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A sequence-dependent rigid-base model of DNA
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A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in so-
Iution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and
the extent of sequence dependence of the model parameters. A significant feature of the models
is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the
energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or
pre-existing stress, with the level of this frustration dependent on the particular sequence of the
oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor
interactions and dimer sequence dependence of the model parameters. For a Gaussian version of
this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for
an oligomer of arbitrary length and sequence, a simple and explicit construction of an approxima-
tion to the configuration-space equilibrium probability density function for the oligomer in solution.
The training set leading to the coarse-grain parameter set is itself extracted from a recent and ex-
tensive database of a large number of independent, atomic-resolution molecular dynamics (MD)
simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence
between probability density functions is used to make several quantitative assessments of our nearest-
neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various
assumptions pertaining both to the locality of the energetic couplings and to the level of sequence
dependence of its parameters. It is also compared directly against all-atom MD simulation to assess
its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can
successfully resolve sequence effects both within and between oligomers. For example, due to the
presence of frustration, the model can successfully predict the nonlocal changes in the minimum en-
ergy configuration of an oligomer that are consequent upon a local change of sequence at the level of
a single point mutation. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789411]

® CrossMark
¢

Il. INTRODUCTION

The sequence-dependent curvature and flexibility of
DNA in solution is of both biological and technological
importance. On the biological side, these structural prop-
erties of DNA are thought to be critical for its packaging
into the cell, recognition by other molecules, and conforma-
tional changes during biochemical processes. Indeed, there
is a general consensus that the specific basepair sequence
of DNA in a genome carries not only a genetic code, but
also a structural code that is essential for understanding vari-
ous processes such as site-specific recognition,' nucleosome
positioning,>”” and looping.®~'° Methylation, which plays a
central role in both the epigenetic gene regulation in the nor-
mal development of higher organisms and in the develop-
ment of nearly all types of cancer, is also believed to af-
fect the mechanical properties of the DNA duplex.'"'> On
the technological side, DNA has been used as a material for
the controlled fabrication and operation of nano-devices. In
this context, the propensity of single strands of DNA to self-
assemble into a double-helical structure of complementary
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basepairs is exploited to build pre-specified three-dimensional
structures,'3~'> some of which can perform elementary opera-
tions and functions.!®!® The sequence-dependent mechanical
properties of the resulting structure offers a rich design land-
scape which has yet to be fully exploited.

The detailed study of sequence effects on the intrinsic
curvatures and flexibilities of DNA requires a suitable model
at the appropriate scale. A primary objective of such a model
is to describe sequence-dependent variations in the spatial ar-
rangement of the bases or basepairs of an arbitrary oligomer
at the scale of tens to hundreds of basepairs. At present, these
scales remain prohibitively expensive for all-atom molecular
dynamics (MD) models.'*>* Although the MD simulation of
oligomers on relatively short length and time scales is becom-
ing routine and, for example, the microsecond time scale can
now be achieved for short oligomers,>*?> such simulations
are not yet able to reach all the length and time scales of in-
terest; moreover, when feasible, they are done on a case-by-
case basis for oligomers of a specific sequence and do not
provide a practical, sufficiently explicit method for studying
sequence effects over a large number of oligomers. Sequence
dependence at the scales of interest also falls below the res-
olution of the classic worm-like chain and homogeneous
elastic models,2°3% and various related models which have

© 2013 American Institute of Physics
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received considerable attention in the study of DNA super-
coiling, looping, and packaging.?’-3!=3% A class of models that
are ideally suited for the study of sequence effects at the scales
and resolutions of interest are rigid-body models in which in-
dividual bases or basepairs are treated as independent, inter-
acting rigid bodies.*> %40+ Such models are coarse-grained
and hence simpler to understand than those of the atomistic
type, but are more detailed and hence better adapted to cap-
ture local sequence-dependent features than models of the ho-
mogeneous worm-like chain type.

Although rigid-basepair models have been successful at
understanding phenomena on relatively long scales, they are
based on a highly idealized representation of DNA and are
not sufficiently sophisticated to represent the internal, three-
dimensional, sequence-dependent, stereochemical relations
between individual bases along an oligomer. For example,
phenomena, such as DNA melting and self-assembly,*~
cannot be captured with a rigid-basepair model. Rather, mod-
els developed in connection with these phenomena range from
probabilistic type models with little structural detail, to more
physically detailed rigid-base type models with atomistic-like
potentials between specified sites, with varying levels of se-
quence dependence. A main goal of such models has been
to capture the thermal denaturation and renaturation of the
individual strands of DNA as a function of temperature and
ionic conditions. In contrast, here we focus on using a rigid-
base model to describe the sequence-dependent curvature and
flexibility of double-stranded DNA.#!+43:56-5% We restrict at-
tention to duplex DNA within the B-form family under fixed
solvent conditions, and seek to develop a model that can ac-
curately and explicitly predict the sequence-dependent vari-
ations in the curvatures and flexibilities of DNA in solution
as expressed through an equilibrium configuration-space dis-
tribution at the scales of interest, namely, up to a few persis-
tence lengths, or oligomers of a few tens to several hundreds
of basepairs in length.

Since early studies, a major issue in the coarse-grain
modeling of DNA has been the identification of a fundamen-
tal parameter set for interactions that is as simple as pos-
sible, yet sufficiently accurate to describe sequence effects
at the desired length scales.’*%* Various evidence suggests
that the structural properties of an oligomer, specifically its
ground-state or minimum energy shape, can have a notice-
able nonlocal dependence on sequence up to the level of
tetramers and possibly beyond, suggesting that sequence de-
pendence to at least this length should be included in a param-
eter set.”21:6495 Dye to the exponential growth in the num-
ber of sequence combinations, the description of interactions
with a sequence dependence up to the tetramer level or be-
yond would seem to require a rather large set of parameters.
For example, the numbers of independent monomer, dimer,
trimer, tetramer, and pentamer sequence units are, respec-
tively, 2, 10, 32, 136, and 512. The description of energetic
interactions with each of these possible sequence dependen-
cies would, therefore, appear to require correspondingly large
numbers of independent sets of interaction parameters. How-
ever, as is explained further below, one of the attractive fea-
tures of our rigid-base model is that a parameter set based on
only the two smallest of sequence units, namely, monomers
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and dimers, can predict ground-states of an oligomer whose
local intrinsic shape can depend on the tetramer, and beyond,
sequence context.

Once a coarse-grain model with a specific form of param-
eter dependencies has been decided upon, the other recurring
and major modeling issue is to decide upon the data that will
be used as a training set to estimate the actual values of the
model parameters. The data required to reliably and robustly
fit the model parameters must be of sufficiently high struc-
tural resolution, and must also cover a sufficiently rich set of
sequences. At present, high-resolution experimental data such
as that from x-ray crystallography and nuclear magnetic res-
onance (NMR) spectroscopy remains rather sparse, certainly
if data on all possible tetramer sequences must be observed.
However, the field of MD applied to DNA has improved sig-
nificantly in recent years, and the recent availability of an ex-
tensive database of atomic-resolution DNA simulations'®~!
of a set of oligomers with multiple, independent instances of
all 136 tetramer sequence units has opened up the possibility
of fully parameterizing a variety of coarse-grain models using
a training set extracted from fine-grain MD simulations. That
is the strategy that we will pursue.

In this article, we introduce a new hierarchy of mod-
els for predicting the relative position, orientation, and ener-
getic coupling between every base in an oligomer of double-
helical, B-form DNA with arbitrary sequence, in solution un-
der prescribed, standard, environmental conditions. Motivated
by previous work,*> we focus on models of the rigid-base
type in which each individual base is treated as an indepen-
dent rigid body. For any given oligomer, the models deliver an
equilibrium or stationary probability distribution on the asso-
ciated internal configuration space, where the degrees of free-
dom or observables are the relative displacement and rotation
of each rigid base on each strand of the oligomer. Such a dis-
tribution is to be interpreted as a marginal distribution of the
fine-grain oligomer-solvent system, where the detailed atom-
istic level descriptions have been averaged out. Specifically,
the DNA backbones are not direct observables in our mod-
els, which cannot therefore resolve different backbone states.
However, there is sufficient structural resolution to capture
the probability of differences in bending, twisting, stretch-
ing, and shearing of the basepairs along the contour of the
double-helix (so that the standard DNA structural parameters
of tilt, roll, twist, shift, slide, and rise are observables), as well
as the deformation between the bases within each basepair
across the double-helix (so that buckle, propeller, opening,
shear, stretch, and stagger are also observables). As a con-
sequence, among other things, the spacing of the major and
minor grooves of the double-helix can be predicted.

Consistent with equilibrium statistical mechanics, we as-
sume that our coarse-grain stationary probability distribution
is of a canonical form, with a density defined in terms of the
exponential of a free energy function. For simplicity, and in
the first instance, we also assume that the density is Gaus-
sian, with the associated free energy being a general shifted
quadratic function of the coarse-grain variables, namely, the
relative displacements and rotations between the rigid bases
of the oligomer. While the assumption of a quadratic free en-
ergy limits the scope of the model to the small-strain regime
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within the B-form family of oligomer configurations (and, in
particular, complete basepair breaking in any of its forms is
precluded), there is no a priori limitation on the length scale
of the oligomer to which the model can be applied, either large
or small. And overall large deformations of long oligomers
certainly are captured.

