do so, we had to change the dimensions of the coordinates
in the discrete energy minimization procedure to include the phosphate representations. This also
means adapting computations of the gradient and Hessian matrix of the energy as a function of
the molecule’s shape. Along with the adaptation to cgDNA+ coordinates, we implemented a new
type of closure assumption. Manning was interested in DNA minicircle formation, hence he used a
non-periodic closure (NCC). We propose a feature that allows to change between non-continuous
(NCC) and periodic (PC) closures. Using the construction of periodic cgDNA stiffness matrix [10],
we adapted cgDNAmin to model periodic closure. Note that the two methods model different
questions. Manning’s non-continuous closure assumption is focused on the probability of formation
of minicircles whereas the periodic closure assumption is focused on modelling the shape of a fully
formed DNA minicircle.

Along with this thesis we provide a MATLAB package that allows to compute both cgDNAmin
and cgDNA+min solutions for non-continuous and periodic closure assumptions.
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9.3 Results & Observations 10 FURTHER IMPROVEMENTS

9.3 Results & Observations
In Section 6, we presented different cases of cgDNA+min solutions for well studied sequences such
as the Kahn & Crothers [6, 7], Pyne et al. [23] and Widom [4] sequences.26. We observed that two
different initial guesses may converge to the same stable configuration. This phenomenon was already
observed with the original cgDNAmin minimization procedure. We believe that this phenomenon
is related to the stability of the bBDNA equilibrium configuration used as initial guess, and that
starting cgDNAmin close to an unstable equilibrium leads to cgDNAmin converging to a far away
equilibrium that is a minimizer and so stable.

We also compared solutions obtained with the original cgDNAmin algorithm against our new
cgDNA+min. We observe that the solutions are similar in most cases. However, we find some
situations where the solutions differ a lot. Again, we assume that this is due to the fact that initial
guesses from bBDNA are unstable equilibria for cgDNA+ but stable for cgDNA. The cgDNA and
cgDNA+ minimization may then converge to different stable configurations. The biggest change
using cgDNA+min is that the link of the original solution is sometimes not conserved. From our
observations, the original cgDNAmin code do conserve link even if it mathematically does not need
to be the case.

10 Further improvements
We think it can be possible to improve the bBDNA initial guesses and therefore reduce the number
of iterations needed to converge in cgDNA+min. Instead of using cgDNA 1.0 parameters to generate
the continuum coefficients used for bBDNA, we could try to use a cgDNA+ parameter set. However
this is a challenging task. Discretizing the birod, or double chain, continuum model leads to a
sparsity pattern in the stiffness matrix of 18× 18 blocks with 6× 6 overlaps, which precisely matches
the block structure in the cgDNA model. As shown by Grandchamp [12] and Głowacki [10], the
positive definite 18× 18 cgDNA parameters blocks can then be used in an interpolation process to
generate continuum birod coefficients. However, the block structure of cgDNA+ is 42× 42 blocks
with 18× 18 overlaps, a change in dimension corresponding to the additional degrees of freedom of
the phosphate groups. Consequently there is a mismatch with the sparsity pattern of a discretized
birod. There are two possible ways to reconcile this mismatch. The first possibility is to switch
from a birod to a tetrarod continuum model. The overlapping 42× 42 block structure very probably
corresponds to the discretization of a tetrarod, i.e. four interacting rods, one for each of the two
chains of phosphate backbones and two for the chains of bases. However, the mathematical details
of such theory have not been worked out, and even if it had, the analogous computational package
to bBDNA for birods would still have to be written. We therefore did not attempt that route.

We did attempt the second possible route, which is for any given sequence to marginalize the
phosphate degrees of freedom from the overlapping 42 × 42 stiffness matrix, and appropriately
truncate to get the optimal overlapping 18× 18 block approximation to the rigid-base marginal of
the cgDNA+ model. This happens to be a well-defined and numerically easy procedure.27 However,
to compute continuum birod coefficients for bBDNA using the current methods, the necessary
inputs are positive-definite 18× 18 stiffness blocks for each junction. This is what is provided by
cgDNA parameter set blocks. Accordingly we tried to tear apart overlapping 18× 18 block of the
cgDNA+ marginal stiffness matrices into individual 18× 18 positive definite blocks for each junction.

