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ABSTRACT: A Monte Carlo code applied to the cgDNA coarse-grain rigid-base
model of B-form double-stranded DNA is used to predict a sequence-averaged
persistence length of lF = 53.5 nm in the sense of Flory, and of lp = 160 bp or 53.5
nm in the sense of apparent tangent−tangent correlation decay. These estimates are
slightly higher than the consensus experimental values of 150 bp or 50 nm, but we
believe the agreement to be good given that the cgDNA model is itself parametrized
from molecular dynamics simulations of short fragments of length 10−20 bp, with no
explicit fit to persistence length. Our Monte Carlo simulations further predict that
there can be substantial dependence of persistence lengths on the specific sequence
 of a fragment. We propose, and confirm the numerical accuracy of, a simple
factorization that separates the part of the apparent tangent−tangent correlation
decay l ( )p attributable to intrinsic shape, from a part l ( )d attributable purely to
stiffness, i.e., a sequence-dependent version of what has been called sequence-averaged dynamic persistence length ld̅ (=58.8 nm
within the cgDNA model). For ensembles of both random and λ-phage fragments, the apparent persistence length l ( )p has a

standard deviation of 4 nm over sequence, whereas our dynamic persistence length l ( )d has a standard deviation of only 1 nm.
However, there are notable dynamic persistence length outliers, including poly(A) (exceptionally straight and stiff), poly(TA)
(tightly coiled and exceptionally soft), and phased A-tract sequence motifs (exceptionally bent and stiff). The results of our
numerical simulations agree reasonably well with both molecular dynamics simulation and diverse experimental data including
minicircle cyclization rates and stereo cryo-electron microscopy images.

1. INTRODUCTION

It is widely believed that understanding the sequence-
dependent mechanical properties of DNA is an important
step toward understanding many important biological pro-
cesses, for example, nucleosome positioning,1−3 and other
protein−DNA interactions involving the phenomenon called
indirect readout.4 DNA “rigidity” is often expressed as a
sequence-averaged, single parameter, namely, the persistence
length, which is sometimes informally described as a measure of
the length scale over which correlation between the tangents
along a polymer centerline is lost.5,6 Frequently, the persistence
length is extracted by interpreting experimental data with the
Kratky−Porod wormlike chain (or WLC) model7,8 where the
persistence length is one of only two free parameters. There is a
consensus in the literature that the persistence length of DNA
is approximately 150 bp, or 50 nm. This value is estimated by
using diverse experimental techniques, each with their own
assumptions necessary to interpret the data, and often at quite
different length scales.5,6 Consequently, the estimate can be
regarded as robust, but not necessarily very precise, in part
because it is understood that a single sequence-averaged
persistence length combines (at least) two distinct physical
effects on the correlations along the DNA, namely, both
stiffness and intrinsic shape, which led to the notions of

sequence-averaged dynamic and static persistence lengths.9 And
when the sequence dependence of a DNA fragment is of
interest, then a description solely in terms of sequence-averaged
persistence lengths is too imprecise.10−15

Consequently, although the WLC has proven extremely
successful in interpreting diverse experimental results for DNA,
its application to biological problems that depend significantly
on sequence is precluded by its simplicity. Accordingly, there
have been many efforts at developing more detailed, but still
coarse-grained, models (see, e.g., the recent review by Dans et
al.16). One class of such models involves the rigid base-pair
approximation,8,17 usually with the assumption of nearest-
neighbor interactions and model parameters depending on the
ten distinct dinucleotide steps. And one of the most successful
parametrizations of such a model is by Olson et al.,18 where the
sequence-dependent variation in the parameter set was fit to
protein−DNA crystal structure data. However, as is described
with admirable clarity in the survey by Olson et al.,19 the data
require an overall scaling, which is determined by fitting to a
sequence-averaged persistence length of 50 nm, the available
sample size is not large, and it has many outliers, whose
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treatment can strongly affect the fit. Other coarse-grain
descriptions that incorporate an overall fit to a sequence-
averaged persistence length include the oxDNA20 and 3SPN21

models, who use experimental data to estimate the sequence-
dependent part of the parameter fit, and the work by Morriss-
Andrews et al.,22 Naome et al.,23 and Uusitalo et al.,24 who use
molecular dynamics (or MD) simulations to estimate the
sequence dependence. There are also sequence-dependent,
coarse-grain models that predict sequence-averaged persistence
lengths, for example, 15.2 nm,25 20 nm,26 96 bp,27 and 75 nm.28

Similarly, estimates of persistence length have been made
directly from atomistic MD simulations of (necessarily)
relatively short fragments at the scale 20−50 bp, e.g., 80 nm
for poly(TA) and poly(GC),29 43 nm for a mixed sequence
fragment,30 and 40−57 nm also for mixed sequence frag-
ments.31

We here assess the ability of the sequence-dependent, rigid
base, coarse-grain cgDNA model32 to reproduce the sequence-
dependent statistical mechanics properties of B-form double
helical DNA, by developing appropriate Monte Carlo (or MC)
sampling methods to generate associated ensembles of
configurations. The cgDNA model was itself parametrized
from atomistic MD simulations of a library of 10−20 bp DNA
fragments in explicit solvent with no explicit fit to persistence
length. At the scale of tens of bp, the cgDNA free energy
minimizers (or ground states) have already been shown to well
approximate sequence-dependent intrinsic shapes when
compared both to other MD simulations (with a sequence
resolution of a single nucleotide permutation) and to NMR and
X-ray crystallographic experimental structures.33 The MC code
developed here allows sampling of cgDNA Boltzmann
distributions at the scales of tens to thousands of bp.
Simulations of sequence-averaged persistence length yield the
estimates of 53.5 nm in the sense of Flory (from simulations at
the scale of 1 Kbp), and, independently, precisely the same
value 53.5 nm in the sense of apparent tangent−tangent
correlation decay (from simulations at the scale of 200 bp).
Both of these estimates have a standard error of ±0.1 nm in the
sense of multiple estimates from multiple MC simulations. We
also find that the tangent−tangent persistence length has a mild
dependence on the precise coarse-graining choices of tangents
and arc length. Error associated with underlying imprecision in
cgDNA parameters is harder to assess but is potentially
significantly larger. However, comparison between expectations
evaluated on MC and MD ensembles suggests that, at least for
some short fragments, the coarse-grain cgDNAmc predictions of
persistence length are just as accurate as those taken directly
from MD, and with significantly less computational effort. The
cgDNAmc code therefore offers a method of bridging the scales
to allow sampling ensembles for much longer fragments, and of
a much larger variety of sequences.
For a given DNA fragment, the MC simulations predict

significant dependence of various ensemble expectations on the
sequence  and led us to propose a sequence-dependent notion
of dynamic persistence length l ( )d (detailed in eq (9) below)
based on a factorization of the effects of stiffness and shape (at
the scale of 200 bp) in the apparent tangent−tangent
correlation persistence length l ( )p (detailed in eq (6)). A

sequence-ensemble average of l ( )d is 58.8 ± 0.1 nm, with a
standard deviation over sequence of 1 nm compared to the
standard deviation in l ( )p of 4 nm, suggesting that most of the
sequence-dependent variation in apparent persistence length is

due to differences in intrinsic shape rather than differences in
stiffness. However, our simulations also revealed some extreme
outliers in l ( )d , including poly(A) which has ld = 73.1 nm, and
poly(TA) which has ld = 47.2 nm. As poly(A) is exceptionally
straight, it also has the single largest apparent persistence length

l ( )p of any sequence that we have observed, including an
exhaustive search of all 151 distinct di-, tri-, tetra-, and penta-
nucleotide repeating sequences. However, the cgDNA model is
sufficiently detailed as to also be able to predict that phased A-
tract motifs, i.e., certain periodic sequences with a short run of
A followed by a short spacer region, are both exceptionally bent
and exceptionally stiff.
The presentation is structured with first a Theory section,

which describes the necessary statistical mechanics background
in section 2.1 and then proposes our sequence-dependent
dynamic persistence length l ( )d in section 2.2. We then turn
to Simulation Methods in section 3 including choices in coarse
graining, descriptions of the cgDNA free energy model, and the
MC sampling methods that we employ. In section 4 we present
the main results of our numerical simulations, which to some
extent can be read independently of the other sections, and
which show that DNA persistence lengths can have strong
sequence dependence. Then in section 5 we present some
more technical simulation data that serves to verify that the
conclusions of section 4 are computationally robust, including
in section 5.4 a direct comparison between MD and MC
ensemble expectations. Finally, we make various comparisons
between simulation and experiment, including in section 6.1
sequence-dependent 2D electron microscopy data1,12 and
minicircle cyclization data,34 in section 6.2 a discussion of the
special case of A-tracts, and in section 6.3 the 3D stereo cryo-
electron microscopy (cryo-EM) approach of Bednar et al.35

Possible sources of error in our modeling are discussed in
section 6.4. We close with a summary in section 7.

2. THEORY
In section 2.1 we review the necessary background material
regarding different notions of persistence lengths for general
polymers, and then in section 2.2 we propose a sequence-
dependent dynamic persistence length for DNA fragments.

2.1. Statistical Mechanics of Persistence Lengths. We
will consider polymers modeled as a linear chain of rigid bodies
whose configuration is described by a sequence of frames (rn,
Rn) where rn are the absolute coordinates of a reference point
of each rigid body whose orientation is encoded in the
direction-cosine (or proper rotation) matrix Rn. Two of the
classic expectations of polymer physics defined on such
configurations are7,14,36−38

⟨ · ⟩ ⟨ − ⟩t t R r r, ( )i i0 0
T

0 (1)

where ⟨·⟩ denotes the ensemble average, i.e., the expectation of
the argument with respect to an underlying equilibrium
measure, t0 is a unit vector associated with a specific base
pair labeled with index 0 (usually taken to be away from the
physical end of the polymer to avoid any possible end effect),
and ti is the analogous unit vector at the ith base pair along the
polymer. Usually ti is to be interpreted as some approximation
to a unit tangent to the polymer, so that (1)1 is often described
as a tangent−tangent correlation function. Similarly, R0

T(ri − r0)
are the components of the chord vector between the zeroth and
ith base-pair origins expressed in the chosen reference frame R0.
We will call the expectations (1)2 Flory persistence vectors, as
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they were apparently first introduced by Flory36 (for further
discussion see Maroun and Olson11 and Schellman and
Harvey13). Accordingly, for each choice of reference frame
R0, the expectations (1) are respectively scalar and vector
functions of the index i ≥ 1.
One of the simplest model ensembles in which to compute

the expectations (1) is a discrete version of the Kratky−Porod
WLC.7,37 In this model the polymer is assumed to be a chain of
rigid links all of length b, so that any configuration is described
by unit chord vectors ti ≔ (ri+1 − ri)/b, and the equilibrium
measure is assumed to be Boltzmann with inverse temperature
scale β = 1/kBT and free energy (or Hamiltonian)