The main novelty of the current work lies in the ap-
proach to predict the sequence dependence of the free energy
function of a given oligomer of arbitrary sequence. We con-
struct an oligomer free energy as a sum over a nested hierar-
chy of sequence-dependent local energies that describe phys-
ically distinct interactions between various groups of prox-
imal bases. Consistent with a nearest-neighbor assumption,
we focus attention on the first two members of the hierarchy
that describe the local interactions between the two bases in
a monomer, and between the four bases in a dimer. More-
over, we characterize these interactions by a set of parameters
that depend only on the local monomer and dimer sequence.
The free energy of an arbitrary oligomer of any length is then
defined by a construction rule in which the local interaction
energies are superimposed. We show that a free energy con-
structed in this way provides a natural model for the intrinsic
curvature and flexibility of an oligomer of arbitrary sequence.
Indeed, we show that these properties are determined by the
local parameters in a nontrivial way through the construction
rule. Specifically, our free energy provides a natural model
for the intrinsic frustration of an oligomer. The frustration,
or pre-existing stress, in an oligomer arises from the fact that
each base cannot simultaneously minimize all of its local in-
teractions and must instead find a compromise. As a conse-
quence, our locally parameterized model predicts that the in-
trinsic or ground-state curvature of an oligomer depends non-
locally on its sequence, as has been observed in various de-
tailed MD simulations.?*2!:6465 The description of such non-
local behavior using only local parameters is a feature unique
to our rigid-base model. It occurs because of the double-chain
connectivity (or topology) of a rigid-base model, and can-
not arise in nearest-neighbor, rigid-basepair type models with
their single-chain connectivity, as have been considered by a
number of authors.>-63

We develop and implement a method for estimating
a complete parameter set for our nearest-neighbor, dimer-
dependent model from atomic-resolution MD data. The over-
all method comprises two main parts. The first ingredient
is the estimation of means and covariances from the MD
time series, assuming that these time series are themselves
stationary. To obtain parameters consistent with the B-form
DNA structural family, we follow the treatment in previous
work* and employ special procedures for excluding struc-
tures with broken H-bonds. Broken bonds provide a signal
that a structure is defective, for example, it may have frayed
ends. The second ingredient is the numerical optimization of
various fitting functionals. Specifically, the model parameter
set is fit to the estimated means and covariances of a training
set of oligomers using a maximum relative entropy approach
in which a Kullback-Leibler divergence between the model
and estimated probability densities is minimized. Although
both densities are assumed to be of a Gaussian form, numer-
ical minimization is nonetheless required due to the structure
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of the model. As a concrete example, we explicitly imple-
ment the proposed parameter estimation method on an exten-
sive database of MD time series produced by a consortium
of groups,'”?! complemented with additional, and compat-
ible, time series data that we simulated to have training set
oligomers with a sufficient diversity of sequences at the lead-
ing and trailing ends. Both data sets comprise all-atom sim-
ulations, with explicit solvent and ions, of over 50 different
oligomers in total, where each oligomer was either 12 or 18
basepairs long, with simulation times of 50-200 ns for each
oligomer. From this data, we have obtained an initial, best-fit
parameter set for double-stranded, B-form DNA under stan-
dard environmental conditions.

We then present several quantitative assessments that
illustrate various features and limitations of our nearest-
neighbor, dimer-dependent model with its current parameter
set. This parameterized model is compared against others in
the hierarchy to assess various assumptions pertaining to the
locality of the energetic couplings and the level of sequence
dependence of its parameters, and compared against direct,
all-atom MD simulation to assess its predictive capabilities.
For each of several example oligomers, the model predicts a
Gaussian probability density on the high-dimensional internal
configuration space of the oligomer, that is in good agreement
with statistics garnered from direct MD simulation. In addi-
tion to direct comparisons of means, covariances, and various
marginals, we also adopt the Kullback-Leibler divergence to
compare overall differences between probability density func-
tions. The results indicate that the nearest-neighbor, dimer-
dependent model with the current parameter set is less sat-
isfactory at modeling the ends of an oligomer than its inte-
rior. One possible explanation for this observation is that the
current model of the ends of an oligomer is a simple exten-
sion of the model in the interior, with no additional assump-
tions or parameters being introduced to capture any excep-
tional end effects. We also remark that the assumed Gaus-
sian form of the model precludes it from capturing any type
of bi-modal or fraying behavior of the bases of an oligomer.
Because some instances of such behavior are evident in the
MD data, we a priori expect some discrepancies in our com-
parisons. Nevertheless, within these limitations, our exam-
ples show that the model can quantitatively predict the equi-
librium statistical properties of many oligomers rather well.
Specifically, the model can successfully resolve sequence ef-
fects both within and between oligomers, and can success-
fully predict properties such as the nonlocal effects of single
point mutations in the sequence. Compared to more sophisti-
cated models in the hierarchy with larger parameter sets, the
nearest-neighbor, dimer-dependent model represents a practi-
cal compromise between complexity of the model and accu-
racy of the model predictions. We also expect the accuracy
of the nearest-neighbor model to improve as more MD data
becomes available for use as a training set, so that the model
parameter set can be further refined.

The presentation is structured as follows. In Sec. II,
we establish notation and outline the internal coordinates
and quadratic free energy for a general rigid-base model of
DNA. In Sec. III, we introduce the concept of hierarchi-
cal local energies and define two different nearest-neighbor,
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sequence-dependent models for the free energy function and
describe their properties. In Sec. IV, we describe the MD sim-
ulations that were used in our study and a procedure for the
estimation, from the observed time series, of the coarse-grain
equilibrium probability densities that form our training set. In
Sec. V, we describe a method for fitting model predictions of
probability densities to the observed training set using a max-
imum relative entropy approach, and thereby obtain a first
best-fit parameter set. In Secs. VI and VII, we present var-
ious quantitative assessments that illustrate the effectiveness
of the nearest-neighbor, dimer-dependent model with our cur-
rent parameterization. Finally in Sec. VIII, we summarize our
results and conclusions. The supplementary material®® pro-
vides an extensive discussion of the necessary background
material that is exploited in the main text, along with further
comparisons of predicted and observed quantities for various
oligomers.

Il. PRELIMINARIES
A. Configuration coordinates

We consider right-handed, double-helical DNA in which
bases T, A, C, and G are attached to two, oriented, anti-
parallel backbone strands and form only the standard Watson-
Crick pairs (A, T) and (C, G). Choosing one backbone strand
as a reference, a DNA oligomer consisting of n basepairs is
identified with a sequence of bases XX, - - - X,,, listed in the
5’ to 3’ direction along the strand, where X, € {T, A, C, G}.
The basepairs associated with this sequence are denoted
by (X, Y)l, X, Y)z, e, (X,X),,, where X is defined as the
Watson-Crick complement of X in the sense that A=T,
T=A,C =G, and G = C. The notation (X, X), for a base-
pair indicates that base X is attached to the reference strand,
while X is attached to the complementary strand, and there are
four possible basepairs (X, X), corresponding to the choice
X, € {T.A, C,G}.

We adopt a coarse-grain model of D in
which each base is modeled as a rigid object, so that the con-
figuration of an oligomer is equivalent to the configuration
of all of its constituent bases. We follow closely the coordi-
nate conventions and notation used in a precursor work:® a
complete, self-contained description of the coordinates is also
provided in the supplementary material.®® The configuration
of an arbitrary base X, is specified by giving the location of a
reference point fixed in the base, and the orientation of a right-
handed, orthonormal frame attached to the base. The refer-
ence point and frame vectors are defined according to the re-
cent Curves+ implementation®® of the Tsukuba convention,®’
which provides prescriptions for these quantities in terms of
the atomic positions within a base. In the model, the positions
of the non-hydrogen atoms in each base of each basepair with
respect to the associated reference point and frame are con-
sidered to be constant. As a result, once the reference point
and frame of each base are specified, so too are the positions
of all of the non-hydrogen atoms.

In a rigid-base description, the three-dimensional config-
uration of a DNA oligomer is determined by the relative rota-
tion and displacement between neighboring bases both across

NA43,56,57,67
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and along the two backbone strands. In part to ensure a sim-
ple Watson-Crick symmetry relation between the two possi-
ble choices of reference strand, we introduce a basepair ori-
gin and frame as the appropriate average of the two associ-
ated base reference points and frames, and a junction origin
and frame as the appropriate average of two adjacent basepair
origins and frames. Thus, the rekltive rotation and displace-
ment between the bases X, and X, across the strands can be
described by an intra-basepair coordinate vector y* = (9, §)*
€ R in the basepair frame, and the relative rotation and dis-
placement between the basepairs (X, X), and (X, Y)Hl along
the strands can be described by an inter-basepair coordinate
vector z¢ = (0, ¢)* € R® in the associated junction frame.
The relative displacement coordinates £¢, ¢¢ € R? are of the
standard Cartesian type in the appropriate frame, while the
relative rotation coordinates ¢, 8¢ € R? are of the Cayley
type in the appropriate frame, as detailed in the supplemen-
tary material.%

The definitions of the coordinates (¢, £)* and (0, ¢)*
can be shown to satisfy all the qualitative guidelines set
forth in the Cambridge convention®® for nucleic acid struc-
tures, including the symmetry conditions associated with a
change of reference strand. Accordingly, we refer to the com-
ponents of the intra-basepair rotation vector ¢ as buckle-
propeller-opening, the intra-basepair translation vector &¢
as shear-stretch-stagger, the inter-basepair rotation vector 6¢
as tilt-roll-twist, and the inter-basepair translation vector ¢
as shift-slide-rise. We remark that because the components of
¥ and 6 are rotational coordinates of the Cayley type, they
are not conventional angular coordinates about various axes
as employed by many authors; however, they can be put into
correspondence with conventional angular coordinates, and in
the case of small rotations (measured in radians) are nearly
identical.