26Full results can be found on the webpage.
27See [10]
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10 FURTHER IMPROVEMENTS

Somewhat surprisingly we were unable to achieve this in a consistent way. Some 18× 18 junction
stiffness blocks were invariably indefinite. And finally we abandoned these efforts.

In summary a cgDNA model parameter set was used as the input necessary to generate continuum
birod coefficients. A discretization of the bBDNA output, i.e. an equilibrium configuration, was
then used as an initial guess for a minimization procedure applied to a cgDNA+ energy. This
procedure, with its use of two different discrete models for input and output, is in some way
mathematically inelegant and perhaps computationally sub-optimal. Nevertheless we observed it to
be numerically robust. Every initial guess configuration of a cgDNA+ minicircle generated this way,
always converged to a cgDNA+ minicircle configuration that (locally) minimized the associated
cgDNA+ energy.
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B SEQUENCES USED IN EXAMPLES

Part V

Appendices
A Webpage for supplementary material
All figures and results are provided online on the following webpage:

https://lcvmwww.epfl.ch/research/cgDNA/beaud/index.html.

One can find the 3D views and 2D coordinates plots of the results for the different studied sequences
with both NCC and PC cgDNA+min algorithms. The MATLAB scripts can also be downloaded
from the same page.

B Sequences used in examples
Poly A, 158 base pairs:
AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA
AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA
AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA
AAAAAAAA

c11t15 sequence of Kahn & Crothers 1992 [6, 7]:
GATGAATTCA CGGATCCGGT TTTTTGCCCG TTTTTTGCCG TTTTTTGCCC
GTTTTTTGCC GTTTTTTGCC CGTTTTTTCC GGATCCGTAC AGGAATTCTA
GACCTAGGGT GCCTAATGAG TGAGCTAACT CACATTAATT GCGTTGCGCC
ATGGAATC

Noy, 251 base pairs [23]:
TTTATACTAA CTTGAGCGAA ACGGGAAGGT AAAAAGACAA CAAACTTTCT
TGTATACCTT TAAGAGAGAG AGAGAGAGAC GACTCCTGCG ATATCGCCTC
GGCTCTGTTA CAGGTCACTA ATACCATCTA AGTAGTTGAT TCATAGTGAC
TGCATATGTT GTGTTTTACA GTATTATGTA GTCTGTTTTT TATGCAAAAT
CTAATTTAAT ATATTGATAT TTATATCATT TTACGTTTCT CGTTCAGCTT
T

Noy, 339 base pairs [23]:
TTTATACTAA CTTGAGCGAA ACGGGAAGGG TTTTCACCGA TATCACCGAA
ACGCGCGAGG CAGCTGTATG GCGAAATGAA AGAACAAACT TTCTTGTACG
CGGTGGTGAG AGAGAGAGAG AGATACGACT ACTATCAGCC GGAAGCCTAT
GTACCGAGTT CCGACACTTT CATTGAGAAA GATGCCTCAG CTCTGTTACA
GGTCACTAAT ACCATCTAAG TAGTTGATTC ATAGTGACTG CATATGTTGT
GTTTTACAGT ATTATGTAGT CTGTTTTTTA TGCAAAATCT AATTTAATAT
ATTGATATTT ATATCATTTT ACGTTTCTCG TTCAGCTTT

i

https://lcvmwww.epfl.ch/research/cgDNA/beaud/index.html


D CAYLEY VECTORS

Widom sequence, 94 bp [4]:
GGCCGGGTCG TAGCAAGCTC TAGCACCGCT TAAACGCACG TACGCGCTGT
CTACCGCGTT TTAACCGCCA ATAGGATTAC TTACTAGTCT CTAC

C The Special Euclidean group SE(3)
Elements of SE(3) are composed of a rotation matrix in SO(3) and a vector in R3.