∑= − ·
=

+E
B
b

(1 t t )
i

n

i i
1

1
(2)

with B a (constant) bending rigidity parameter. In particular,
the minimum energy, or ground, state of the WLC is
intrinsically straight with all tangent vectors parallel. Then,
provided that the nondimensional parameter lp ≔ βB/b is large
(compared to 1), it can be calculated analytically that the
correlations (1)1 are well approximated by the formula

⟨ · ⟩ = −t t ei
l

0 WLC
i/ p (3)

The exponential decay scale lp is the persistence length
expressed in bp, whereas blp = βB is the dimensional persistence
length expressed in the (arc-)length units of b. Similarly, within
the discrete WLC model, the expectations (1)2 can be
computed to be

⟨ − ⟩ = − −blR r r( ) [0, 0, (1 e )]i
l

0
T

0 WLC p
i/ Tp

(4)

provided only that the third column of R0 is chosen to coincide
with t0. In fact, the specific functional forms of expressions (3)
and (4) are only exact in the limit of the continuous WLC, in
which the dimensional persistence length βB = blp stays
constant, while b → 0, N → ∞, Nb → L, and ib → s ∈ [0, L].
Explicit versions of more accurate analogous formulas for the
discrete WLC are also available, e.g., in Schellman,37 but the
simpler approximations (3) and (4) suffice for our purposes.
For a DNA fragment with sequence , and motivated by the

WLC formula (4), we introduce a Flory persistence length
l ( )F as the limiting value of the magnitude (in the usual

Euclidean distance ∥·∥) of the Flory persistence vector (1)2 as i
→ ∞, along with its sequence-averaged version lF̅:

= ⟨ − ⟩ ̅ = ⟨ − ⟩
→∞ →∞

l lR r r R r r( ) lim ( ) , lim { ( ) }
i

i
i

iF 0
T

0 F 0
T

0

(5)

Here the brackets {·} in the second expression denote an
additional average over an ensemble of sequences j of the
average ⟨·⟩ over an ensemble of configurations of a fragment
with fixed sequence. The persistence lengths defined in (5)
indeed have the dimension of length, which we will report in
nanometers (or nm). For the (sequence-independent) WLC,
the limiting value of the Flory persistence vector is simply
computed from (4) to be [0, 0, blp]

T, where the first two
components of the vector vanish because the WLC model is
isotropic with no distinguished direction for bending. There-
fore, for the WLC the Flory persistence length coincides with
the limiting value of the only nonvanishing, i.e., the third,
component of the Flory persistence vector, namely lF = blp.
Thus, for the WLC, or any other isotropic model, the Flory
persistence length (5) coincides with the original notion of

Kratky−Porod persistence length, namely, an expected distance
that an infinite polymer extends along an axis of isotropic
symmetry. However, for anisotropic models, the limits of all
three components of the Flory persistence vector can be
nonzero, reflecting, for example, the effects of anisotropic
intrinsic bends, so that the Flory persistence vector and
associated Flory persistence length are a true generalization of
the Kratky−Porod persistence length. Examples within the
cgDNA model are provided in Figure 4 below.
Similarly, the WLC chain formula (3) motivates the

definition of a sequence-dependent tangent−tangent correla-
tion length l ( )p and its sequence-averaged version lp̅:

≈ ⟨ · ⟩ ≈ ⟨ · ⟩− − ̅ t t t te , e { }l
i

l
i

i/ ( )
0

i/
0

p p (6)

where the symbol ≈ signifies that, for a given sequence , l ( )p

is computed as the number of base pairs equal to the (negative
reciprocal) of the slope of the straight line through the origin
that is the least-squares fit to the plot of ln⟨ti·t0⟩ vs ∈ i ,
where  is a set of base-pair indices at which the fit is made
(typically, but not necessarily, a range i = 1, ..., N); cf. Figure 5.
Similarly, lp̅ is computed via the analogous semilog plot of the
sequence-averaged data {⟨ti·t0⟩} vs ∈ i .
We note that both the Flory lF and tangent−tangent lp

persistence lengths as introduced above are equally valid scalar
measures of the “persistence” of a polymer. We here reserve the
widespread notation lp for persistence in the tangent−tangent
sense, rather than introducing an additional symbol such as lT,
merely because the tangent−tangent notion is perhaps the most
commonly adopted meaning in the contemporary literature.
Less trivially, it is important to note that for more realistic DNA
free energies than the WLC, there is no a priori reason to
believe that the dimensionless tangent−tangent persistence
lengths l ( )p can be simply related to the Flory persistence

lengths l ( )F via the introduction of a single length scale.
Furthermore, it is well understood that there are some
sequences with high intrinsic curvature, for example, those
containing phased A-tracts,11,13,39,40 for which the exponential
fit in (6) to obtain l ( )p is an extremely poor approximation at
scales of one or two persistence lengths or shorter (indeed, for
some exceptional sequences of moderate length, ⟨ti·t0⟩ can even
become negative so that the semilog plot fit yielding l ( )p has

no sense, in contrast to the more robust definition of l ( )F ).
However, for “reasonable” (i.e., nonexceptional) sequence
ensembles {·} it is believed that the sequence-averaged
exponential fit to obtain lp̅ is a rather good approximation.
Our numerical simulations will confirm these behaviors within
the cgDNA coarse-grain model.

2.2. Sequence-Dependent Dynamic Persistence
Length. To decompose the distinct effects on expectations
due to the intrinsic shape of DNA and due to thermal
fluctuation, Trifonov−Tan−Harvey9 proposed the sequence-
averaged relation

̅
=

̅
+

̅l l l
1 1 1

p s d (7)

Here the sequence-averaged tangent−tangent persistence
length lp̅ is defined as before in eq (6), but hereafter, and
following Trifonov−Tan−Harvey,9 we introduce the additional
adjective apparent sequence-averaged persistence length lp̅
when we wish to emphasize the decomposition (7). The
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sequence-averaged static persistence length ls̅ is defined via the
fit

≈ ̂ · ̂− ̅ t te { }l
i

i/
0

s (8)

where for each i, tî is the tangent evaluated on the ground state
configuration for each sequence, and the average {·} is over all
of the sequences in the ensemble. And ld̅ is a sequence-averaged
dynamic persistence length that is to be estimated from (7). We
note that in their original treatment Trifonov et al.9 interpreted
all three persistence lengths appearing in (7) within the context
of a third classic expectation of polymer physics (in addition to
the two introduced in (1)), namely, the mean square end-to-
end distance function. However, we will consistently continue
to use the tangent−tangent expectation (1)1 to fit lp̅ as in (6)
and the analogous (8) to fit ls̅. We make this choice because it
allows the Trifonov−Tan−Harvey notion of sequence-averaged
dynamic persistence length to be simply generalized to a
sequence-dependent dynamic persistence length l ( )d (along with
its sequence-averaged version ld̅) via the fits

̂ · ̂ ≈ ⟨ · ⟩ ≈
⟨ · ⟩

̂ · ̂
− − ̅

⎧⎨⎩
⎫⎬⎭

t t t t
t t
t t

e , ei
l

i
l i

i
0

i/ ( )
0

i/ 0

0

d d

(9)

where the prefactor tî·t0̂ in the first expression is again evaluated
on the ground state configuration, but now with no averaging
because the sequence is prescribed. And to be explicit, l ( )d is
obtained from the linear fit of a plot of [ln⟨ti·t0⟩ − ln(tî·t0̂)] vs
the index ∈ i . The simulations presented below indicate that
both for the small number of MD simulations that we consider
and for a wide range of cgDNA model MC simulations the
quality of the exponential fit (9) is always better than the
analogous fit in (6) and is remarkably good for nearly all
sequences , with the only exceptions being relatively long
fragments with highly bent ground states; cf. Figure 5. A
simplified version of the three-dimensional formula for l ( )d in
(9) appears in Schellman and Harvey,13 with other more
rudimentary planar versions having being used earlier by
Thev́eny et al.12 and later by Rivetti et al.15 to interpret
respectively classic EM and AFM data of DNA on a substrate.
From our perspective, the definitions (6), (8), and (9) allow
independent fits of all three of the sequence-averaged quantities
lp̅, ls̅, and ld̅, from which we can evaluate the accuracy to which
the Trifonov−Tan−Harvey relation (7) is satisfied. From this
point of view, whenever {⟨ti·t0⟩/tî·t0̂} = {⟨ti·t0⟩}/{tî·t0̂} ∀ i, then
the Trifonov−Tan−Harvey relation simply reduces to an exact
identity from properties of semilog linear fits.

Table 1 below summarizes the three sequence-dependent
and four sequence-averaged notions of persistence length that
have been introduced thus far. As we will see, they are all
related, but distinct, quantities for realistic DNA models at the
scale of hundreds of base pairs.

3. SIMULATION METHODS
In this section we make precise the coarse-grain variables that
we will observe (section 3.1), describe the cgDNA model that
predicts a free energy for a DNA fragment of arbitrary length
and sequence (section 3.2), and explain the direct and
Metropolis MC algorithms that we adopt to sample the
equilibrium distribution implied by the cgDNA free energy
(section 3.3).