Notice that the complete configuration of a DNA
oligomer is specified by introducing a vector z° = (8, ¢)° of
six additional coordinates for the first basepair frame and ref-
erence point with respect to an external, lab-fixed frame. Ig-
noring these six degrees of freedom exactly corresponds to
eliminating the overall symmetry of rigid body motion that
exists when there is no external potential field.

B. Free energy

Consistent with a rigid-base description of DNA, we
adopt a free energy model in which the energy of an arbitrary,
n-basepair oligomer is given by a general, shifted quadratic
function

Uw) = %(W—VAV)-K(W—VAV)—i—G, (1)

, 7L yh) e R!27-6 i the vec-
(12n—6)x (12n—6)

wherew = (y', z!, y%, 2%, ...
tor of internal configuration coordinates, K € R
is a symmetric, positive-definite matrix of stiffness parame-
ters, W € R'?"~¢ is a vector of shape parameters that define
the ground or minimum energy state, and U > 0 is a con-
stant that represents the energy of this state compared to an
unstressed state. Thus U = 0 implies that the ground state is
unstressed, whereas U > 0 implies that it is stressed. In the
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latter case, the oligomer is referred to as being pre-stressed
or frustrated. We are unaware of a prior discussion of the
concept of pre-stress in the context of a coarse-grain model
of DNA. Indeed, it cannot arise in a local nearest-neighbor,
rigid-basepair model with a linear-chain topology of interac-
tions as have been considered by various authors. However,
the possibility of pre-stress or frustration arises in the nearest-
neighbor, rigid-base model to be developed here and is a nat-
ural consequence of a double-chain topology of interactions.

We assume that the oligomer material parameters U, w,
and K are completely determined by the oligomer length n and
sequence X - - - X,, along the reference strand. Equivalently,
we assume there exist functions U, W, and K such that

U:U(n,XI,...,Xn),

~ (2
WIW(H,Xl,...,X,,), KIK(H,Xl,..

o Xn)-

The aim of this article is to construct explicit forms of these
material parameter functions. Indeed, with such functions in
hand, the free energy function in (1) could then be constructed
for oligomers of arbitrary length and sequence, which would
allow various properties of their shape, stiffness, and frustra-
tion to be predicted and studied.

The freedom in the choice of reference strand, taken with
the intrinsic objectivity of the free energy, imply that the func-
tions U, W, and K cannot be completely arbitrary. To see this,
let U(w) and U, (w,) denote the free energies of an oligomer
computed using the two different choices of reference strand:
the sequence along one is X| - - - X,,, and along the other it is
Xi---X*. Thus, U(w) is given by the expression in (1) with
the parameters in (2), and U,(w,) is given by an exactly anal-
ogous expression with the parameters

U, = U@, X, ... X5,

—~ (3)
W, =W, X5 ..., X5, K, =K@, X, ..

S X0,
From the objectivity condition that U(w) must equal U, (w,)
for all possible configurations, together with the change-of-
strand relations outlined in previous work,® we deduce that
the material parameter functions must satisfy

U(na Xl5 A 7Xl‘l) = U(n»in’ A 'ail)a
W(H,X],...,Xn)zE”W(n,in,...,il), (4)
K(n, X1, .... %) = E.K(n, X, ... X)E,.

Here, E, € R(121=0x(121=6) g 3 block, trailing-diagonal ma-
trix formed by 2n — 1 copies of the constant, diagonal matrix
E = diag(—1,1,1, -1, 1, 1) € R®*5, with the property that
E, =E! =E,". Specifically, we have

E

The relations in (4) are a straightforward consequence of
the Watson-Crick symmetry of DNA and can be described
as follows. Characterize the 12 types of internal coordinates
as being odd or even, where the odd coordinates are buckle,

J. Chem. Phys. 138, 055102 (2013)

shear, tilt, and shift (one each of intra- and inter-basepair,
and one each of translation and rotation) and the remaining
8 are all even. Then under a change of reference strand the
odd coordinates of any configuration at any location along
an oligomer change sign, whereas the even coordinates re-
main unaltered. The relations in (4) state that the material pa-
rameters delivered by the functions U, W, and K must be
in concordance with this property. Specifically, the frustration
energy delivered by U must be invariant to the choice of ref-
erence strand, the shape parameters delivered by W must be-
have in precisely the same way as the internal coordinates,
and the stiffness parameters delivered by K must behave in
a consistent way; namely, parameters for odd-even couplings
change sign under a change of reference strand, whereas pa-
rameters for odd-odd and even-even couplings remain unal-
tered.

C. Configuration density

The equilibrium distribution of the internal coordinates
w € R!2"=6 of a rigid-base model of DNA, in contact with a
heat bath at absolute temperature 7, is described by the den-
sity function*>#

W_l
o( )—Z—

e IWIbT (), Z,= / e UWIkST 1 (w) dw.
J

(6)
Here, kg is the Boltzmann constant, Z; is a normalizing con-
stant, and J is a Jacobian factor which arises due to the non-
Cartesian nature of the rotational coordinates, namely,

n—1 n
J(w) = []_[(1 + ile“lz)‘z} []_[(1 + §|ﬂ“|2)—2] )
a=1 a=1

The statistical mechanical average (¢) of any state function
¢ = ¢(W) with respect to the density p is given by

(@) = / SW)p(W) dw, ®)

where, in part because we have employed a Cayley parame-
terization of rotation matrices, all integrations are performed
over the domain R'?"~6,

Notice that the internal configuration density p, and
hence the statistical mechanical average of any internal state
function ¢, is invariant under shifts of the oligomer free en-
ergy U. Hence, the actual value of the oligomer frustration
energy U appearing in (1) does not explicitly affect the statis-
tical properties of the system. This is consistent with the fact
that the free energy of the system is itself only defined up to an
arbitrary constant. In (1), the arbitrary constant is chosen so
that zero energy corresponds to an unstressed state, which for
a given oligomer may or may not correspond to an accessible
state.

D. Nondimensionalization

For the purposes of numerics and analysis, it will be
convenient to introduce scales and transform the rigid-base
model into a dimensionless form. Specifically, we introduce
a characteristic scale £ for the translational coordinates, a
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characteristic scale g for the rotational coordinates, and define
dimensionless variables X”, z“, and W by

y=G"y =Gz w=G'w. (9
where G = diag(g, g, g. £, £, £) € R%*® is a constant, diago-
nal matrix and G, € R(1Z"=0x(121=6) jg the diagonal matrix
formed by 2n — 1 copies of the matrix G. Moreover, we use
the characteristic scale kg7 and define a dimensionless free
energy by U = U/kgT. Substituting this and the above rela-
tions into (1), we obtain

1 - - ~
Uw) = ;W —w) - Kw —w) + U, (10)
where W, K, and Q are dimensionless parameters given by

=G, 'w, U=U/ksT). (11)

n

=)

A dimensionless form of the internal configuration density
can also be derived. Specifically, by substituting (9) and (10)
into (6) we obtain

1
pW) = ——e 5 J(w),

2 Z,= f e W J(w) dw,
=N

(12)
where J is the transformed Jacobian factor given by

n—1 n
J(w) = []‘[(1 - ig2|Q“|2>2] []‘[(1 + igzmﬂz)z} :
a=1 a=1
(13)
In any given application, the scales £ and g would nor-
mally be set by the phenomena of interest. The scale ¢ is
ideally chosen to describe the magnitude of the variation in
the intra- and inter-basepair translational variables, whereas
the scale g is ideally chosen to describe the magnitude of the
variation in the intra- and inter-basepair rotational variables.
In the analysis of molecular dynamics data of DNA, the phe-
nomena of interest are fluctuations of atomic positions on the
order of 1 A. Hence, a reasonable scale for the translational
variables is £ = 1 A because variations in these variables
are in direct correspondence to variations in atomic positions.
Moreover, a reasonable scale for the rotational variables is g
= 1/5 (radians) because variations of this size in these rotation
variables, about a zero reference value, correspond to a varia-
tion of about 1 A in atomic positions of the atoms making up
a base. This follows from the fact that the characteristic size
of both a base and the junction between basepairs is approx-
imately 5 A, so that rotational variations of 1/5 give rise to
variations in atomic positions of approximately 1 A. Through-
out the remainder of our developments, we restrict attention
to the dimensionless formulation outlined above with these
scales and drop the underline notation for convenience.
We remark that the precise values of the factors £ and
g are inconsequential; rather, it is the order of magnitude of
the scaling between rotational and translational variables that
is significant when discussing the validity of an approxima-
tion. For example, a slightly different scaling was adopted
in precursor work.** While the difference between these two
scalings is not important, we now prefer the rationale for the
choice that is given here.