SE(3) =
{
M
∣∣∣M =

[
R r

01×3 1

]
, R ∈ SO(3), r ∈ R3

}
(30)

Elements of SE(3) are often denoted M = [r,R] for simplicity.
The group multiplication is the standard matrix product. Let [r,R], [q,Q] ∈ SE(3),[

R r
0 1

] [
Q q
0 1

]
=
[
RQ Rq + r
0 1

]
∈ SE(3). (31)

The SE(3) group is used to represent frames in space. For a fixed origin [0, I3], a frame in space
can be represented by an element [r,R] ∈ SE(3). R represents the rotation of the frame with respect
to the origin and r correspond to the frame translation.

D Cayley vectors
For this section, we follow the EPFL lecture on DNA modelling given by J.H. Maddocks.28 The
Cayley transfom is a mapping Cay : SO(3)→ R3. Let Q ∈ SO(3) with tr(Q) 6= −1,, i.e. Q is not a
rotation through an angle π and u ∈ R3.

Q→ [u×] = 1
1 + tr(Q) (Q−QT ) ∈ R3,

u→ Q = 1− ‖u‖2

1 + ‖u‖2 I + 2
1 + ‖u‖2 [u×] + 2

1 + ‖u‖2u⊗ u

= I + 2
1 + ‖u‖2 ([u×] + [u×]2),

(32)

where

[u×] =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 , (33)

the skew matrix constructed from u = [u1, u2, u3]T . u is called the Cayley vector of Q. In order to
avoid unnecessary notation, we will abuse the notation and write u = Cay(Q). The formula relating
a rotation to its Cayley vector is called the Euler-Rodrigues formula.

We note that the mapping is not exactly 1-to-1. Matrices with a rotation through π cannot be
represented by a Cayley vector.

28"Mathematical modelling of DNA", https://lcvmwww.epfl.ch/teaching/modelling_dna/

ii
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E FROM QUATERNIONS TO ROTATIONS

E From Quaternions to rotations
E.1 About quaternions
Following Cotta-Ramusino’s thesis for example for a given normalized quaternion q̃, any arbitrary
quaternion q can be written as:

q = c1B1q̃ + c2B2q̃ + c3B3q̃ +
√

1− c2
1 − c2

2 − c2
3q̃, (34)

with

B1 ≡


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , B2 ≡


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , B3 ≡


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .
Hence {q̃, B1q̃, B2q̃, B3q̃} is an orthonormal basis for R4.

Each rotation matrix can be described by a quaternion q = [a, b, c, d] ∈ R4.

R(q) = 1
a2 + a2 + c2 + d2

a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2ab+ 2cd a2 − b2 − c2 + d2

 , (35)

which is invariant with respect to the norm of q. For the quaternion multiplication we define

qa ◦ qb :=


qa1q

b
4 + qa2q

b
3 − qa3qb2 + qa4q

b
1

−qa1qb3 + qa2q
b
4 + qa3q

b
1 + qa4q

b
2

qa1q
b
2 − qa2qb1 + qa3q

b
4 + qa4q

b
3

−qa1qb1 − qa2qb2 − qa3qb3 + qa4q
b
4

 .
We note that R(qa)R(qb) = R(qa ◦ qb). The inverse of a normalized quaternion q = [q1, q2, q3, q4]T is
q−1 = [−q1,−q2,−q3, q4]T and its associated rotation matrix is R(q−1) = R(q)T . We also note that

q−1
a ◦ qb =


qTb B1qa
qTb B2qa
qTb B3qa
qTa qb

 . (36)

Finally we compute
qi ◦

√
q−1
i ◦ qi+1 = qa + qb

‖qa + qb‖
= qa + qb√

2 + 2qTa qb
. (37)

E.2 Applied to cgDNAmin
In the cgDNAmin coordinates, inters are represented using quaternions. This means that a
translation oi and a quaternion qi are associated to every base pair. We need to define the function
f that recovers the standard inter coordinate vector yi from (oi, qi) and (oi+1, qi+1), the quaternion
parametrizations of the absolute base pair frames.

yi = f(oi, qi, oi+1, qi+1) = (θ1
i , θ

2
i , θ

3
i , ζ

1
1 , ζ

2
i , ζ

3
i ), (38)

iii



F CGDNAMIN ENERGY MINIMIZATION

with ζ the relative translation part and θ the relative rotation part of the coordinates.
The relative rotation between two base pair frames is then the rotation defined by q−1

i ◦ qi+1,
and the junction frame is the halfway transformation R(qi ◦

√
q−1
i ◦ qi+1). This can be simplified

to R(qi+1 + qi) using Equation (37). The relative translation expressed in the junction frame then
reads:

ζTi = (oi+1 − oi)R(qi+1 + qi), (39)

with R(qi+1 + qi), the rotation matrix induced by the quaternion qi+1 + qi. For the rotation
component, we use the Cayley transform from Appendices D to get

θai =
10qTi+1Baqi

qTi+1qi
, (1 ≤ i ≤ n− 1), a = 1, 2, 3. (40)

We can therefore define the overall transformation from quaternions to standard cgDNA coordi-
nates as:

w = F (z) = (x1, f(o1, q1, o2, q2), x2, . . .

. . . , xi, f(oi, qi, oi+1, qi+1), . . .
. . . , xn−1, f(on−1, qn−1, on, qn), xn), (41)

with f from Equation (38).

F cgDNAmin Energy minimization
In this section, we derive the entries of the gradient following the work of Manning [15] for the
cgDNAmin minimization procedure. The notation (mainly the indices and superscripts) change
slightly.

F.1 Notation
Before entering the detailed computations of the gradient and the Hessian of the energy with
respect to the cgDNA coordinates, we need to introduce some notation. Recall Equation (11): the
minimization vector is

z = (x1, o1, q1, x2, o2, q2, . . . , xn−1, on−1, qn−1, xn) ∈ R13n−14,

where xi ∈ R6 are the standard intra coordinates and (oi, qi) ∈ R7 are the absolute coordinates
for the base pair frames, expressed with quaternions. We denote by yi = (θ1

i , θ
2
i , θ

3
i , ζ

1
i , ζ

2
i , ζ

3
i ), the

standard inter coordinates in R6, ζi the translation component and θi the Cayley vector of the
rotation. From the quaternions, we have yi = f(oi, qi, oi+1, qi+1) with f(·) shown in Appendices E.

For more clarity, we introduce the notation x̂i and ŷi for the elements of the ground-state µ
corresponding to the coordinates xi or yi respectively.

In order to work with inter and intra coordinates separately, we decompose the banded stiffness
K as follow. Each 18× 18 diagonal block is split into nine 6× 6 sub-blocks, where each sub-block is

iv



F.2 Gradient F CGDNAMIN ENERGY MINIMIZATION

Ni Pi Qi

Mi Oi

Ni+1

P T
i

QT
i OT

i

Figure 36: Separation of each 18 × 18 diagonal block of the cgDNA stiffness matrix. The grid
represent the i-th diagonal 18 × 18 block of the stiffness matrix K. That is coordinates from
1 + 12(i− 1) to 18 + 12(i− 1) for both dimensions.

responsible for the interaction between two components of the coordinates vector (intras and inters).
Let Ki be the i-th overlapping block of K. The block sub-division is then

Ni = Ki[1 : 6, 1 : 6],
Mi = Ki[7 : 12, 7 : 12],
Qi = Ki[13 : 18, 13 : 18],
Pi = Ki[1 : 6, 7 : 12],
Oi = Ki[7 : 12, 13 : 18].

(42)

The notation K[a : b, c : d] means the sub-block of rows a to b and columns c to d of K. The
separation is shown in Figure 36.

F.2 Gradient
In order to speed the process of the energy minimization, we need to provide an explicit formula for
the gradient with respect to the vector z. This is obtained through a chain rule,

d

dz
U(F (z)) = d

dw
U(w) · d

dz
F (z). (43)

Intra entries. The gradient with respect to the intras is not impacted by the chain rule and is
straight forward.