3.1. Coarse-Graining and the Choice of Observables.
We will use Monte Carlo simulations applied to the cgDNA
model of the free energies of a variety of different sequences to
generate ensembles that yield numerical estimates of the
expectation functions (1). For Flory vectors there is no reason
to take the observables ri and Ri as anything other than the
cgDNA base-pair location and frame, after which the
simulations are completely specified, and by evaluating the
limits (5) over an ensemble they deliver sequence-dependent
and sequence-averaged Flory persistence lengths directly in the
dimensions of length with our units chosen to be nanometers.
However, for the various tangent−tangent persistence lengths it
remains to make precise the choice adopted for the unit vectors
ti in semilog fits of the forms (6) and (9), and also to introduce
an appropriate arc-length parameter si to compare nondimen-
sional persistence lengths given in units of numbers of bp with
both simulated dimensional Flory persistence lengths and
experimental data that reports other dimensional persistence
lengths. In contrast to the WLC, because the cgDNA model
encompasses fluctuations in the junction translations of shift,
slide, and rise, there are several natural choices for both ti and si.
Moreover, though the cgDNA model can readily yield
sequence-dependent expectations at the resolution of individual
base pairs, some experimental data, for example, stereo cryo-
EM, do not have this resolution, so that it is also of interest to
compute ensemble expectations of a hierarchy of coarse-grained
approximations of both ti and si.
Concerning natural choices for the unit vectors ti, one

possibility is the base-pair normal, i.e., the third column of each
Ri, or equivalently the frame vector most closely aligned with
the helical axis (cf. Figure 1), which, as a matter of convention,
will be denoted ti

[0]. Other natural possibilities are the unit
tangents ti

[k] (where for simplicity we only consider k odd) to

Figure 1. Visualization of three central base pairs in the cgDNA ground state configuration of three 20-mers: left, poly(A); middle, poly(TA); right
poly(G). Each nucleotide is represented as a rigid body fit to base atoms that is visualized as a colored plate (A, red; T, blue; G, green; C, yellow)
along with a base normal. The position and orientation of each base-pair frame (light gray) is an appropriate average of the two associated base
frames (for visual clarity each base frame is offset by 0.35 nm toward its backbone from the standard Curves+ definition). The junction chords
between the origins of adjacent base-pair frames are shown in black. Note that the poly(A) sequence has exceptionally high (propeller) intra base-
pair rotations, and the junction chords are closely aligned with the base-pair normal, whereas for both poly(TA) and poly(G) there is a significant
angle between the junction chords and associated base-pair normals.
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the straight lines that are the best least-squares linear
approximation to a consecutive run of (k + 1) base-pair
locations ri , ..., ri+k (and we associate ti

[k] with the central
junction in the run) where k is fixed and comparatively small;
e.g., the cases k = 1, 9, 11 are of particular interest (a standard
method to compute ti

[k] is detailed in the Supporting
Information). The case k = 1 reduces to the unit tangent to
the junction chord between two consecutive base-pair origins
ti
[1] = (ri+1 − ri)/∥ri+1 − ri∥ (shown in black in Figure 1). A
comparison between expectations based on the base-pair
normals ti

[0] and the junction unit vectors ti
[1] has previously

been considered in Fathizadeh et al.41 We will also consider
nonlocal coarse-grain choices k > 1.
Just as there are different levels of coarse-grain approx-

imations to the unit tangents ti
[k], there are different coarse-

grain approximations to the arc length. In particular, for each
integer k, a coarse-grain arc length from base-pair 0 to base-pair
i in any configuration can be computed as si

[k] =∑q=1
i/k δskq

[k] where
the coarse-grain arc length increment is taken as a step over k
indices δsj

[k] ≔ ∥rj+k − rj∥ (corrections for when the final index i
is not an integer multiple of k are easily handled by a simple
linear interpolation at one end). For large k the expectation
⟨δsi

[k]⟩ is related to the expectation of the Flory vectors (1)2 ,
and any interpretation as an arc-length is nebulous at best. But
for small k the different δsi

[k] give different coarse-grain
approximations to different physically sensible notions of arc-
length that may have significantly different values in highly
coiled structures. The arc length si

[1] is that of the piece-wise
linear path traced by all base-pair origins rj , j < i, which,
depending on the DNA sequence, may be significantly locally
coiled, in which case δsj

[10] and δsj
[11] can be expected to be

approximations to the pitch of the local helical structure close
to base-pair j. And for experimental data coming for example
from microscopy, it seems likely that the available observations
will be of relatively coarse-grain notions, e.g., k = 9, 10, or 11,
for both arc length and unit tangents.
Given an ensemble of configurations (either sequence

averaged or not) it is then numerically straightforward to
evaluate expectations such as ⟨si

[k]⟩ for each choice of i and k. In
particular, if k indicates a chosen level of coarse graining of arc
length si

[k] at base-pair i, and j indicates a chosen level of coarse
graining in the unit tangent ti

[j], we may make a parametric plot
of points (⟨si

[k]⟩, ln⟨ti
[j]·t0

[j]⟩) indexed by i. A linear fit (through
the origin) to this data then delivers a persistence length

l ( )j k
p
[ , ] where the double superscript indicates the two (in
principle independent) coarse-graining choices. As a matter of

convention, l ( )j
p
[ ,0] will be taken to mean a persistence length

for the coarse-grain tangent ti
[j] expressed in bp, whereas for k ≥

1, l ( )j k
p
[ , ] has units of length, so that it can, for example, be

immediately compared with the Flory persistence length l ( )F
for the same sequence. The same precise notions and notation
carry over directly to all other tangent−tangent persistence

lengths, e.g., a dynamic persistence length l ( )j k
d
[ , ] .

To obtain reasonable sequence-averaged statistics from the
limited number of images that are typically available in
microscopy data (cf. section 6.3 below), and following Bednar
et al.,35 we will introduce one further additional variant of a
sequence-averaged tangent−tangent persistence length defined
via a sliding window approach. The sliding window persistence
length lw̅

[j,k] is obtained from a fit to the ansatz

δ≈ ⟨ + Δ · ⟩ = +δ
−Δ ̅

+s s s st te ( ) ( ) ,l j
i

k
l

j
i

k
i
k

i
k/ [ ] [ ] [ ] [ ]

( 1)
[ ] [ ]l

j k
w
[ , ]

(10)

where {Δl: l = 1, 2, ..., L} is a range of sizes of windows, δ is a
window shift, and (as before) [j, k] denotes the coarse-grain
choices for t[j] and s[k]. Here for each window size Δl , the
ensemble average ⟨·⟩δ is over the index i of a sequence of
window locations along a (possibly comparatively small) set of
configurations of DNA oligomers, with data only taken
appropriately far from either end, and with each window
location si

[k] separated from the next by the chosen increment δ
in the coarse-grain arc length. We remark that as the scalar
product is symmetric, each configuration can be read in either
direction without changing the windowing ensemble average.
As before, the symbol ≈ denotes a linear fit of a line through
the origin to the logarithm of the data on the right-hand side of
(10)1, but now the fit is over a set of window sizes Δl ; cf.
Figure S7.
The definitions and notation for all of the sequence-

dependent and sequence-averaged persistence lengths that we
will evaluate are summarized in Table 1.

3.2. cgDNA Rigid-Base Coarse-Grain Model. We will
evaluate the diverse persistence lengths summarized in Table 1
on ensembles generated by Monte Carlo simulations applied to
the sequence-dependent cgDNA coarse-grain model of DNA
developed by Gonzalez et al.32 and discussed in full detail in
Petkevicǐu ̅te ̇ et al.

33 (especially their Supporting Information).
In the cgDNA model, each of the two DNA bases in the nth
base pair are approximated (in a standard way respecting the
Tsukuba convention42) as rigid bodies with location and
orientation given by reference points rn

± and orthonormal
frames Rn

±
fixed in each base (cf. Figure 1). The location and

orientation of each base pair are prescribed by points rn and
orthonormal frames Rn that are appropriate averages of the
rigid base quantities rn

± and Rn
±. Up to an overall rigid body

motion, any coarse-grain configuration of the DNA is then
described using standard internal helical coordinates.42

Specifically, the relative configuration of bases within a base
pair is determined by the intra base-pair parameters, comprising
three translations (shear, stretch, and stagger) and three
rotations (buckle, propeller, and opening), whereas the relative
configuration of adjacent base pairs is determined by the inter
base-pair parameters, comprising three translations (shift, slide,
and rise) and three rotations (tilt, roll, and twist). These
internal coordinates are then assembled into a vector w ∈

Table 1. Eight Distinct Notions of DNA Persistence Lengtha

Flory
(5)

apparent
(6)

dynamic
(9)

static
(8)

window
(10)

sequence
dependent

l ( )F l ( )j k
p
[ , ] l ( )j k

d
[ , ]

sequence
averaged

lF̅ lp̅
[j, k] ld̅

[j, k] ls̅
[j, k] lw̅

[j, k]

aNotation for the different DNA persistence lengths that we compute,
along with the numbers of each defining equation. Where appropriate,
the superscript [j, k] indicates the level of coarse graining assumed in
the choice of tangents and arc-length (see text in section 3.1).
Examples of sequence-dependent Flory persistence lengths are
illustrated in Figure 4, and sequence-dependent apparent and dynamic
persistence lengths are illustrated in Figure 5. Sequence-averaged
persistence lengths are discussed in section 4.3, and window averaging
is used in section 6.3.
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− N(12 6) (in the alternating order intra-inter-intra) where N is
the number of base pairs; given w along with the absolute
position and orientation of a single frame, the coarse-grain
DNA configuration is completely determined. It is, however,
important to note that the reconstruction from the internal
coordinates w to the observables rn and Rn is highly nonlinear.
The cgDNA model prediction of the free energy of any

configuration of a molecule of given sequence  with N base
pairs is a shifted quadratic form in the internal helical
coordinates w

= − ̂ − ̂E w w w K w w( )
1
2

( ) ( )T
(11)

where ̂ ∈ − w( ) N(12 6) describes the ground state of the
molecule and K( ) is a (12N − 6) × (12N − 6) (positive
definite, symmetric) stiffness matrix. The sequence dependence
of both ŵ and K can be rather significant. For example, Figure 1
illustrates the central three base pairs in the cgDNA three-
dimensional reconstructions of the ground states corresponding
to the associated ground state vectors ̂ w( ) for each of three
sequence fragments poly(A), poly(TA), and poly(G), and the
ground state structures can be seen to differ markedly. In
general, the ground state vector ̂ w( ) has nonlocal dependence
on sequence due to the phenomenon of f rustration.32 For any
sequence , the cgDNA stiffness matrix K( ) has the particular
banded, sparsity structure illustrated in Figure 2, comprising
overlapping 18 × 18 blocks that have 6 × 6 intersections. This

sparsity pattern of K( ) corresponds to the model assumption
that each base interacts directly with only its five nearest
neighbors (its base-pair partner and those in the preceding and
subsequent base pairs). Effects such as twist-bend coupling are
captured by the model (because each 18 × 18 block is dense).
The blocks of K( ) have local sequence dependence,
specifically trinucleotide sequence dependence in the 6 × 6
overlaps, and dinucleotide dependence elsewhere.
Both the cgDNA stiffness matrix and minimum energy shape

for a DNA fragment of any specified base-pair sequence  can
be explicitly constructed using freely available Matlab (or
Octave) scripts that are downloadable from http://lcvmwww.
epfl.ch/cgDNA, where the associated C++ Monte Carlo code
cgDNAmc, which is described in the next section, is also freely
available. Any cgDNA reconstruction and associated cgDNAmc
simulations depend on a specific choice of a cgDNA model
parameter set. All of the computations presented here use
cgDNAparamset2, which is described in more detail in sections
5.4 and 6.4.