J. Chem. Phys. 138, 055102 (2013)

E. Gaussian approximation

Although the free energy U is quadratic, the density p
is non-Gaussian due to the presence of the Jacobian factor J.
However, when the gradient of J is sufficiently small and p is
sufficiently concentrated, it is reasonable to expect that varia-
tions in J can be neglected (see the supplementary material®®).
By the Gaussian approximation of the internal configuration
density p we mean the density obtained by assuming J to be
constant. In this approximation, we have

1
p(W) = Ee*““”, Z= / eI gw. (14)

By making appropriate choices for the function ¢ in (8), and
using standard results for Gaussian integrals,®® we obtain the
moment-parameter relations

wew)=K'+wew,

(15)
where AW = w — W and ® denotes the usual outer or tensor
product of a vector; in components we have [AW ® AW],,
= AW,AW,.

W)y=W, (Aw® Aw)=K™,

F. Probability density comparisons

The equilibrium statistical properties of the internal con-
figuration of an oligomer are described by the density p(w),
which is completely defined by the free energy parameters
K and W. Throughout our developments it will be necessary
to quantify the difference in two densities o, (W) and po(W)
defined by two different sets of parameters {K,, Wy} and
{K,, W,}. To this end, we appeal to standard results from prob-
ability theory’® and employ the Kullback-Leibler divergence

16)

D(pm. po) = / p(W) In [” '“(W)} dw

Po(W)

A more complete discussion of the Kullback-Leibler di-
vergence can be found in the supplementary material,%
but for our purposes it suffices to observe that in general
D(pm; po) # D(pos Pm)s D(pm, po) > 0 for any pn and po,
and D(pm, po) = 0 if and only if p,, = p,. And in the spe-
cial case when py, and p, are both Gaussian, the integral in
(16) can be explicitly evaluated to obtain

1
D(pm, Po) = 5[K,;1 : Ko — In(det Ko/ detKy) — 1 : 1]

1 —~ —~ —
+ E(Wm - Wo) . Ko(wm - Wo)a (17)

where a colon denotes the standard Euclidean inner product
for square matrices and I denotes the identity matrix of the
same dimension as K, and K,.

The divergence D(pn, po) is widely employed in vari-
ous standard parameter estimation methods in statistics and
statistical mechanics.”'~”> When p, is interpreted as an ob-
served density and p, is interpreted as a model density, then
the minimization of D(pn, po) over a space of admissible pp,
yields a best-fit model density o . Alternatively, due to the
lack of symmetry, minimization of D(p,, pm) Oover py, yields
a generally different best-fit model density px*. The first
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055102-7 Gonzalez, Petkeviciute, and Maddocks

approach can be described as model fitting via the maximum
relative entropy principle,”* whereas the second approach, in
the Gaussian case, can be shown to correspond to model fit-
ting via the maximum likelihood principle. In the develop-
ments that follow, we adopt the maximum relative entropy
approach when fitting models to data.

lil. MODELS
A. Nearest-neighbor assumption

For the purposes of building a free energy model, we
consider different partitions of an oligomer into different
types of structural units. Here, we restrict attention to a
nearest-neighbor model built on two types of units: 1-mers
(or monomers) and 2-mers (or dimers). However, we in-
tentionally establish a notation that generalizes naturally to
trimers, tetramers, and so on to facilitate extensions in later
work. Specifically, an oligomer of n basepairs and arbitrary
sequence X; - -- X, can be partitioned into 1-mer units X,, a
=1,..., n, and 2-mer units X, X,+,a=1,...,n — 1. Just
as the internal configuration of the oligomer is specified by
the coordinate vector w € R!2"~°_ the internal configuration
of each 1-mer X, is specified by the coordinate vector wf{
=yt e R and the internal configuration of each 2-
mer X,X,41 is specified by the coordinate vector Wwj
= (y%,z% y**!) e R'®. For convenience, the collection of
all 1-mer coordinates will be denoted by w; = (W%, WD
€ R and the collection of all 2-mer coordinates will be
denoted by wy = (W}, ..., w5 ") € R18"=D_ We stress that
there is considerable redundancy in this notation in that the
intra-basepair variables y¢ appear in both w¢ and w4~'. This
redundancy is both notationally convenient and physically
pertinent; the redundancy is the mathematical expression of
the physical phenomenon of frustration.

In our developments, it will be necessary to consider var-
ious linear maps between the vectors w, wy, and W,. The ma-
trix which copies elements of W into the 1-mer vector W is
denoted by P, € R® x R!?"% so that w; = P,w, and the
matrix which copies elements of w into the 2-mer vector w;
is denoted by P, € R!18®#=D » R12=6 5o that w, = P,w. The
explicit forms of these matrices are

1 0000 ...0
01 0 0
p—|0 000 ol
0000 0 I

(18)
1 0000 0
071000 0
001 00 0
001 00 0
Pr=10 001 0 K
0000 I 0
00000 I

J. Chem. Phys. 138, 055102 (2013)

where 0 € R%%® and I € R%*® denote the zero and identity
matrices. It will also be necessary to consider the transpose
matrix PIT, which maps a 1-mer vector U; into an oligomer
vector U = PlTul. Here, the entries in u; (all of which are
intra-basepair coordinates) are mapped to their corresponding
location in u, and the remaining entries of u (all of which cor-
respond to inter-basepair coordinates) are zero. Similarly, the
transpose matrix P2T maps a 2-mer vector U, into an oligomer
vector U = PZT U,. Here, the entries in U, are mapped to their
corresponding location in u, and overlapping contributions
are summed.

We consider a free energy model based on local energies
that describe physically distinct interactions within the 1-mer
and 2-mer units. Specifically, to any 1-mer X, we associate an
energy of the form

1 ~ ~
Uiwy) = E(w’f —w{) - Kf(w{ —w{), (19)

where VAV‘f € R% is a vector of shape parameters that de-
fine the minimum energy or ground state of the interaction,
and K{ € R®*® is a symmetric matrix of stiffness parameters
that describe the elastic stiffness associated with each inter-
nal coordinate and couplings between them. The energy U{
is to be interpreted as a model for the intra-basepair inter-
actions between the two bases of (X,X)a. The description
of these interactions involves only the intra-basepair coordi-
nates W{ = y“, and the stiffness matrix K{ may in general be
dense.
Similarly, to any 2-mer X,X,+; we associate an energy

1 — -~
Us(ws) = S(w5 — W) - Kiws — W), (20)

where VAv‘z’ € R is a vector of shape parameters and K
€ R8<18 j5 a symmetric matrix of stiffness parameters anal-
ogous to before. The energy UJ is to be interpreted as a
model for all the inter-basepair interactions involving a base
of (X, X), and a base of (X, X), 1, in other words any nearest-
neighbor, base-base interaction across the junction between
the basepairs (X, X), and (X, X)4+1. The description of all
these interactions naturally involves the internal coordinates
wj = (¥4, 24, y"“). The stiffness matrix K‘; may, in general,
be dense and has the natural block form

a a a
K2,11 K2,12 2,13

gz Kg,n Kg,zz Kg,23 > (2D

a a a
K2,31 2,32 2,33

where each entry is an element of R%*®. The assumption
that the overall matrix is symmetric implies that the diag-
onal blocks K3 ||, K3 ,,, and K ;5 are each symmetric, and
implies that the off-diagonal blocks satisfy [K3 ,]" = K3 ,,,
(K317 = K531, and [K5 531" = K3 5.

The local 1-mer and 2-mer energies can be summed in a
natural way to obtain an overall oligomer energy. Specifically,
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we define the oligomer energy as

2 n—j+l

Do D Uiw
j=1 a=1

2 n—j+1

_Z Z(w —Wj) - Kj(w§ —w9). (22)

Uw)

Here, the index j = 1, 2 is a label for the 1-mer and 2-mer
interactions, and for each j, theindexa=1,...,n —j+ 1 runs
over all the j-mers along the oligomer. The oligomer energy
can be written in a more convenient matrix form as the sum
of two shifted quadratic forms (of different dimensions)

2
1 —~ ~
n—j+1

where W; = (W}, ..., W} /™) is a vector containing all the j-

mer shape parameters, KJj = diag(K}, e, K;'.fjﬂ) is a block-
diagonal matrix containing all the j-mer stiffness parameters,
and P; is the matrix which copies oligomer coordinates into
Jj-mer coordinates as defined above. By completing squares,
we find that this energy can be expressed in the standard form

introduced in Eq. (1) of Sec. I B,

1 — - ~
Uw) = E(W —W)-Kw—w)+ U, (24)
where
2
K=> PIK;P;,
j=1
w=K"|Y PIKW, |, (25)

The above relations play a fundamental role in our free
energy model. They show how the oligomer-based energy pa-
rameters K, W, and U depend on the j-mer-based energy pa-
rameters contained in K; and W;. Specifically, from (25); and
the definitions of P; and K;, we deduce that K is a banded,
block matrix whose entries depend locally on the entries of

K; (G =1, 2) as illustrated below:
D 1
: 7 :
o | 2, /4,

1 KPPy P35 KyPy
(S1)
In the illustration, the shaded entries denote the blocks
KL K| e R®%6 of K, the ruled entries denote the blocks
Ky, ...,Ki7l e R!8%18 of K,, grid lines denote elements
of R®*® and entries in the double and triple overlaps are
summed in the obvious way.