∂

∂xi
U = Ni(xi − x̂i) +Qi(xi+1 − x̂i+1) +QTi−1(xi−1 − x̂i−1)

+ Pi(yi − ŷi) +OTi−1(yi−1 − ŷi−1), i = 2, . . . , n− 1,
(44)

v
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with special cases for i = 1, n

∂

∂x1
U = N1(x1 − x̂1) +Q1(x2 − x̂2) + P1(y1 − ŷ1), (45)

∂

∂xn
U = Nn(xn − x̂n) +QTn−1(xn−1 − x̂n−1) +On−1(yn−1 − ŷn−1). (46)

Inter entries. In the minimization vector we use quaternions for inter rotations whereas the
energy is defined using Cayley vectors. Hence we have to use the chain rule. We start by preparing
some preliminary derivatives,

∂

∂qi+1

(
1

qi+1 · qi

)
= −(qi+1 · qi)−2

qi, (47)

∂

∂qi

(
1

qi+1 · qi

)
= −(qi+1 · qi)−2

qi+1. (48)

Following this and based on the transformation formula from quaternions to Cayley vectors29, we
have,

∂θai
∂qi+1

=
[
10(qi+1)TBaqi

][
−(qi+1 · qi)−2

]
qi + (qi+1 · qi)−110Baqi

= (qi+1 · qi)−1(10Ba − θai I)qi.
(49)

And similarly, we have

∂θai
∂qi

=
[
10(qi+1)TBaqi

][
−(qi+1 · qi)−2

]
qi+1 + (qi+1 · qi)−1[−10Baqi+1]

= (qi+1 · qi)−1(−10Ba − θai I)qi+1.

(50)

For the translation coordinates, we have

∂ζai
∂oi

= −dai (qi+1 + qi), (51)

∂ζai
∂oi+1

= dai (qi+1 + qi), (52)

∂ζai
∂qi

= ∂ζai
∂qi+1

=
(
∂dai
∂q

(qi+1 + qi)
)T

(oi+1 − oi). (53)

29See Appendices E

vi
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Here dai represent the a-th column of the i-th junction frame. With these, we can compute the
derivative with respect to oi and qi using the chain rule.

∂U

∂oi
=

3∑
a=1

[
∂U

∂ζai−1

∂ζai−1
∂oi

+ ∂U

∂ζai

∂ζai
∂oi

]

=
(
∂ζi−1

∂oi

)T
∂U

∂ζi−1
+
(
∂ζi
∂oi

)T
∂U

∂ζi

, (54)

∂U

∂qi
=

3∑
a=1

[
∂U

∂ζai−1

∂ζai−1
∂qi

+ ∂U

∂ζai

∂ζai
∂qi

+ ∂U

∂θai−1

∂θai−1
∂qi

+ ∂U

∂θai

∂θai
∂qi

]

=
(
∂ζi−1

∂qi

)T
∂U

∂ζi−1
+
(
∂ζi
∂qi

)T
∂U

∂ζi
+
(
∂θi−1

∂qi

)T
∂U

∂θi−1
+
(
∂θi
∂qi

)T
∂U

∂θi
.

(55)

Combining the two results we obtain

∂U

∂(oi, qi)
=

 0
(
∂ζi−1
∂oi

)T(
∂θi−1
∂qi

)T (
∂ζi−1
∂qi

)
[ ∂U

∂θi−1
∂U
∂ζi−1

]
+

 0
(
∂ζi

∂oi

)T(
∂θi

∂qi

)T (
∂ζi

∂qi

)
[ ∂U∂θi

∂U
∂ζi

]

=
[

0 ∂ζi−1
∂oi

∂θi−1
∂qi

∂ζi−1
∂qi

]T
∂U

∂xi−1
+
[

0 ∂ζi

∂oi
∂θi

∂qi

∂ζi

∂qi

]T
∂U

∂xi

(56)

We can obtain the explicit inter derivative by

∂U

∂yi
= PTi (xi − x̂i) +Mi(yi − ŷi) +Oi(xi+1 − x̂i−1). (57)

The two matrices in Equation (56) will recur in the Hessian matrix computations, we therefore name
them

∂xi−1

∂(oi, qi)
≡

[
0 ∂ζi−1

∂oi
∂θi−1
∂qi

∂ζi−1
∂qi

]
,

∂xi
∂(oi, qi)

≡

[
0 ∂ζi

∂oi
∂θi

∂qi

∂ζi

∂qi

]
. (58)

Finally, we need to add the derivatives of penalty term from Equation (13).