3.3. Monte Carlo Sampling. The ensemble expectation ⟨f⟩
of any function f(w) of the cgDNA internal variables can be
approximated as the simple average

M
1 ∑j=1

M f(wj) over a

sequence of configurations wj that is generated by a Monte
Carlo method that appropriately samples the associated
equilibrium distribution p(w) dw. We will consider two specific
cases of the probability density function, a pure Gaussian, or
multivariate normal, and a perturbed Gaussian

= ̃ = ̃
β β− −p

Z
p

Z
Jw w w( )

1
e , ( )

1
( )eE Ew w( ) ( )

(12)

where E(w) is the shifted quadratic cgDNA energy (11),
β = 1/(kBT) is the inverse temperature scale, Z is the (explicitly
known) normalization constant (or partition function), and
J(w) > 0 is an explicitly known function of w, but now the value
of the associated normalizing constant Z̃ is in general not
known. There are several possible motivations for the
generalization (12)2 , for example, modeling contributions to
the cgDNA free energy from end-loading terms as in single
molecule tweezer experiments, or modeling multiwell DNA
backbone states as described in Pasi et al.43 However, we focus
here on a third motivation in which J(w) is a Jacobian factor
required44−47 by the non-Cartesian nature of any rotational
coordinates for the relative rotations between the frames Ri
(and Ri

±). In the scaled Cayley vector rotational coordinates
adopted within the cgDNA model it can be computed explicitly
that the appropriate configuration space equilibrium distribu-
tion is of the form (12)2 with the explicit correction term

∏ ζ
= +

=

− −⎛
⎝⎜

⎞
⎠⎟J w( ) 1

100i

N
i

1

2 1 2 2

(13)

where the ζi are norms of the intra- and inter-rotation parts of
w. Essentially, we here wish to be able to assess when the
differences between the two pdfs in (12) (with the same
sequence-dependent free energy E(w)) are sufficiently small
that attention can be restricted to the simpler case (12)1.
One approach to Monte Carlo simulation of multivariate

normals such as (12)1 involves the Cholesky decomposition of
the covariance matrix.48 We adapt this approach to take
advantage of the sparsity structure of the stiffness matrix K,
performing the Cholesky decomposition on K itself:

Figure 2. Visualization of the entries in a sub-block of the cgDNA
model stiffness matrix K corresponding to five central base pairs for
the specific sequence poly(TA). The banded structure with 18 × 18
overlapping blocks is a model assumption. The standard helical
coordinates are ordered in alternating groups of six, intra-inter-intra,
with the 6 × 6 overlaps corresponding to each set of intra base-pair
variables. Individual entries in the stiffness matrix are represented in a
color scale, with blue being large and negative, white representing
vanishing or close to zero entries, and red and brown large positive
entries. The largest entries are close to the diagonal, but the 18 × 18
blocks are dense with some large entries far from the diagonal
indicating the significant couplings present in the model. Each 18 × 18
block corresponds to a dinucleotide junction or step, and the entries in
an AT junction block can be seen to be slightly different to the entries
in a TA block. Other sequences have stronger variations in the stiffness
coefficients.
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=K LLT (14)

where L is a lower triangular matrix. We can then use the
Cholesky factorization to rewrite the cgDNA energy (11) as
E(y) = yTy/2, where y = LT(w − ŵ), and this distribution can
be sampled directly as the product of uncoupled univariate
normal distributions. For efficient Monte Carlo sampling in this
way, the key property of the Cholesky factorization is that
because our K matrix is highly banded (i.e., all nonzero entries
are close to the diagonal) so is the Cholesky factor L (see, e.g.,
p. 154 of Golub and Van Loan49). For each sample, the
configuration in the original variables w must first be
reconstructed from the configuration y. Then the observables
rn and Rn must also be computed from w. As both of these
computations occur at every draw, they should be done
efficiently, and as described more fully in the Supporting
Information, we make full use of the sparsity in the problem, as
well as of quaternion multiplication in the many rotation matrix
products. We believe the resulting code to be rather efficient;
for example, for a 300 bp molecule 106 samples can be obtained
in approximately 3 min on a contemporary laptop, and for a 1.5
Kbp fragment 106 samples can be computed in approximately
20 min, i.e., approximately linear scaling with oligomer length.
To sample the perturbed Gaussian distribution (12)2, we

adopt the following simple Metropolis algorithm.50 Given a
prior configuration w, we draw a new w* following the direct
Monte Carlo procedure described in the previous paragraph
applied to the Gaussian part of the pdf (12)2. We then accept
or reject w* purely on the basis of the values of the
perturbation J: if J(w*) ≥ J(w), we accept w*, whereas if
J(w*) < J(w) we accept w* with probability J(w*)/J(w) and
otherwise reject it (in which case we append a new copy of w to
our ensemble). As discussed in the Supporting Information,
this move set satisfies the crucial property of detailed balance
and does, in fact, sample the pdf (12)2. The Metropolis
procedure is computationally much more intensive than the
direct sampling possible in the pure Gaussian case but is still
reasonably efficient. For the specific perturbation (13) and a
300 bp fragment 106 accepted moves (with a 40% acceptance
rate) can be generated in 11 min. For a 1.5 Kbp fragment the
performance is 106 accepted (with a 4.5% acceptance rate) in

6 h. Because the acceptance criterion involves only the internal
coordinates w, the rejected moves absorb comparatively little
computational time because the corresponding (rn, Rn)
configurations need not be reconstructed.

4. SIMULATION RESULTS

In this section we present simulation data for the different
persistence lengths summarized in Table 1. Section 4.1
demonstrates the strong sequence dependence that arises,
whereas section 4.2 examines some specific sequences in more
detail, including the quality of fits giving rise to the tangent−
tangent persistence lengths l ( )p and l ( )d . Sequence-averaged
persistence lengths are discussed in section 4.3.

4.1. Sequence Is Significant: Persistence Length
Spectra. The four panels of Figure 3 provide normalized
histograms, or spectra, of the values of the individual Flory

l ( )F (5), apparent l ( )p (6), and dynamic l ( )d (9)
persistence lengths obtained from direct MC simulations of
the Gaussian distribution (12)1 for each of two ensembles of
sequences, one being 1K random sequences of length 220 bp
with equal probabilities for each of the four possible bases at
each index i, and the other being 220 fragments of 220 bp of
the λ-phage sequence. (We adopt the convention that l ( )p and

l ( )d without superscripts denote l ( )p
[0,0] and l ( )d

[0,0] ; cf.
Table 1.) For each of the selected sequences, the origin base-
pair index 0 was chosen to be the 11th actual base pair from
one end to avoid any initial end effects, and similarly, statistics
were not taken from within 10 bp of the distal end. For the
simulations of the Flory persistence length l ( )F to obtain good
i → ∞ convergence in the definition (5), sequence fragments
of approximately 1.5 Kbp are needed, so each sequence was
repeated seven times. The histograms indicate that there is
strong sequence dependence of both l ( )F and l ( )p with at
most small differences between the random and λ-phage
ensembles, with perhaps a somewhat more prominent left tail
(with many fewer samples) for λ. Both Flory distributions are
quite broad and asymmetric, as are both l ( )p histograms,
which have a notable and abrupt effective maximum close to

Figure 3. Normalized histograms of persistence lengths, l ( )jF in green (nm), l ( )jp in blue (bp), and l ( )jd in red (bp), for 220 bp fragments from λ-
phage (left) and with random sequence (right). In addition, in each panel the associated persistence lengths for the six distinct poly(dinucleotide)
sequences are marked with colored circles. The harmonic means of l ( )jF for the λ and random ensembles are respectively 55.7 and 55.6 nm, of

l ( )jd are 181 and 179 bp, and of l ( )jp are 159 and 160 bp.
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180 bp. In contrast, the histograms for the dynamic persistence
length l ( )d are more sharply peaked and symmetric around
180 bp, which suggests at most a weak sequence dependence.
In each panel of Figure 3 the values of the associated

persistence lengths for the six distinct poly dinucleotide
sequences are also shown (as circles), and it is evident that
for these particular sequences there is particularly strong
sequence dependence of all three persistence lengths, with
poly(AT) (or equivalently poly(TA)) being a low outlier with
lF(AT) = 47.2 nm, lp(AT) = 146 bp, and ld(AT) = 148 bp, and
poly(A) an exceptionally high outlier with lF(A) = 72.7 nm,
lp(A) = 219 bp, and ld(A) = 221 bp.
4.2. Sequence Is Significant: Some Specific Cases. To

better understand the behaviors manifested in the spectra of
section 4.1, we now turn to a more detailed examination of a
small number of selected sequences. The three columns of
panels in Figures 4 and 5 provide data for three different groups
of sequences: in the first column the six distinct poly
dinucleotide sequences; in the second, six fragments λj from
the λ-phage genome selected to span a wide range of observed
lp(λj); and in the third, seven sequences γj with persistence
lengths reported in the literature (full sequences are provided in
the Supporting Information).
The panels in the first row of Figure 4 visualize the cgDNA

ground states of each fragment with the reference base-pair
frames R0 all aligned. For the polydinucleotides 300 bp are
shown, and the shapes indicate that all six sequences have
ground states that are tightly coiled helical structures with
slightly different radii and pitches, and with straight center lines
that are slightly differently aligned with respect to R0. All of the
λj ground states (again 300 bp, except λ6, 205 bp) are
significantly bent, some more than others, as are sequences
γ1−4. In contrast, the ground states of γ5, γ7 are by design very

straight, whereas the ground state of γ6 has two large intrinsic
bends each corresponding to a number of phased A-tracts.
The second row of panels in Figure 4 shows the Flory

persistence vectors (1)2 for the same sequences. The scales (in
nm) on the axes of the panels in rows one and two are identical,
but the Flory plots are for fragments of length 1.3−1.6 Kbp
made of repeats of the basic sequence. In fact, the
superimposed crosses on each curve indicate constant incre-
ments of 100 bp along each fragment, but the physical locations
can be observed to accumulate, and the limiting distance from
the origin to the accumulation point is the Flory persistence
length of that sequence, which is considerably shorter than the
end to end distance in the ground states shown in the first row
of panels, and more importantly are quite different one from
another. We emphasize that the Flory persistence vector curves
are unrelated to any particularly likely configuration of the
centerline of the corresponding DNA fragment, rather they
“... mimic[s] the features of the static chain but with ever
diminishing scale, until, when the last (976th) unit is added the
change in position of the end point is imperceptible.”13

Moving to Figure 5, the panels in the first row are plots of
the ensemble average data ln⟨ti·t0⟩ leading to the fit (6) for the
persistence lengths l ( )jp . The panels in the second row are

plots of ln(tî·t0̂) on the ground states (whose three-dimensional
shapes are shown in the first row of Figure 4), and the panels in
the third row are plots of the ensemble average data [ln⟨ti·t0⟩
− ln(tî·t0̂)] leading to the fit (9) for the dynamic persistence
lengths l ( )jd .
For the polydinucleotide sequences in the first column, the

data for the fits of both l ( )jp (row one) and l ( )jd (row three)

are very close to linear, and the two persistence lengths are, in
fact, very close for each sequence, but with strong variation