In contrast to the stiffness, the entries of the oligomer
shape vector W do not depend locally on the entries of W; (j
= 1, 2). Indeed, from (25), we see that the vector W is re-
lated to the vectors W; through the inverse matrix K~'. Specif-

J. Chem. Phys. 138, 055102 (2013)

ically, the entries in the product K;W; depend locally on the
entries of W;; the product is a j-mer vector of weighted j-mer
shape pararneters Moreover, by definition of P, the entries
of the product P K;W; also depend locally on those of W;;
matrix P maps contrlbutlons from each j-mer into its corre-
spondmg location in the oligomer, with overlapping contribu-
tions being summed. However, the matrix K~! will in general
be dense; its diagonal blocks will be dominant with its off-
diagonal blocks decaying with distance from the diagonal at a
specific rate in accordance with the bandwidth of K. From this
we deduce that the oligomer shape parameters in W will be a
convolution of the j-mer shape parameters in W The convo—
lution window will be peaked along the dlagonal of K~! and
will decay at a rate as described above.

The oligomer energy introduced here provides a natural
model for frustration. Indeed, the term Uin (25); will, in gen-
eral, be non-zero. This reflects the fact that, in the minimum
energy or ground state W of the oligomer, each base cannot si-
multaneously minimize all of its j-mer interactions. Explicitly,
each base cannot simultaneously minimize its intra-basepair
interaction energy, and its two inter-basepair, cross-junction
interaction energies. Instead, each base must find a compro-
mise, which provides the physical explanation for the nonlo-
cal nature of W. We may refer to the forces between bases re-
quired to maintain this state of compromise as the frustration
forces; their collective energy content over the entire oligomer
is precisely the frustration energy U.

B. Sequence-dependence assumptions

A nearest-neighbor free energy for an oligomer of length
n is completely determined by the shape and stiffness param-
eters {(W{,K{} (@a=1,...,n) and {W5,KS} (@a=1,...,n — 1)
introduced above. In general, these parameters may depend on
the oligomer length n, the entire oligomer sequence X; - - - X,,,
and the location a within the sequence. Of course, we seek the
simplest possible model for this dependence compatible with
a desired accuracy. Here, we consider two such models for the
parameters and outline their properties.

1. Oligomer-based nearest-neighbor model

By an oligomer-based model, we mean one in which the
parameters {W¢, K{} and {w4, K3} depend on the oligomer
length, sequence, and location in the most general way.
Specifically, we assume there exist functions Wy, K, W,, and
K, such that

W‘f = W](n, Xl, . ,X,,,Cl) € R(’,

K = K, Xy, ... %y, a) € RS,

~ (26)
Wg = W2(n, Xl5 e ’Xl‘laa) € nga

Kg = Kz(n,Xl, ey X,,,a) € ng)dg.

In view of the relations in (25), this assumption implies
that the oligomer stiffness and shape parameters K and W
could be arbitrary functions of the oligomer length and se-
quence, subject only to two conditions. First, that K should
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have the nearest-neighbor sparsity structure illustrated in (S1),
and second that the parameters for an oligomer with se-
quence X;---X, are necessarily related by objectivity to
those for an oligomer with sequence X, ---X;. Thus in
this model there is no finite set of parameters that de-
scribe all possible oligomers of all possible lengths. Nev-
ertheless, we will make use of such oligomer-based mod-
els as an intermediate step in our consideration of pa-
rameter training sets extracted from molecular dynamics
simulations.

2. Dimer-based nearest-neighbor model

By a dimer-based model, we mean one in which the
parameters {W¢, K{} and {W4, K} depend only on the lo-
cal dimer sequence X,X,., but not explicitly on either the
oligomer length » nor the location a. Specifically, we assume
there exist functions Wy, K, W,, and K, such that

W'=W;(X,) € R®, K¢=K;(X,) € R®*°,
1 1( ) 1 1( ) (27)

W =WrXy, Xas1) € R', KI=Ky(X,, Xoy1) € RISTS,

Notice that the above relations are assumed to hold at the ends
of an arbitrary oligomer as well as in its interior; additional as-
sumptions or parameters could be introduced to capture any
exceptional end effects, but we do not explore that line of in-
vestigation here. For this dimer-based model, we note that
there is a finite set of parameters that describe the energy
of all possible oligomers of all possible lengths. Specifically,
each of the functions W;(X,) and K;(X,) can assume only
4 possible values corresponding to the 4 possible choices of
X, € {T, A, C, G}, of which only 2 are independent. Simi-
larly, each of the functions W,(X,, X,+1) and Ko(X,, X441)
can assume only 16 possible values corresponding to the
16 possible choices of the pair X,, X, € {T, A, C, G}, of
which only 10 are independent.

The numbers of independent functions is dictated by ob-
jectivity. In this respect, it is sufficient to assume that the func-
tions Wy, K|, W,, and K, are locally objective in the follow-
ing sense, for any X, Y € {T, A, C, G}:

Wi(X) = E;Wi(X),  Ki(X) = E;K;(X)E,

o (28
Wa(X, Y) = E;Wa(Y, X), KX, Y) = E2Ka (Y, X)E,.
These conditions imply that the values of the functions are
not all independent. Specifically, if we arrange the 4 possible
values for X in a table as shown

A G | TC,

then the value of W, for the entries on the right-half of
the table are completely determined by those of the left-
half, namely, W (T) = E; W;(A) and W;(C) = E; W,(G),
and similarly for K. Thus, there are only 2 independent val-
ues of the monomer parameter functions {W;, K }. Similarly,
if we arrange the 16 possible values of XY in a table as shown,
where X is vertical and Y is horizontal,

J. Chem. Phys. 138, 055102 (2013)

T C A G
A AT AC AA AG
G GT GC GA GG
T TT TC TA TG
C CT CC CA CG,

then the value of W, for the entries above the table di-
agonal are completely determined by those below, namely,
W, (A, C) = E;W,(G, T) and so on, and similarly for K.
Moreover, the value of W, for each diagonal entry must
satisfy the self-symmetry condition W,(A, T) = E;W,(A, T)
and so on, and similarly for K,. From this, we deduce that
there are only 10 independent values of the dimer parameter
functions {W,, K,} corresponding to a triangular portion of
the table with the diagonal included, and that values for the di-
agonal entries must be invariant under the transformation E,.
Note that the four 2 x 2 blocks of the table have some physical
significance: the two diagonal blocks correspond to purine-
pyrimidine and pyrimidine-purine dimer steps, whereas the
two off-diagonal blocks correspond to purine-purine and
pyrimidine-pyrimidine dimer steps. In summary, a nearest-
neighbor, dimer-based model is completely defined by a set
of parameters

\’I\V? = Wi(a) € R6’ Ktit =K, (o) € R6X6, aeM,
Wgﬁ = Wi(e, B) € RIS’ K‘;ﬂ =Ks(e, B) € RISX[S’ (29)
ap €D,

where M is a set of any 2 independent monomers and D is a
set of any 10 independent dimers.

In our later developments, it will be convenient to work
with weighted shape parameters instead of the unweighted pa-
rameters W and WS’ introduced above. Specifically, we intro-
duce the weighted shape parameters

o =KW e RS, oy =KW eRE. (30)
We remark that the parameters of* and o, P are stress-like in
character, each being the product of a strain parameter by a
stiffness matrix. Their physical interpretation is not immedi-
ately evident, but they arise very naturally in the algebra of the
problem. Hence, a complete nearest-neighbor, dimer-based
parameter set is defined by specifying the values of {0}, K{}
for « € M and the values of {o5”, K’} for «f € D. Parame-
ters for all other monomers and dimers can be obtained from
the objectivity relations (28), which also imply that the param-
eters associated with the four palindromic dimer steps must
satisfy the appropriate self-symmetry conditions. One such
complete parameter set will be presented later.
N The shape, stiffness, and frustration parameters w, K, and
U for any given oligomer X; -- - X,, can be assembled from
the monomer and dimer parameters {o[*, K} and {aa"3 , Kgﬂ }
using the relations in (25). Specifically, and omitting the ex-
pression for U for brevity, the expressions for the oligomer
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parameters W and K take the forms

J. Chem. Phys. 138, 055102 (2013)

K = PKP +PJKP, € RI2=0x(121-0)
o = PlTal + P2T(72 € R12—6 31
W = Klo e R12n-6,
where

Ki = diagKj,...,K) e R0,

o = (011,...,01") e R,

K, = diagKl,...,KI"!) e R8e=DxI80=D)

o = (0),...,0h € R8¢,

K¢ = K € RO (a=1,....n), 32

ot = o € RS (a=1,...,n),

K = KSXer e RI8x18 @=1,....n—1,

of = azx”x““ e RI8 a=1,...,n—1).