∂U

∂qi
= 4p(‖qi‖2 − 1)qi. (59)

F.3 Hessian
When it comes to the Hessian matrix, entries can be separated into three different groups, intra-intra,
intra-inter and inter-inter derivatives. We treat each case separately.
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Intra-intra entries. Similarly to the gradient, the intra-intra entries of the Hessian are straight
forward

∂2U

∂(xi)2 = Ni, 1 ≤ i ≤ n, (60)

∂2U

∂xi∂xi+1
= Qi, 1 ≤ i ≤ n− 1, (61)

∂2U

∂xi∂xi+1
= QTi−1, 2 ≤ i ≤ n. (62)

Intra-Inter & Inter-Intra entries. We start from Equation (44). We rewrite it omitting the
intra dependence.

∂

∂xi
U = Pi(yi − ŷi) +OTi−1(yi−1 − ŷi−1) + function of Intra.

We use the general relation
∂

∂α
[Af(α)] = A

∂α

∂x
.

This yields

∂2U

∂xi∂(oi+1, qi+1) = Pi
∂yi

∂(oi+1, qi+1) , (63)

∂2U

∂xi∂(oi−1, qi−1) = OTi−1
∂yi−1

∂(oi−1, qi−1) , (64)

∂2U

∂xi∂(oi, qi)
= Pi

∂yi
∂(oi, qi)

+OTi−1
∂yi−1

∂(oi, 1i)
, (65)

with the definitions of the matrices in Equation (58). The other order of partial derivation yields
the transposes of these results:

∂2U

∂(oi+1, qi+1)∂xi
=
(

∂yi
∂(oi+1, qi+1)

)T
PTi , (66)

∂2U

∂(oi−1, qi−1)∂xi
=
(

∂yi−1

∂(oi−1, qi−1)

)T
Oi−1, (67)

∂2U

∂(oi, qi)∂xi
=
(

∂yi
∂(oi, qi)

)T
PTi +

(
∂yi−1

∂(oi, qi)

)T
Oi−1. (68)

viii
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Inter-Inter entries. These are the most complex entries of the Hessian matrix. Again we start
with some preliminary derivatives:

∂2θai
∂q2
i+1

=
[
−(qi+1 · qi)−2

]
(10Ba − θai I)qi(qi)T − (qi+1 · qi)−1

qi

(
∂θai
∂qi+1

)T
= −(qi+1 · qi)−2(10Ba − θai I)qi(qi)T − (qi+1 · qi)−2

qi(qi)T (−10Ba − θai I)
= (qi+1 · qi)−2[2θai qi(qi)T − 10(Baqi)(qi)T − 10qi(Baqi)T

]
,

(69)

∂2θai
∂q2
i

=
[
−(qi+1 · qi)−2

]
(−10Ba − θai I)qi+1(qi+1)T − (qi+1 · qi)−1qi+1

(
∂θai
∂qi

)T
= −(qi+1 · qi)−2(−10Ba − θai I)qi+1(qi+1)T − (qi+1 · qi)−2qi+1(qi+1)T (10Ba − θai I)
= (qi+1 · qi)−2[2θai qi+1(qi+1)T + 10(Baqi+1)(qi+1)T + 10qi+1(Baqi+1)T

]
,

(70)

∂2θai
∂qi∂qi+1

=
[
−(qi+1 · qi)−2

]
(10Ba − θai I)qi(qi+1)T − (qi+1 · qi)−1qi

(
∂θai
∂qi

)T
+ (qi+1 · qi)−1(10Ba − θai I)

= −(qi+1 · qi)−2(10Ba − θai I)qi(qi+1)T − (qi+1 · qi)−2qi(qi+1)T (10Ba − θai I)
+ (qi+1 · qi)−1(10Ba − θai I)

= (qi+1 · qi)−2[2θai qi(qi+1)T − 10(Baqi)(qi+1)T + 10qi(Baqi+1)T
]

+ (qi+1 · qi)−1(10Ba − θai I),

(71)

∂2θai
∂qi+1∂qi

=
(

∂2θai
∂qi∂qi+1

)T
= (qi+1 · qi)−2[2θai qi+1(qi)T − 10qi+1(Baqi)T + 10(Baqi+1)(qi)T

]
+ (qi+1 · qi)−1(−10Ba − θai I).