Figure 4. Ground state configurations and Flory persistence vectors for various DNA sequences. The columns show: (left) the six distinct poly
dinucleotide sequences, (middle) the six selected λ-phage fragments λj , and (right) the seven sequences γj. The first row of panels shows
visualizations of the shapes of cgDNA ground state configurations, whereas the second row shows plots of Flory persistence vectors (1)2 for the
Gaussian (12)1 (solid) and perturbed (12)2 (dashed) ensembles. (Interactive U3D versions of all six panels are available in Figure S1 of the
Supporting Information.)
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between sequences (cf. Figure 3). Nevertheless, the data in row
one do exhibit significant short scale oscillations of different
amplitude for the different sequences, which are almost entirely
removed in row three via the implementation of our intrinsic-
shape factorization; i.e., we subtract the data shown in row two.
For the selected λj sequences shown in column two, the plots

in the first row are in some cases far from linear, leading to
rather low estimates for l ( )jp , but when the intrinsic shape is

factored out, the data for the fit to ld(λj) are again close to
linear, and now with rather little variation with sequence. The
one exception is the sequence λ1 shown in black, where the data
for the fit for ld(λ1) remain far from linear beyond bp 200.
However, the sequence λ1 was chosen as being the outlier with
the lowest of all estimates for l ( )jp over all 161 300mer

fragments drawn from the λ-phage sequence. And even for this
extreme case, the data for the fit of ld(λ1) are very close to linear
if only the first 200 bp are used. In fact, we changed from the
220 bp fragments considered in the histograms of Figure 3 to
be able to give this single example where the data for the fit (9)
failed to be close to linear. This example suggests that the
ansatz (9) for the factorization of the effects of shape is too
simple for relatively long sequences with highly bent ground
states.
For the sequences γj shown in the third column, the observed

behavior is analogous to that of λj fragments, but now even the
extremely bent sequence γ6 (which contains phased A-tracts

that are discussed further in section 6.2) has the acceptably
linear data shown in row three, and the estimate for ld(γ6) is
quite close to that for the other γj and the λj, suggesting that its
unusual tangent−tangent correlation plot in row one is due
largely to its intrinsic shape shown in row two and not from any
particularly unusual stiffness.

4.3. Sequence-Averaged Persistence Lengths. Table 2
provides estimates for lF̅, l ̅p[j,k], l ̅ s[j,k], and l ̅d[j,k] from evaluation of

the sequence ensemble formulas in (5), (6), (8), and (9) for
both of our examples (namely, random 220 bp fragments, and
the collection of 220 fragments of 220 bp λ-phage fragments
described above), and in each of the two cases [j, k] = [0, 0]
and [11, 11]; cf. Figure S6. For the random ensemble, we
sample sufficient sequences and MC configurations for each
sequence, to produce standard errors below 1 bp/0.1 nm for lF̅,
lp̅, and ld̅ (by sampling 105 configurations for each of 1000
random sequences), and below 10 bp/1 nm for ls̅ (by
considering intrinsic shapes of 105 random sequences). In

Figure 5. Plots related to apparent and dynamic persistence length for various DNA sequences. As in Figure 4, the columns show (left) the six
distinct poly dinucleotide sequences, (middle) the six selected λ-phage fragments λj , and (right) the seven sequences γj. All nine panels are semilog
plots of tangent−tangent data versus bp index for (row one) the apparent persistence length fit (6), (row two) the ground state, and (row three)
their difference, for the dynamic persistence length fit (9). (In row two, column one, six small amplitude overlapping plots have been separated into
three pairs for clarity.) Numerical values of the associated fits for persistence lengths are provided in Table S1 of the Supporting Information.

Table 2. Sequence-Averaged Persistence Lengthsa

lF̅ = 53.4/53.5 nm lp̅ ld̅ ls̅

[j, k] = [0, 0], bp 160/160 180/178 1442/1610
[j, k] = [11, 11], nm 53.4/53.5 59.4/58.8 535/609

aFor both λ and random sequence ensembles, with random sequence
data in bold type.
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contrast, λ-phage is a fixed sequence, which we have chosen to
divide into certain consecutive 220 bp fragments; we draw
sufficient MC samples to produce the same small standard error
for the average over that particular set of fragments, but this
does not guarantee the same small variation over different
choices of λ-fragments.
These single ensemble estimates of lF̅, lp̅

[j,k], and ld̅
[j,k] are close

to the appropriate averages of the histograms of the sequence-
dependent quantities illustrated in Figure 3 for [j, k] = [0, 0],
and the analogous [j, k] = [11, 11] histograms shown in Figure
S5. For both choices of the coarse graining, the set of three
independent estimates of the random-ensemble sequence-
averaged persistence lengths lp̅,s,d in Table 2, satisfy the
Trifonov−Tan−Harvey relation (7) to a relative error of
3 × 10−3, i.e., |1 − lp̅/ls̅ − lp̅/ld̅| < 3 × 10−3.

5. SIMULATION VERIFICATION

We now present various additional numerical experiments as
evidence to suggest that the conclusions about the sequence-
dependent mechanics of DNA drawn from the numerical
simulations described in section 4 are, in fact, robust.
5.1. Sensitivity to the Jacobian Perturbation. Ensem-

bles for all of the sequences included in Figures 4 and 5 were
generated with both direct and Metropolis MC simulations to
assess differences between the Gaussian ensemble (12)1 and
the perturbed distribution (12)2 in the case of the appropriate
Jacobian factor (13) for our coordinates on the rotation group.
The solid and dashed curves in row two of Figure 4 show that
there are perceptible, but relatively small, differences between
the two curves of Flory-vector expectations, with the differences
increasing with the base-pair index i. The corresponding
differences in the two estimates for the Flory persistence
lengths with i ≈ 1.5K are nevertheless usually, although not
always, close to the MC sampling error. For estimates of the
tangent−tangent correlations l ( )jp and l ( )jd for sequences up
to 200−300 bp we found the corresponding differences always
to be negligible. (Figure S2 provides two examples showing
differences between tangent−tangent correlation data for the
two ensembles that are small, but perceptible, and accumulating
with base-pair index.) We accordingly conclude that although
the effect of the Jacobian perturbation to the equilibrium
ensemble deserves further investigation in the case of long
segments of DNA, it has a negligible influence on the
computation of tangent−tangent persistence lengths at the
scale of 200 bp, which is why all further calculations did not
include it.
5.2. Convergence of MC Simulations. Irrespective of

sequence, estimates of the Flory persistence vectors appeared to
be converged to a standard error of less than 0.5 nm for
fragments of 1.5 Kbp for multiple estimates each with 105 MC
samples. Similarly, in the computation of tangent−tangent
correlations of 300 bp fragments, 105 MC samples give a
standard error of less than 1 bp or 0.5 nm in lp (cf. Figure S3).
For Metropolis MC simulations, longer runs are required for
the same level of accuracy: 106 accepted samples for lp and 3 ×
106 for lF. All our reported values for single-molecule lp, lF, or ld
come from samples that meet or exceed these requirements.
5.3. Sensitivity to Coarse-Graining Choices. For the

Flory persistence length data reported in Figure 3 there is no
choice of coarse graining to be made. The tangent−tangent
data illustrated in Figures 3 and 5, and reported in Table S1 of
the Supporting Information, have been for lp

[0,0], i.e., for base-

pair normals ti
[0] with persistence lengths reported in units of

bp. As reported in Table S2, and independent of sequence, we
found quite consistent estimates for both lp

[j,0] and ld
[j,0] for the

differing coarse-grain choices j = 0, 11, 21 of the approximation
to the unit tangent vector t[j], with the larger j (unsurprisingly)
yielding a decrease in the amplitude of the short scale
oscillations in the correlation data. The other natural choice j
= 1, corresponding to the junction chord vector, yields much
larger amplitude short-scale oscillations and a tendency for the
apparent best-fit line to pass significantly below the origin (cf.
Figure S4).
In contrast, in different sequences, the choice of coarse-grain

arc length s[k] has different consequences for the estimation of

the dimensional tangent−tangent persistence lengths l ( )k
p
[0, ] .

Specifically for highly coiled sequences, the differences between
k = 1 and k = 11 can be quite significant. Table 3 provides data

for the highly coiled poly(TA) sequence, and the very straight
poly(A). For poly(TA) the decrease between lp

[0,1] and lp
[0,11] is

much bigger than for poly(A). Subsequent differences for k >
11 appear to always be negligible (cf. Table S2 and Figure S4).
Similarly, as the sequence poly(A) with the highest of all ld is
very straight, whereas the sequence poly(TA) with the lowest ld
is highly coiled, the data of Table 3 show that the ratio 1.49 of
the ld

[0,0] for the two sequences increases to the ratio 1.54
between the two ld

[0,11] for the coarse-grained arc length.
Further comparisons between coarse-graining choices are

provided in Table S2, but we now concentrate on the two
choices [j, k] = [0, 0] of base-pair normals with persistence
lengths reported in bp, and [j, k] = [11, 11], with both tangent
and arc length coarse grainings matched to a single turn of the
double helix, and with persistence lengths reported in
nanometers, which seems to be most appropriate for
comparison with microscopy data.

5.4. Comparison between MC and MD Ensemble
Expectations. The utility of a predictive, computationally
efficient, coarse-grain model is that it allows large ensembles of
configurations to be generated with comparatively little
computational effort, both for long DNA fragments and for a
large variety of sequences. However, the accuracy of the
predictions made from these ensembles can of course be no
better than the model parameter set. Each parameter set for the
cgDNA coarse-grain model is constructed by fitting to estimates
for expectations and covariances obtained from MD time-series
simulations of a library of oligomers at the length scale of 10−
20 bp, as described in detail in Gonzalez et al.,32 and so
depends upon the specific underlying MD simulation through
both the choice of the physical conditions and the accuracy of
the MD simulation package. Each cgDNA parameter set
contains 1592 independent numbers, which is of course
many more than the two parameters of the classic WLC, but
also many fewer than in the underlying MD potentials. The
estimation of a full parameter set is in and of itself a nontrivial
process. In particular, because cgDNA stiffness matrices are