Notice that the oligomer stiffness matrix K and shape vector
W depend directly on the local stiffness and weighted shape
parameters {of, K{} and {0, p K‘;ﬂ }, but only indirectly on
the local unweighted shape parameters W¢ and W2 via the
definition (30). For this reason, we henceforth restrict atten-
tion to the weighted parameters. The unweighted parameters
are needed explicitly only when either the oligomer frustra-
tion parameter U or the local energy functions U{ and U are
needed explicitly.

The dependence of each block of the oligomer stiffness
matrix K and weighted shape vector o upon the oligomer se-
quence X; - - - X,, are illustrated below. On the left-hand sides,
each single number in a block denotes a dependence on the
monomer X,, while each pair of numbers in a block denotes
a dependence on the dimer X, X, . On the right-hand sides,
the double and triple overlapping blocks denote sums as be-
fore; notice that the shaded blocks with triple overlaps ex-
hibit an effective dependence on the trimer X,_1X,X,41 cor-
responding to the union of two adjacent dimers and a central
monomer:

I

=
Il

m
2
I B
(S3)
f
m

Pipol Pgog o

The overlapping structure of the map from local to oligomer
parameters defined in (31) and (32) and illustrated in (S2)

and (S3) has some interesting implications. A first implica-
tion concerns the observability of the local parameters. In po-
sitions within the oligomer arrays where there are no over-
laps, we find that the local parameters are directly observable:
there is no coupling and the oligomer parameters are equal to
the relevant local parameters. In contrast, in positions within
the oligomer arrays where there are overlaps, we find that the
local parameters are not directly observable: there is coupling
and the oligomer parameters are sums of relevant local pa-
rameters. Specifically, for the stiffness parameters, the struc-
ture of the coupling at interior positions within an oligomer
are all identical, of the form K35, + K+ Kg‘ﬁ |» Whereas the
structure of the coupling at each of the two ends is differ-
ent, of the form K/ + K57, at the leading end, and K33 + K
at the trailing end, for some «, 8, and y. Exactly analogous
couplings hold for the weighted shape parameters. In order
that these couplings can be resolved in the inverse problem of
determining local parameters from oligomer parameters, data
from the ends of an oligomer as well as from its interior are
required.

A second implication of the structure of the map from
local to oligomer parameters concerns the positivity of the
local stiffness parameters. The set of local stiffness param-
eters {KY, K‘;ﬁ } is called admissible if it yields a positive-
definite oligomer stiffness matrix K for an arbitrary sequence
XX, -+ X, of arbitrary length n > 2. In view of the addi-
tive, overlapping structure of the map from local to oligomer
parameters, a sufficient condition for admissibility is that
each of the local stiffness parameter matrices be positive-
definite. Alternatively, a weaker set of conditions are also
sufficient, namely, that each of the local stiffness parameter
matrices be only semi-positive-definite, provided additionally
that the reconstructed oligomer matrices for any ten indepen-
dent sequences of length two (physical dimers) are positive-
definite. This latter, weaker set of sufficient conditions is
mathematically more convenient than the former in dealing
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with certain optimization problems associated with the esti-
mation of local parameters. As it happens, the parameter set
we extract below has positive-definite local stiffness matrices,
but some are nearly only semi-definite due to the presence
of some extremely small eigenvalues. Nevertheless, the full
set of reconstructed physical dimer stiffness matrices are ro-
bustly positive-definite; their smallest eigenvalues are much
larger than those of the local matrices. Thus, the weakened
sufficient conditions seem to be of some importance in the
parameter estimation problem.

IV. THE TRAINING DATA SET

The development of the previous Sec. III resolves the for-
ward problem for a nearest-neighbor, dimer-based model of
DNA. In other words, we have described how to reconstruct a
shifted quadratic model of the free energy of an oligomer of
arbitrary length and sequence starting from a finite parame-
ter set. However, our main interest is the more difficult, in-
verse problem of how to estimate this finite parameter set
from a sufficiently rich training data set. Here, we describe
the data set that was used for this purpose. While the data we
employed were generated using MD simulation, we remark
that our parameter extraction methods could be applied to any
analogous, sufficiently sequence-rich and accurate, training
data set obtained by other techniques, for example, NMR.

A. Basic assumptions

We consider data for oligomers of known length n,, and
sequence S,, u = 1, ..., N. For each oligomer, we as-
sume knowledge of an observed internal configuration density
Pyu.0(W) of the dimensionless coordinates W € R~ In a
first approximation, we assume that each density is a general
Gaussian of the form

o) = e B TIR,(33)
n,0

where W, , € R"“® is the observed mean and
Ko € RUZ=60x(121,26) js the observed stiffness ma-
trix for the oligomer. We assume K, , is symmetric and
positive-definite, but make no assumption about its sparsity.
Normally, for each oligomer, the density p, (W) is not
known directly, but only indirectly through a sample set or
time series. In this case, the observed parameters v'\vM,0 and
Ko must be computed accordingly. Below we describe the
computation of these parameters for the specific case of time
series data from MD.

B. The ABC data set

Our starting point was a shared pool of MD data on DNA
produced by the ABC collaboration within a consortium of
groups.'®! The ABC collaboration was initiated precisely
because of interest in coarse-grain parameter extraction, al-
though the data set is also being exploited in a variety of other
ways by other members of the consortium. The ABC data set
contains MD simulations of the 39 different 18-mers labeled
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by u =1,...,36 and u = 54, 55, 56 in Table I. This set
of oligomers was designed to include multiple instances of
all 136 possible tetramer sub-sequences away from the ends.
Crucially for us, every ABC oligomer was chosen to have 5'-
GC and GC-3' ends. This choice was made to minimize pos-
sible convergence issues in the simulations because GC dimer
ends were known to be among the most stable against end-
fraying. In the development of the theory presented here, and
as explained more in the supplementary material,®® we real-
ized that while we did not need all tetramer sub-sequences to
be present in our training set, we did however need a greater
variety of end-sequences. We therefore enhanced the orig-
inal ABC data set with 3 different 18-mers and 14 differ-
ent 12-mers labeled by u = 37, ..., 53 in Table I. When
considering both the reference and complementary strands,
these additional oligomers contain all 16 possible 5'-dimer-
step ends, and all 16 possible dimer-step-3’ ends. As the ad-
ditional oligomers were focussed on enhancing the range of
end-sequences in the training set, it was significantly faster to
simulate 12-mers rather than 18-mers, which partly motivated
our choice to use these shorter oligomers.

C. MD simulation protocol

Each DNA oligomer in the data set was simulated us-
ing atomic-resolution, explicit-solvent MD. The AMBER suite
of programs together with the parmbscO force field”® was
used. Simulations were run in water as modeled by the SPC/E
parameters’> with potassium neutralizing counter ions and a
total of 150 mM of KCI salt modeled with the parameters
from Dang.”® For each oligomer, the DNA duplex was built,
neutralized, hydrated, and equilibrated using a well-defined
protocol described in Ref. 21. The total number of atoms con-
tained in each simulation was approximately 36 000 for each
18-mer, and approximately 17 000 for each 12-mer. Each sim-
ulation was run in the NpT ensemble with a temperature of
300 K and a pressure of 1 atm, controlled by the Berendsen
algorithm.”” For each oligomer, a time series trajectory was
generated, where the length varied between 50 and 200 ns de-
pending on the consortium group running the simulation, and
a configuration snapshot was saved every 1 ps.

D. Observed training set data

The program Curves+% was used to calculate the coarse-
grain intra- and inter-basepair coordinates of each atomic-
resolution configuration saved in each MD simulation. In this
way, a time series of dimensionless internal coordinate vec-
tors Wg), l=1,...,L,, was obtained for each oligomer S,
in Table I, where L, denotes the total number of snapshots for
the oligomer. The simplest way to determine the oligomer pa-
rameters W, , and K, , is to assume that the time series Wﬁ)
is ergodic with respect to the density p, o(W). In this case,
the statistical mechanical averages over configuration space
appearing in the moment relations (15) can be replaced with
averages over the time series, and the desired parameters can
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TABLE I. Sequences S, contained in the MD data set.