(72)

We also compute the remaining derivatives of ζai .

∂2ζai
∂oi+1∂qi+1

= ∂2ζai
∂oi+1∂qi

=
[
∂da
∂q

(qi+1 + qi)
]T

(73)

∂2ζai
∂oi∂qi+1

= ∂2ζai
∂oi∂qi

= −
[
∂da
∂q

(qi+1 + qi)
]T

(74)

∂2ζai
∂(qi+1)2 = ∂2ζai

∂(qi)2 = ∂2ζai
∂qi+1∂qi

=
3∑
k=1

(oki+1) + oki
∂2dak
∂q2 (qi+1 + qi). (75)

Again, the derivatives in the opposite order are obtained through transposition. Here, we need the
d derivatives:

∂d1

∂q = 2[d2(B3q)T − d3(B2q)T ]
‖q‖2 , (76)

∂d2

∂q = 2[d3(B1q)T − d1(B3q)T ]
‖q‖2 , (77)

∂d1

∂q = 2[d1(B2q)T − d2(B1q)T ]
‖q‖2 . (78)

ix
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To move toward second derivatives we note that Equations (76)-(78) imply, for each k = 1, 2, 3,

∂d1k

∂q = 2[d2k(B3q)− d3k(B2q)]
‖q‖2 , (79)

∂d2k

∂q = 2[d3k(B1q)− d1k(B3q)]
‖q‖2 , (80)

∂d3k

∂q = 2[d1k(B2q)− d2k(B1q)]
‖q‖2 . (81)

Using
∂

∂q

(
1
‖q‖2

)
= −(‖q‖2)−2(2q) = 1

‖q‖2

(
− 2q
‖q‖2

)
, (82)

we have

∂2d1k

∂q2 = 2[d2kB3 − d3kB2]
‖q‖2 +

2
[
(B3q)

(
∂d2k

∂q

)T
− (B2q)

(
∂d3k

∂q

)T]
‖q‖2 −

2∂d1k

∂q qT

‖q‖2 . (83)

The entries of d2k and d3k are obtained by cycling the indices 1→ 2→ 3→ 1.
From the gradient entries, we have that

∂U

∂(oi, qi)
=
(

∂yi−1

∂(oi, qi)

)T
[Mi−1(yi−1 − ŷi−1) + intra dependence]

+
(

∂yi
∂(oi, qi)

)T
[Mi(yi − ŷi) + intra dependence],

(84)

where yi is a function of (oi, qi, oi+1, qi+1). We use the relation

∂

∂α
[M(α)v] = ∂M

∂α
v (85)

to get the Hessian entries:

∂2U

∂(oi−1, qi−1)∂(oi, qi)
= ∂[∂yi−1/∂(oi, qi)]T

∂(oi−1, qi−1)
∂U

∂yi−1
+
[
∂yi−1

∂(oi, qi)

]T
Mi−1

∂yi−1

∂(oi−1, qi−1) , (86)

∂2U

∂(oi+1, qi+1)∂(oi, qi)
= ∂[∂yi/∂(oi, qi)]T

∂(oi+1, qi+1)
∂U

∂yi
+
[

∂yi
∂(oi, qi)

]T
Mi

∂yi
∂(oi+1, qi+1) , (87)

∂2U

∂(oi, qi)∂(oi, qi)
= ∂[∂yi−1/∂(oi, qi)]T

∂(oi, qi)
∂U

∂yi−1
+
[
∂xi−1

∂(oi, qi)

]T
Mi−1

∂xi−1

∂(oi, qi)

+ ∂[∂yi/∂(oi, qi)]T

∂(oi, qi)
∂U

∂yi
+
[

∂yi
∂(oi, qi)

]T
Mi

∂yi
∂(oi, qi)

.

(88)

All right hand terms are already defined in the Gradient computation except for the tensor terms
highlighted in green. These are all of the form ∂[∂xb/∂(oa,qa)]T

∂(oc,qc) with b = a, a− 1 and c = a− 1, a, a+
1. These tensor can be related to previous derivatives computed before. The details for these
computations can be found in [15].
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