Table 3. Effects of Coarse Graining of Arc Lengtha

lp
[0,1], nm lp

[0,11], nm ld
[0,0], bp ld

[0,11], nm

poly(TA) 50.7 45.9 148 46.7
poly(A) 74.6 71.6 221 72.0

aPersistence lengths for the highly coiled poly(TA) are more sensitive
to the choice of arc length coarse graining than for the very straight
poly(A).
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banded, with the form illustrated in Figure 2, their inverses are
dense. Consequently, there is no simple and direct connection
between specific entries in the stiffness matrix and specific
entries in an associated covariance matrix. In the estimation of a
cgDNA parameter set, all of the 1592 unknowns are coupled
one to another.
cgDNAparamset2, which is used for all the simulations

presented here, was derived in a systematic fitting procedure
from fifty-three 50−100 ns duration MD simulations at 300K
with K+ and Cl− ions at approximately physiological
concentration, run using the Amber simulation package51

with the specific ABC bsc0 protocol as described in detail in
Lavery et al.52 As discussed in two articles by Gonzalez et
al.,32,53 once a specific training set of MD time series has been
generated, the resulting cgDNA parameter set further depends
upon mathematical choices that have to be made in the detailed
coarse-grain parameter extraction procedure. A comparison
between various cgDNA predictions of ground states and
experimental data has already been made.33 The cgDNA
parameter estimation procedures contain no explicit fit to the
persistence length of DNA at any stage. Nevertheless, it is
reasonable to pose the question of whether the parameter set
estimation process might introduce a systematic bias in the
persistence lengths predicted from cgDNAmc simulations. In
this section we present data to suggest that any such bias in
cgDNAparamset2 is rather small, and that the cgDNAmc
predictions of persistence length are of similar accuracy to
predictions that can be made directly from comparable, but
computationally much more intensive, MD simulations.
To justify this claim, we compared ensemble average data for

eq (6) (leading to estimates for the sequence-dependent
apparent persistence length l ( )p ) and data for eq (9) (leading

to estimates for the dynamic persistence length l ( )d ) derived
from both coarse-grain cgDNA MC simulations and from 106

snapshots generated in microsecond duration fine-grain MD
simulations43 of 18 bp oligomers with the sequences GC-
(XY)7GC, i.e., six independent oligomers with seven central
repeats of each of six distinct dimer steps. The MD simulations
were run with precisely the same protocol as the shorter
duration ones used to train cgDNAparamset2. The MD data
estimates for tî were obtained by extracting Curves+42 base-pair
coordinates for each MD snapshot, averaging the coordinates
and reconstructing the configuration corresponding to the
averaged coordinates. After dropping three bp from each end
(both to minimize end effects and to suppress the different
sequence effect of the terminal GC steps, while still leaving a
minimal number of data points), we obtain 11 nontrivial values
for ln⟨ti·t0⟩ and [ln⟨ti·t0⟩ − ln(tî·t0̂)] for each of the six
sequences, and for each of the MC and MD ensembles. The
data for the two cases XY = AA, TA are plotted in Figure 6
(which is a short length scale version of Figure 5 for the two
specific polydinucleotide sequences). The numerical data for all
six cases are provided in Tables S3 and S4 of the Supporting
Information. It can be seen that the difference between MC and
MD ensemble data is rather small compared to the differences
between the two sequences. It can also be seen that the ln⟨ti·t0⟩
data deviate strongly from linear to the extent that making a
linear best fit to estimate l ( )p is rather questionable,
particularly for the TA sequence. This strong deviation from
linearity of ln⟨ti·t0⟩ for short scale MD data has certainly been
observed before, for example, by Noy and Golestanian,30 and
the sense of apparent persistence length l ( )p at these scales

has been called into question. In contrast, it has not been
previously observed that the data [ln⟨ti·t0⟩ − ln(tî·t0̂)] leading
to the estimate of the sequence-dependent dynamic persistence
length l ( )d are still very close to linear (at least for all six
polydinucleotide sequences) even at these short length scales,
suggesting that at short lengths the observed values of ln⟨ti·t0⟩
are dominated by the intrinsic shape of the DNA and not by
stiffness and associated fluctuations. The values of the available
estimates of l ( )p and l ( )d for all six polydinucleotide
fragments at both long and short length scales are provided
in Table 4. The comparison between MD and MC ensemble

estimates is better for some sequences than for others, but we
see in particular that the coarse-grain cgDNAmc prediction that
poly(A) has approximately 50% greater dynamic persistence
length than poly(TA) is already contained in the fine-grain,
short length scale MD data ensemble.

6. COMPARISON WITH EXPERIMENT
We next compare cgDNAmc predictions against 2D microscopy
and cyclization data for a range of sequences (section 6.1),
experimental and simulation data for A-tracts (section 6.2), and
stereo cryo-microscopy images (section 6.3). Possible explan-

Figure 6. In solid lines the data for ln⟨ti·t0⟩ vs base-pair index i = 1, ...,
11 for the TA sequence in orange and red, respectively, for coarse-
grain MC and fine-grain MD ensemble averages. And for the AA
sequence in light and dark blue, again, respectively, for MC and MD
ensemble averages. Dashed lines with the same color scheme are
analogous plots of [ln⟨ti·t0⟩ − ln(tî·t0̂)].

Table 4. Apparent and Dynamic Persistence Lengths for Six
poly(XY) Fragmentsa

MD MC

lp
[0,0]/ld

[0,0] 12 bp 12 bp 280 bp

AA 193/203 186/205 219/221
AG 132/190 153/184 192/194
GG 104/209 110/167 173/178
TG 113/165 106/163 169/173
CG 143/189 122/160 166/168
TA 106/143 102/144 146/148

aEstimates of the apparent l ( )p
[0,0] (6) and dynamic l ( )d

[0,0] (9)
persistence lengths made at the scale of 12 bp from both MD and MC
ensembles, and for comparison from MC ensemble data for 280 bp
fragments as illustrated in Figure 5a. The estimates for dynamic
persistence length are quite consistent between MC and MD
ensembles and at different length scales, whereas the estimates for
apparent persistence length between short and long lengths are
inconsistent because a linear fit is being made to highly nonlinear data.
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ations for discrepancies between simulation and experiment are
discussed in section 6.4.

6.1. 2D Microscopy and Cyclization Data. Figure 7 is a
scatter plot of cgDNAmc predictions versus experimentally
observed apparent persistence lengths reported in the literature,
colored according to different groupings of sequence and
experiment. More specifically, each point is for a specific
sequence that has as ordinate its simulated value of lp

[11,11]

(which we believe to be the appropriate level of coarse graining
for these data), and as its abscissa an experimental value
reported (a) from AFM for sequences γ1−γ41 (red), (b) from
classic EM (indigo) for poly(TA) and poly(CG) with two
additional data points (135, 73.5) for poly(A) and (120, 56.0)
for poly(G) off scale to the right12, (c) from cyclization data for
16 sequences detailed in the Supporting Information (one of
which lies directly under the red box for sequence γ4), and the
six distinct polydinucleotides34 (dark and light green,
respectively), and (d) from a 3D cryo-EM and window
averaging approach for average λ-phage DNA, and with one
additional point (82, 58.3) out of figure to the right for the
sequence γ5

35 (blue).
Virstedt et al.1 chose the sequences γ1, γ2, and γ4 for their

believed enhanced flexibility, with γ3 serving as a control
sequence with no distinguishing feature, and indeed its
persistence length is found to be the highest of the four for
both simulation and experiment; the simulated and exper-
imental data correlate quite well, with Pearson correlation
coefficient r = 0.82, although MC estimates are on average 17%
higher. Similarly, the four persistence lengths reported by
Thev́eny et al.12 have correlation coefficient r = 0.80 with our
simulated data, now with the MC estimates on average 28%
lower. Both Virstedt et al.1 and Thev́eny et al.12 extract an
estimate for lp from correlations of the 2D angle between
tangents to the planar curves observed in their data, but we
note that they fit to different formulas. The issue (as fully

discussed in these two papers as well as in Bednar et al.35) is
that the exponential decay scale lp in the three-dimensional
WLC formula (3) changes to the exponential decay scale 2lp in
dimension two. And depending upon the precise sample
preparation technique some authors prefer to fit their 2D
microscopy data to the 2D decay rate 2lp, e.g., Virstedt et al.,
and some to the 3D decay rate, e.g., Thev́eny et al. The Pearson
correlation coefficient is insensitive to this difference, whereas
the average certainly is not. An additional issue in comparing
2D EM techniques to 3D simulations is the potentially
complicated interaction between a sequence-dependent 3D
ground state configuration, e.g., the highly coiled poly(AT)
sequence, and the planar substrate.
Geggier and Vologodskii34 report persistence lengths using

experimentally measured minicircle cyclization j-factors54 for a
training set of oligomers that were then fit to an analytical
formula for j within a certain helical WLC model.55 The fit is
over three free parameters for helical repeat, torsional stiffness,
and bending stiffness, which they identify with lp. In particular,
the Geggier and Vologodskii sense of persistence length is as in
the WLC free energy, i.e., a scalar, bending stiffness at each
junction, but now dependent on the overall sequence of the
fragment. For these 16 sequences, the Pearson correlation
coefficient between cgDNAmc and Geggier and Vologodskii
estimates is r = 0.73, with our Monte Carlo estimates on
average 15% higher. With an additional fitting step to their own
data, Geggier and Vologodskii construct a parameter set that
can predict a persistence length for any sequence, which is how
we obtained the “experimental” data for the six distinct
polydinucleotide sequences (none of which were actually
directly measured experimentally by Geggier and Vologodskii).
We note that although their model reports a stiffness for
poly(A), Geggier and Vologodskii explicitly exclude the
poly(A) sequence from their actual cyclization experiments
due to the exceptional properties of A-tracts. The Pearson
correlation coefficient for these six sequences is r = 0.60, with
cgDNAmc estimates on average 22% higher, and the poly(A)
estimate notably larger.