J. Chem. Phys. 138, 055102 (2013)

w Su S}L 2]
1 GCTATATATATATATAGC GCTAGATAGATAGATAGC 29
2 GCATTAATTAATTAATGC GCGCGGGCGGGCGGGCGC 30
3 GCGCATGCATGCATGCGC GCGTGGGTGGGTGGGTGC 31
4 GCCTAGCTAGCTAGCTGC GCACTAACTAACTAACGC 32
5 GCCGCGCGCGCGCGCGGC GCGCTGGCTGGCTGGCGC 33
6 GCGCCGGCCGGCCGGCGC GCTATGTATGTATGTAGC 34
7 GCTACGTACGTACGTAGC GCTGTGTGTGTGTGTGGC 35
8 GCGATCGATCGATCGAGC GCGTTGGTTGGTTGGTGC 36
9 GCAAAAAAAAAAAAAAGC AAACAATAAGAA 37
10 GCCGAGCGAGCGAGCGGC AAAGAACAATAA 38
11 GCGAAGGAAGGAAGGAGC AAATAACAAGAA 39
12 GCGTAGGTAGGTAGGTGC GGGAGGTGGCGG 40
13 GCTGAGTGAGTGAGTGGC GGGCGGAGGTGG 41
14 GCAGCAAGCAAGCAAGGC GGGCGGTGGAGG 42
15 GCAAGAAAGAAAGAAAGC GGGTGGAGGCGG 43
16 GCGAGGGAGGGAGGGAGC GGGTGGCGGAGG 44
17 GCGGGGGGGGGGGGGGGC AAATAAAAATAAGAACAA 45
18 GCAGTAAGTAAGTAAGGC AAATAACAATAAGAACAA 46
19 GCGATGGATGGATGGAGC GGGAGGGGGAGGCGGTGG 47
20 GCTCTGTCTGTCTGTCGC GACATGGTACAG 48
21 GCACAAACAAACAAACGC ACGATCCTAGCA 49
22 GCAGAGAGAGAGAGAGGC ATGCTAATCGTA 50
23 GCGCAGGCAGGCAGGCGC AGCTGAAGTCGA 51
24 GCTCAGTCAGTCAGTCGC CGAACTTCAAGC 52
25 GCATCAATCAATCAATGC GTCTACCATCTG 53
26 GCGTCGGTCGGTCGGTGC GCATAAATAAATAAATGC 54
27 GCTGCGTGCGTGCGTGGC GCATGAATGAATGAATGC 55
28 GCACGAACGAACGAACGC GCGACGGACGGACGGAGC 56

then be estimated by the expressions

L
1 I3
- 0 0
I > Aawd @ aw?,
=1

1
I o -1 ._
Wy i= I E wi, K/L,O =

Ho=1

(34)

where AW,, :=W,, — W, o.

While the averaging relations in (34) are entirely stan-
dard, they must nevertheless be treated with caution for at
least three reasons. First, the time series may not be long
enough for the ergodicity assumption to be a good approx-
imation; a test of this is to consider palindromic oligomers
and assess whether the estimates of W, , and K, , satisfy the
requisite palindromic symmetries enjoyed by the exact val-
ues of these parameters. Second, our basic assumptions that
the density p, (W) and the associated time series Wg) are
Gaussian may not be a good approximation; a test of this is
to construct the marginal distribution (or histogram) of each
component of the internal coordinate vector from the time se-
ries and assess whether each marginal is indeed Gaussian.
The results of both of these tests are discussed in Sec. VI
for two representative oligomers S,, with more cases pre-
sented in the supplementary material,®® and with the results
for all of the oligomers of Table I being available at the site
http://lcvmwww.epfl.ch/cgDNA. Third, the estimate for the
inverse stiffness matrix, or covariance, given in (34) is known

to be sensitive to outliers in the time series. There are a vari-
ety of ways of attempting a more robust estimate, but we here
opt for simplicity and use only an explicit, physical criterion
to exclude outliers as described next.

Our objective is to parameterize a coarse-grain,
sequence-dependent, Gaussian model of B-form DNA. How-
ever, in a large ensemble of long MD simulations, there are
inevitably events where the DNA departs from a configuration
that could be described as B-form. Indeed, for each sequence,
we observed that basepairs transiently broke and re-formed
during the MD simulations. In particular, for the oligomers
with non-GC ends, there were significant periods where the
ends were frayed, although in most cases the double-helix
did eventually reform. As we cannot hope to capture such
phenomena with a Gaussian model, we filtered our time se-
ries; specifically, we eliminated from the averages in (34) all
snapshots with one or more broken hydrogen bond anywhere
along the oligomer. Following previous work,*>® we consid-
ered a hydrogen bond to be broken if the distance between
donor and acceptor was greater than 4 A. Our data suggest
(see the supplementary material®®) that the distribution of the
donor-acceptor distance is close to Gaussian with a mean of
approximately 3 A and a standard deviation of approximately
0.1-0.2 10\, which is in agreement with ab initio calculations
and high-resolution crystal structures.”® Hence by using a
threshold of 4 A, or approximately five standard deviations
above the mean, we exclude structures that are significantly
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outside the scope of our quadratic model. We remark that
although they are deliberately excluded in the current treat-
ment, frayed, melted, and other non-B-DNA structures are of
course of considerable interest,*3-3%79-81

Using (34) together with our filtering criterion, we ob-
tained an observed shape (or mean) vector W,w, an observed
stiffness matrix K, ,, and an observed internal configuration
density p, (W) for each oligomer S,, u = 1, , 53 in
Table I, which corresponds to 39 distinct 18-mers and 14 dis-
tinct 12-mers. After filtering, a total of over 2.1 x 10° snap-
shots or approximately 2.1 microseconds of MD simulation
time remained in this data set. Specifically, for each of the
above oligomers there remained an average of approximately
40000 accepted configurations after filtering. We also initially
considered the oligomers S, u = 54, 55, 56, but found that
there remained comparatively few snapshots after filtering.
Hence, these latter oligomers were removed from the train-
ing data set and not considered further in our analysis.

E. Kullback-Leibler scale

To quantify various modeling errors it is convenient to
set a scale for the Kullback-Leibler divergence introduced in
(16). Moreover, since the divergence is a measure of the dis-
tance between two probability densities on the same config-
uration space, it is desirable to consider two separate scales:
one for 18-mers and one for 12-mers. For 18-mers, we define
a scale D, as the average of D(p,, o, Ou,,0) over all distinct
pairs of 18-mer sequences S, and S, in the data set. As de-
tailed in the supplementary material,® by direct computation
using (17), we find

D, = avg D(py,.0s Pus0) = 85. (35)

np=18
H1#R

A similar calculation could be done to determine a scale for
12-mers. However, for simplicity, we just scale the above
result by a factor of 2/3 to account for the smaller dimen-
sion of the configuration space and use the same symbol D,.
Hence for 12-mers, we use the scale D, = 57. The appropri-
ate value of D, provides a characteristic scale for the diver-
gence between the internal configuration densities of a pair
of oligomers of given length in our data set that is due to the
variation in the two sequences.

V. PARAMETER ESTIMATION

Here, we use our training data set to estimate, or fit, the
parameters in our nearest-neighbor models. While our main
interest is to fit the parameters for the nearest-neighbor model
with dimer-based sequence dependence, as an intermediate
step we first fit a nearest-neighbor model with oligomer-based
sequence dependence to each oligomer in the data set. This
procedure is adopted to better quantify the modeling errors
in the two distinct modeling assumptions of nearest-neighbor
interactions, and of dimer sequence dependence of the pa-
rameter set. The two-stage approach also enhances our nu-
merical treatment of the fitting problem. In what follows, we
use the subscripts M and m to denote quantities associated
with the two nearest-neighbor models with, respectively, gen-
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eral oligomer-based sequence dependence, and dimer-based
sequence dependence.

A. Oligomer-based fitting

In an oligomer-based model, each oligomer S, is de-
scribed by a model probability density

e_(W_W/L,M)'K;L,M(W_WJI,M)/Z’ (36)

ppLM(W) ZM,M
where W, v is the shape vector and K, v is the symmet-
ric, positive-definite stiffness matrix for the oligomer. As de-
scribed in Sec. III B 1, the parameters VAVM,M and K, » may
depend upon the oligomer length and sequence in the most
general way, subject only to the restriction that K, v pos-
sess a specified sparsity pattern corresponding to the assumed
type and range of interactions. We will be primarily con-
cerned with the rigid-base nearest-neighbor model, with the
stiffness matrix sparsity pattern illustrated in (S1), but we
will also briefly discuss two other models with different as-
sumed interactions: a smaller stencil which corresponds to
a rigid-basepair nearest-neighbor model, and a larger sten-
cil which corresponds to a rigid-base next-nearest-neighbor
model.
For a specified sparsity pattern, a best-fit oligomer-based
model for the ohgomer S, in the training set is a density o,
with parameters w* M and KM M»> Which satisfies

’Olt.,M = argmin D(,OM,M, pu,o)- (37
PuM

That is, among all model densities of the form (36) with a
specified sparsity pattern, a best-fit density has a minimum
divergence to the observed density in the training set. Us-
ing (37) and the explicit expression in (17) for the diver-
gence between Gaussian densities, we find that the parameters
associated with a best-fit density must satisfy the necessary
conditions

~y ~
W;/.,M = WH«,O’
(38)