6.2. Exceptional Behaviors of poly(A) and of A-Tracts.
The values of persistence lengths for the two homopolymers
poly(A) and poly(G) computed by Olson et al.19 (reported in
their Table 14.1 for both “Refined” and “Complete” samples)
via a MC simulation within a rigid base-pair model para-
metrized from crystal-structure data,18 yield four further
comparison points in Figure 7, but now of simulation vs
simulation, which would lie on the left axis for the “Refined”
and off scale to the left for “Complete” data, specifically for
poly(G) (40.5, 56.0) or (29.8, 56.0), and for poly(A) (39.5,
73.5) or (15.0, 73.5). In particular, the Olson et al. model
predicts poly(A) to be one of the softest sequences, whereas
cgDNAmc predicts it to be the single stiffest sequence. Of data
presented here we have for supporting poly(A) being unusually
stiff, the ratio of persistence lengths poly(A)/poly(AT) being
reported as 135/53 = 2.5 by Thev́eny et al.12 and 50.4/42.7 =
1.18 by Geggier and Vologodskii,34 as compared to the
prediction 73.5/47.0 = 1.56 from cgDNAmc simulations, as well
as recent NMR data56 reporting A tracts to be stiffer than
average. On the contrary, on the basis of looping data, Johnson
et al.57 suggest that A-rich sequences are softer than average.
Resolving the statistical mechanics properties of DNA

fragments with runs of consecutive A in the sequence is of
significance as the properties of A-tracts continue to be of
interest,58 and in particular they are believed to play a central

Figure 7. Scatter plot comparison of simulated and experimentally
estimated persistence lengths, with differing experimental data grouped
by color. See main text for details, including a description of three data
points that are off scale in this plot. The three straight lines pass
through the origin with slopes 1.05, 1.15, and 1.25.
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role in nucleosome positioning.3,59 An A-tract is generally taken
to mean a short run of consecutive An, usually with n = 5 or
n = 6, followed by another short spacer sequence, so for
example, the sequence γ6 ,

39 which is one of the sequences
considered in section 4.2, contains two 63 bp regions with triple
repeats of the 21 bp fragment A6CGGCA6CGGGC, which
would be described as being two regions each with six phased
A-tracts. DNA fragments including multiple repeats of precisely
the same 21mer have also been examined experimentally more
recently.40 We shall therefore briefly analyze such sequences in
more detail using the cgDNA model.
We first remark that although the 18mer GCA14GC (as

described in section 5.4) is an approximation to poly(A) that
does appear as one of the 53 sequences in the MD simulation
library used to train cgDNAparamset2; there is no A-tract
appearing anywhere in that library. Nevertheless, the cgDNA
rigid base model is sufficiently rich to predict that whereas a
long poly(A) is both exceptionally straight and stiff, an A-tract
can induce a strong local bend in the ground state. This strong
distinction can be seen by comparing the strikingly different
data for poly(A) compared to the A-tract sequence γ6 , both of
whose ground states and Flory vectors are shown in Figure 4,
along with their tangent−tangent correlations in Figure 5. The
only other sequence among those described there that is
approaching being as bent as γ6 is λ1 which, as remarked earlier,
was chosen as being the outlier with the lowest of all estimates
for l ( )jp over all 161 300mer fragments drawn from the λ-

phage sequence. As it happens, the 300 bp λ1 fragment contains
three instances of A6, although that was not explicitly used as
part of our selection criterion.
The fact that A-tracts have exceptional properties is

experimentally indisputable, but whether it is the run of An
itself, or the adjacent spacer region, or the juxtaposition of the
two that generates these exceptional properties has been the
subject of a long-running and ongoing debate.60 The estimation
procedure for the cgDNA parameter sets is in no way explicitly
biased to model An runs differently from any other sequence,
but cgDNAparamset2 predicts that they give rise to the localized
structure visualized in Figure 1 with exceptionally high values of
propeller. One could therefore imagine significant disruption of
the DNA double helical structure at a transition to other
sequences. The cgDNA prediction of ground states for various
A-tract junctions are described in more detail in Petkevicǐu ̅te ̇ et
al.33 The properties of phased A-tracts are further described in
Figures 8 and 9. Figure 8 provides the data for estimating
apparent and dynamic persistence lengths of the central 63 bp
(A6CGGCA6CGGGC)3 with in the fu l l sequence
(A6CGGCA6CGGGC)5. The data for fitting the apparent and
dynamic persistence lengths are each shown for three levels of
coarse graining, k = 0, 3, 11, for the tangent vectors ti

[k]. The
coarse-graining choice k = 3 is included because it fits a tangent
vector to a run of four consecutive base-pair origins, so that for
the appropriate i it fits a tangent to the center of each A6 run,
and to the center of each spacer sequence. In each case the data

for l ( )k
p
[ ,0] are far from linear with large oscillations associated

with each A-tract, whereas in each case the data for l ( )k
d
[ ,0] are

still rather close to linear. The associated values are reported in
Table 5. For each level of coarse graining the apparent
persistence lengths lp

[k,0] (to the extent that they have any sense)
are extremely low and are off scale to the left in the histograms
of Figure 3 due to the large intrinsic bends, whereas the

dynamic persistence lengths ld
[k,0] are exceptionally high and

approach that of poly(A).
As extensively reviewed by Brunet et al.,40 there are many

numbers reported in the literature for estimates of the bend of
an A-tract. A full analysis of A-tract bends within the cgDNA
model is beyond the scope of the current presentation, but we
remark that, analogously to the plots in Figure 8, cgDNAmc can
easily simulate estimates of expected angles in the sense of
arccos⟨ti

[k]·t0
[k]⟩ or more generally arccos⟨ti

[k]·tj
[k]⟩, or true

expected angles in the form ⟨arccos(ti
[k]·tj

[k]) ⟩. We instead
limit ourselves to providing plots in Figure 9 which further
demonstrate that although the ground state of poly(A) is very
close to straight (as already indicated in Figures 4 and 5), the
ground state of our phased A-tract sequence is highly bent.
However, quantifying the amount of that bend is quite sensitive
to how you wish to measure it, both to the scale at which
tangents ti

[k] are fit to base pairs and to the number of base pairs
separating the two tangents between which the angle is
measured, so that the value of an intrinsic (or ground state)
bend angle could reasonably be taken within a wide range of
values.

6.3. 3D Cryo-electron Microscopy. In an effort to
distinguish between the effects of intrinsic curvature and
flexibility on tangent−tangent correlation, Bednar et al.35 used
stereo cryo-EM data to estimate the persistence lengths of the
fragment γ5 mentioned above. They designed this sequence to
be intrinsically straight by a construction involving repeated
pentanucleotide sequences so that any local intrinsic bend will
to a good approximation be canceled by an oppositely phased
bend 5 bp, or approximately one-half-turn, later. (In fact, the γ5
sequence is made of repeats of a 20mer that is itself made up of
double repeats of two different pentamers.) The accuracy
within the cgDNA model of this clever sequence design is
confirmed by the visualization of the very straight ground states
shown in Figure 4 of γ5 and γ7 (which was introduced in
Geggier and Vologodskii34 using the same design principle).
Bednar et al. also analyzed segments of the λ-phage genome as
a control.

Figure 8. Tangent−tangent correlation data with three levels of
tangent coarse graining, k = 0, 3, 11, for the fragment
(A6CGGCA6CGGGC)3, with the A6 runs highlighted by centered
shaded strips of width six. The highly nonlinear solid lines are plots of
ln⟨ti

[k]·t0
[k]⟩ leading to the estimates of the apparent persistence lengths

l ( )k
p
[ ,0] reported in Table 5, whereas the almost linear dashed lines are
plots of [ln⟨ti

[k]·t0
[k]⟩ − ln(tî

[k]·t0̂
[k])] leading to the estimates of the

dynamic persistence lengths l ( )k
d
[ ,0] , also reported in Table 5.
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Bednar et al. applied the sliding window averaging method
(10) to analyze two different sets of images. One set contained
fragments (of lengths 41 ± 15 nm) made up of repeats of the
basic 20 bp subunit repeat in γ5, with a total imaged length of
approximately 2 μm. The shifted window fit (10) was applied
with δ = 1 nm, and the single window size Δ = 40 nm to obtain
the estimated persistence length 82 nm, with a reported
uncertainty of 15 nm, and with the levels of coarse graining [j,
k] only being implicitly defined via their procedures for curve
fitting in the raw images. As the γ5 sequence is so straight, there
can be little or no contribution to the apparent persistence
length lp(γ5) from the intrinsic shape, and thus Bednar et al.
took ld̅ = 82 ± 15 nm as an estimate of the (sequence-averaged)
dynamic persistence length of DNA.
For their second set of data, λ-phage was enzymatically

cleaved into short fragments with lengths 110 ± 52 nm, and a
total of 4 μm was imaged. The same sliding window method
with (Δ, δ) = (40, 1) nm was used, and a persistence length of
45 nm was reported. Because of the sliding origin of the
window average, it is reasonable to take this 45 nm as an
estimate of the sequence-averaged apparent persistence length
of λ-phage DNA. Bednar et al. then used their two estimates in
the Trifonov−Tan−Harvey relation (7) to further estimate the
static persistence length of DNA as 130 nm.
With the luxury of in silico experiment, we are not subject to

the limited sampling possible in vitro, but to better compare our
simulations with the actual experimental data, we can restrict
ourselves to the Bednar et al. sampling. To that end we
generated 33 samples of 180 bp (for a total of about 2 μm) of
the γ5 sequence and applied the window averaging fit (10) to
compute lw̅

[11,11](γ5). As the MC simulations deliver data at each

base pair, we took the window shift to be δ = 3 bp (i.e., ≈1
nm). To implement a window size Δl, for each third base-pair i
we found the index j with sj

[11] ≤ Δl < sj+1
[11], where sj

[11] is the
coarse-grain arc length from base-pair i to base-pair j. Then the
required data were evaluated by interpolating tj

[11]·ti
[11] and

tj+1
[11]·ti

[11]. No data were taken within 15 bp of an end. This
process was then repeated 1K times to obtain an estimate and
standard error lw̅

[11,11](γ5) = 58.3 ± 11 nm, when the single
window size Δ = 40 nm was used, as was done by Bednar et al.,
and 59.9 ± 10 nm, when 50 equally spaced window sizes from
Δ = 0.8−40 nm were used. Thus, in agreement with Bednar et
al., we find a notably larger than average apparent persistence
length for the intrinsically straight sequence γ5, but our increase
is much less dramatic than theirs; in particular, the associated
data point is off scale to the right in Figure 7.
We remark that for the intrinsically straight sequence γ7 of

Geggier and Volodoskii34 there is the data point (49.5, 57.4),
which lies close to the center of Figure 7. For both intrinsically
straight sequences we can compute lp

[11,11] and ld
[11,11], and we

find results that are quite close to each other (as we expect for
intrinsically straight DNA) and to our window-averaged lw
results. Specifically, for γ5, we find lp

[11,11] = 58.2 nm and ld
[11,11] =

58.5 nm, whereas for γ7 we find lp
[11,11] = 57.4 nm and ld

[11,11] =
57.7 nm.
Similarly, we also divided the first 12 210 bp of λ-phage into

37 separate 330 bp (approximately 110 nm) fragments,
generated a single configuration of each, for 4 μm of observed
DNA snapshots, and proceeded as in the previous paragraph to
obtain the estimate lw̅

[11,11](λ) = 52 ± 5 nm, in reasonable
agreement with the 45 nm of Bednar et al. (blue square in
Figure 7). Once again, this window-averaged persistence length
lw is fairly close to our λ-fragment-averaged lp

[11,11] value of 53.4
nm from Table 2 (but not close to the corresponding ld

[11,11] =
58.8 nm, because λ is not straight).

6.4. Is cgDNAparamset2 Too Stiff? As discussed in
sections 6.1 and 6.3, the comparison of our coarse-grain
cgDNAmc simulations to experimental data addressing the
sequence dependence of lp , has overall good correlations (cf.
Figure 7), albeit with some exceptions. In some cases the
absolute values of our simulated apparent persistence lengths lp

Figure 9. For the ground state of the A-tract fragment described in Figure 8. Left panel, plots of Θ̂i,Δ
[3] = arccos(tî

[3]·tî+Δ
[3] ) (in degrees) for Δ = 5, 10, 11,

21 against base-pair index i. The ground state tangents tî
[3] approximate a linear fit to four base-pair origins, so that for appropriate i they fit a unit

tangent localized to an A6 run or to a spacer; e.g., when i is at the middle of an A6, Δ = 5 accesses an angle between the A6 and an adjacent spacer.
Similarly, Δ = 10, 11 is the repeat length of an entire A-tract, so for certain i, Θ̂i,10/11

[3] is an angle between adjacent A6, or between adjacent spacers.
And Θ̂i,21

[3] is an overall bend of the basic sequence repeat, i.e., two A-tracts. Right panel: same plots, but now for the coarser-grain choice of tangent
tî
[11] and associated Θ̂i,Δ

[11]. The coarse-grain tangents tî
[11] approximate a linear fit to 12 base-pair origins, so that for appropriate i they fit a unit

tangent localized to each A-tract; i.e., an A6 run plus its spacer sequence. Here the Δ = 10, 11, 21 data suggest that a reasonable coarse-grain estimate
for the static angle between adjacent A-tracts is 12−13°. The very low values at the minima for Δ = 5 indicate that the coarse-grain tî

[11] tangents at
either end of each A6 run are close to parallel.

Table 5. Persistence Lengths (in bp) for the Phased A-Tract
Sequence Fragment More Fully Described in Figure 8a

k 0 3 11
lp
[k,0] 60 67 66
ld
[k,0] 200 189 216

aThe high sensitivity of the dynamic persistence lengths ld
[k,0] is due to

the rather small slopes of the three, almost overlapping, almost linear
dashed lines in Figure 8 to which they are fit.
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are substantially lower than reported experimental data, but
generally they are some 15% higher than experiment. This
trend poses the question of whether our coarse-grain MC
simulations are being made with a cgDNA model free energy
that is too stiff. We first note that Yamakawa14 (p 16) observed
“... but neither [the Kuhn length] nor [the persistence length]
is a measure of chain stiffness except for the [WLC] chain.” In
other words, and in contrast to the specific case of the simple
WLC, for comparatively detailed models of DNA mechanics it
is a mistake to conflate statistical properties such as persistence
lengths with stiffnesses, i.e., coefficients in an effective free
energy. Nevertheless, an overall scaling of the cgDNA free
energy (11), in effect changing the temperature of the solvent
heat bath, would scale persistence lengths and could easily
remove the observed 15% discrepancy with experiment. As
already remarked, many coarse-grain models fit an overall
average persistence length in similar ways,18,20−24 whereas other
coarse-grain models predict an average persistence length.25−28

We adopt the predictive approach, and we believe that our
sequence-averaged estimates for both apparent and Flory
persistence lengths of lp̅ = lF̅ = 53.5 nm to be the closest to the
experimental consensus value of 50 nm that have been obtained
to date among coarse-grain models not containing an explicit
fitting parameter.
We prefer the predictive approach in part because our

intention is to significantly extend the length, time, and
sequence multiplicity scales that are available in contemporary
MD simulations of persistence length by building a much less
computationally intensive MC coarse-grain code with com-
parable accuracy. The data presented in section 5.4 suggest that
the statistics garnered from cgDNAmc and MD generated
ensembles are rather close for sequence fragments where both
are available, so that the 15% discrepancy with experiment
cannot be attributed to an estimation error between our MD
training sets and our coarse-grain parameter sets. We have also
tested that there is no significant statistical error in the
cgDNAmc simulations themselves.
In the MD simulations that were used to develop the cgDNA

parameter set, we used the Amber force field bsc0 with
potassium chloride salt at approximately physiological concen-
tration.43,52 MD protocols, including which potentials are used
for the water, ions, and solute, are constantly evolving. For
example, there are now two more recent Amber-family force
field modifications available.31,61 Estimation of the sensitivity of
the cgDNA parameters to such refinements in MD potentials is
underway, but it seems quite unlikely that a difference of 15%
will arise. A more likely source of the discrepancy is that the
MD training set data that we have used has all been run with
monovalent salt at physiological concentrations, whereas there
are experimental data suggesting that the DNA persistence
length can change substantially with different salt concentration
and species, particularly multivalent salts.62,63 And the available
experimental data to which we compare in this article have a
wide variety of salt conditions, frequently involving magnesium.
From the viewpoint of the cgDNA model, changing salt
concentration or including multivalent salt is unproblematic,
provided that accurate and sufficiently converged MD training
library simulations are available. But the MD simulation of
multivalent salts and associated polarizable force fields is still an
active research field with high computational demands.64

Finally we note that the cgDNA model is Gaussian in the
internal helical coordinates w and in particular assumes that the
DNA structure is reasonably close to helical, so that these

helical coordinates are a reasonable description. For example,
though cgDNA predicts poly(A) to be an exceptionally straight
and stiff helical structure, the model can say nothing about the
robustness, or fragility, of that double helical structure to non-
Gaussian deformations such as kinking, which is one possible
resolution to apparently contradictory data regarding excep-
tional softness or stiffness of A-tracts. In fact, it has already been
suggested65,66 that in both 2D microscopy and cyclization
experiments, and for any sequence, small denaturation bubbles
in the double helix can be nucleated, which would effectively
decrease the apparent DNA persistence length that is observed
experimentally. Such effects could easily give rise to a 15%
discrepancy, as well as raising the basic issue of whether a
persistence length of DNA as a double helix or as a kinked
double helix is the central object of interest.
Kinking of short, and therefore highly loaded, covalently

closed DNA minicircles has been observed in MD
simulations.67 More recently, non-Gaussian behaviors have
also been observed in long duration simulations of unloaded
short linear double-stranded fragments, and their sequence
dependence has started to be understood,43 which may well be
related to the variation of magnitude of error with sequence in
the comparisons between MD and cgDNAmc ensembles
presented in Table 4. All of these remarks indicate the
desirability of extending the current Gaussian version of the
cgDNA model to be able to predict nonquadratic sequence-
dependent free energies. The Metropolis version of cgDNAmc
is already available to generate ensembles with any such non-
Gaussian equilibrium distributions. However, the current model
already reveals the strong sequence dependence of DNA
persistence lengths, and the necessity of considering the shape
factorization introduced in the definition (9) of sequence-
dependent dynamic persistence length to obtain close-to-linear
decay in the semilog tangent−tangent correlations. We believe
that such effects are likely to persist, and even to remain
dominant, in any perturbed non-Gaussian model.

7. SUMMARY

A new notion of sequence-dependent dynamic persistence
length l ( )d (9) has been introduced to deconvolve the
separate effects of intrinsic shape and stiffness in the usual
tangent−tangent correlation statistics along double-stranded
DNA. Working within the context of a numerically efficient
code cgDNAmc, which we have developed to sample sequence-
dependent equilibrium distributions predicted by the rigid base
cgDNA coarse-grain model, we have verified that the sequence-
dependent dynamic persistence length l ( )d arises from
semilog linear data fits that are of uniformly higher quality at
the scale of 200 bp than those for the standard, or apparent,
tangent−tangent persistence length l ( )p (6) where the effects
of intrinsic shape are not accounted for, and consequently, the
data to be fit are liable to deviate significantly from linearity.
The same phenomenon has been demonstrated in a small
number of simulations of much shorter fragments where the
statistics are generated directly from MD simulations, and
where comparison with cgDNAmc results are also rather good.
However, the coarse-grain cgDNAmc code provides a bridge
over the scales, allowing predictions of sequence-dependent
DNA behaviors at lengths not currently accessible to MD, up to
thousands of bp, and this for a large range of possible
sequences, all with comparatively minor computational effort.
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The cgDNAmc code allows spectra of persistence lengths
over an ensemble of sequences to be generated, revealing that
the resulting histograms for persistence lengths in the two
standard senses of apparent tangent−tangent l ( )p and Flory

l ( )F (5) are quite similar one to the other. Flory and apparent
persistence lengths are known to coincide exactly for the
standard sequence-independent WLC model, but the similarity
of these two spectra in their variation over sequence is not
implied by any currently known theory. Both spectra exhibit
strong dependence of persistence length on the sequence ,
with in each case many sequences having quite low persistence
lengths. These low persistence lengths (in both senses) can
almost invariably be attributed to the sequence being
significantly intrinsically bent, so that the semilog linear fit to
compute l ( )p can be called into question. In comparison, the

spectra for dynamic persistence lengths l ( )d are sharply
focused with a peak at approximately ld = 180 bp, with
comparatively little variation with sequence. There are a few
striking exceptions to this observation, including poly(AT) and
poly(A), which are both very straight, and which have
respectively the lowest and highest dynamic persistence lengths
that we observed in any sequence simulated within cgDNAmc,
with poly(A) at ld = 221 bp being approximately 50% stiffer
than poly(AT) at ld = 148 bp. This large difference in stiffness
between the two polydinucleotide sequences can also be
observed directly from MD simulations of very short fragments.
As discussed in section 6.2, the cgDNA model additionally
predicts that the homopolymer sequence poly(A) behaves very
differently from sequences containing phased A-tracts, which
have an exceptionally high dynamic persistence length but
strong localized intrinsic bends.
The cgDNAmc code allows us to easily compute sequence-

averaged Flory lF̅ and apparent lp̅ persistence lengths (cf. Table
2), the values of which we find to be in good agreement with
the generally accepted value of 50 nm. Indeed, among current
coarse-grain models we believe these sequence-averaged
predictions to be the best available. When sequence-averaged,
our dynamic persistence length ld̅ is approximately 10% higher
than the apparent persistence length lp̅, and the Trifonov−
Tan−Harvey relation (7) between sequence-averaged apparent,
dynamic, and static persistence lengths is satisfied to a good
accuracy.
For specific sequences the cgDNAmc code allows us to easily

predict persistence lengths, in various senses, that have already
been estimated from experimental data. Section 6.1 presents
comparisons of this type. Generally, we obtain quite reasonable
correlation over sequences between our coarse-grain predic-
tions and prior experimental data, but with a trend of
overestimation by 15% in the absolute values of persistence
lengths. As discussed in section 6.4, this discrepancy could be
attributed to any of a number of different reasons. Our
simulations do validate two experimental approaches proposed
by Bednar et al.,35 namely (1) the use of periodic sequences
that are designed to be straight as a means to access dynamic
persistence length (for both of our straight sequences γ5 and γ7
our computed ld and lp agree to within 0.5 nm) and (2) the use
of sliding-window measurements for the interpretation of
microscopy images (our computed lw and lp agree to within 0.1
nm for γ5,7, and to within 2 nm for λ-phage). Such microscopy
techniques thus seem promising for continuing to directly
explore sequence-dependent shape and flexibility of double-
stranded DNA.
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