1
¥ M= argmin E[K" viKio— In(det K, o/ det Ky, v) — I:1],

M

where the minimum is taken over the set of symmetric ma-
trices of the specified sparsity. We remark that the properties
of the Kullback-Leibler divergence can be used to show that
the above matrix optimization problem can also be regarded
as that of finding a stiffness matrix K,y of speciﬁed spar-
sity such that the associated covariance matrix K M has a
minimum distance, in an appropriate sense, to the observed
covariance matrix K ! o, from the training set (see the supple-
mentary matenal“) Slnce the functional in the minimiza-
tion problem (38) is continuous and bounded below among
positive-definite matrices and becomes unbounded above as
a definite matrix approaches a semi-definite one, we expect
that a minimum exists within the set of symmetric, positive-
definite matrices of the specified sparsity. Indeed, using two
different numerical procedures, a custom written numerical
gradient flow and an implementation using the optimization
code Hanso,’>%3 we have been able to find a minimum for
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FIG. 1. Stiffness sub-matrices in dimensionless units for the training set oligomers S; and S3. Black grid lines denote 12 x 12 blocks corresponding to intra-
and inter-basepair coordinates (y“, z%) at positions a = 5, ..., 9 along the oligomer. Red and blue lines denote the sparsity stencils for a nearest-neighbor and
next-nearest-neighbor, rigid-base free energy model, respectively. (Top left) sub-matrix of K3 . (Top right) sub-matrix of Kj . (Bottom left) sub-matrix of the
difference K3 o — K3 s for best-fit oligomer-based model with nearest-neighbor stencil. (Bottom right) sub-matrix of the difference K3 \; — K3 , for best-fit
oligomer-based and dimer-based models with nearest-neighbor stencil; see Sec. V B. All entries outside the red stencil on the bottom right vanish by definition,
while on the bottom left they are identical with the plot immediately above, but now the color scale is much different.

each oligomer in the training set for each of the three pre-
scribed sparsity patterns. While such minima may only be lo-
cal, our computations suggest that any possible multiple min-
ima are rather isolated: for each oligomer and sparsity pattern,
small changes to the initial condition did not change the loca-
tion of the minima, and the outputs of the two different codes
were extremely close in all cases.

Before presenting the results of our computations, we
explain in more detail the three sparsity patterns or stencils
that we consider. Figure 1 presents sub-matrices of the ob-
served stiffness K, , for the two training set oligomers S,
with © = 1,3. The qualitative features visible in this figure
are similar for all sub-matrices over all oligomers in the train-
ing set (see http://lcvmwww.epfl.ch/cgDNA). Specifically, all

of the largest entries lie within a 6 x 6 block-diagonal stencil
(not explicitly marked). The inter-basepair portion of such a
stencil is associated with a rigid-basepair free energy model
that is an entirely local function of the inter-basepair coordi-
nates at each junction: each set of junction variables are de-
coupled from all other configuration variables, either inter-
or intra-basepair. Such a model is rather standard in much of
the literature on the coarse-graining of DNA. Nevertheless, as
shown in the figure, it is evident that considerably more of
the signal in the observed stiffness matrices K, , lie within
the overlapping 18 x 18 nearest-neighbor, rigid-base stencil
marked in red, and yet more within the overlapping 30 x 30
next-nearest-neighbor, rigid-base stencil marked in blue. We
remark that the next-nearest-neighbor stencil still excludes
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FIG. 2. Relative error in densities and stiffnesses versus oligomer num-
ber between the best-fit oligomer-based model with three different spar-
sity patterns and the observed quantities. (Red curves) relative error in
densities D(pZ’M, Pu,0)/ Do. (Blue curves) relative error in stiffness matri-
ces ||K;i_M — K oll/11K,0ll. (Dashed curves) 6 x 6 block-diagonal stencil.
(Solid curves) overlapping 18 x 18 stencil. (Dashed-dotted curves) overlap-
ping 30 x 30 stencil. || - || denotes the Frobenius norm.

entries of the same magnitude to those that it captures beyond
the nearest-neighbor stencil. This observation suggests that it
would be interesting to consider an even longer range inter-
action model, but we do not pursue that line of investigation
here.

Figure 2 presents an assessment, for each of the three
sparsity stencils, of the relative error between the best-fit
oligomer-based model density p}, \; and the observed density
Pu.o for each of the training set oligomers S, u =1, ...,
53. Specifically, for each stencil and oligomer, the Kullback-
Leibler divergence between pl’ij and p, , is shown, scaled
into a relative divergence using the appropriate value of D,, as
introduced in Sec. IV E. Because it is only differences in stiff-
ness matrices that contribute to the divergences in this case,
we also plot the relative error, in the Frobenius norm, between
the best-fit stiffness matrix KZ,M and the observed stiffness
matrix K, , for each stencil and oligomer. For the 6 x 6 block-
diagonal stencil which contains the nearest-neighbor, rigid-
basepair model, the relative error in the densities is around
55% for each oligomer, whereas the relative error in the stiff-
ness matrices is lower, around 45%. For the overlapping 18
x 18 stencil associated with a nearest-neighbor, rigid-base
model, the relative error in the densities is around 10% for
each oligomer, whereas the relative error in the stiffness ma-
trices is now larger, around 20%. For reference, a portion of
the difference matrix K, , — K:‘L’M for the 18 x 18 stencil is
shown in Figure 1 (bottom left panel) for the oligomer S,
with = 3. For the overlapping 30 x 30 stencil associated
with a next-nearest-neighbor rigid-base model, the relative er-
ror in the densities is less than 5% for nearly all oligomers,
whereas the relative error in the stiffness matrices is around
10%.

The above results suggest, as would be expected, that
oligomer-based free energy models with longer range inter-
actions provide better fits of the training set data than models
with shorter range interactions. In particular, the 6 x 6 block-
diagonal stencil provides a rather poor fit of the data, whereas

J. Chem. Phys. 138, 055102 (2013)

the overlapping 18 x 18 and 30 x 30 stencils provide in-
creasingly better fits. Based on these results, we can now con-
firm quantitatively for all of the oligomers S,, u =1, ...,
53 in our training set an observation first made qualitatively
in previous work*? for one oligomer, namely, that a nearest-
neighbor, rigid-basepair model with oligomer sequence de-
pendence, as is reflected in the 6 x 6 block-diagonal sten-
cil, is in rather poor agreement with MD simulations at the
scale of tens of basepairs, while a nearest-neighbor, rigid-base
model with oligomer sequence dependence, as is reflected in
the overlapping 18 x 18 stencil, is in reasonably good agree-
ment with MD simulations. The robustness of this conclusion
has been further confirmed in a contemporaneous analysis*>
of the Dickerson dodecamer, which describes multiple inde-
pendent instances of multiple microsecond simulations un-
der a range of MD protocols, and uses 3DNA>® rather than
Curves+% coordinates for the rigid bases.

B. Dimer-based fitting

The primary objective of this article is to move beyond
coarse-grain oligomer-based fitting of MD simulations, to the
construction of a finite coarse-grain parameter set that will al-
low the prediction of equilibrium distributions for oligomers
of arbitrary sequence, with no further MD simulation re-
quired. To that end, and in the first instance, we make a com-
promise between the quality of the possible fit to oligomer-
based observations as limited by the assumed stencil size, and
the complexity of the associated model parameter set, and will
hereafter consider only the overlapping 18 x 18 stencil asso-
ciated with a nearest-neighbor rigid-base model, with model
parameters that depend only on the dimer sequence context.

In the nearest-neighbor, dimer-based model, each
oligomer S, is described by a model probability density

1 - -
PP (W) = o= W) KW=, )/2. (39)
s Z;L,m
where W, ,, is the shape vector and K, , is the symmet-
ric, positive-definite stiffness matrix for the oligomer. As
described in Sec. III B 2, the vector Wu_m and the matrix
K. m are constructed from a finite, dimer-based parameter set
P = {of, K, a;ﬂ, K‘;ﬂ}. By a best-fit parameter set for our
collection of training set oligomers S,, we mean a set P* sat-
isfying

53
P = arg;nin Z D(,ofzm, 0y ) (40)

pn=1

That is, among all parameter sets, a best-fit parameter set
should minimize the sum of the divergences between the
dimer-based constructed densities and the best-fit oligomer-
based densities with the nearest-neighbor sparsity pattern.
Presumably, if the collection of training set oligomers is suf-
ficiently rich, such a best-fit parameter set should not only
provide a good description of the training set oligomers, but
also any other oligomer of arbitrary length and sequence.
Notice that the fitting problem for the dimer-based model
is posed in terms of the best-fit oligomer-based densities p};
with the prescribed nearest-neighbor sparsity pattern, rather
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than directly in terms of the observed densities p,, , from the
training set. We believe that this choice leads to a better sep-
aration of modeling errors, and a better numerical treatment
of the fitting problem. First, we can quantify modeling errors
due to the dimer-based assumption on the level of sequence
dependence, independent of the nearest-neighbor assumption
on the level of energetic coupling. Second, we can generate
better initial guesses for the numerical treatment of the min-
imization problem in (40) because K, , and K, \; have the
same nearest-neighbor sparsity structure, and direct compar-
isons between these two matrices can be made. Specifically, a
numerical gradient flow procedure was used to treat the min-
imization problem, and the initial guess for a best-fit param-
eter set plays an important role in the overall success of the
procedure.

To generate an initial guess for a best-fit parameter set,
we developed an approximate solution of (40) using a least-
squares approach. For motivation, notice that the sum of the
divergences in (40) achieves its lowest possible value of zero
when the constructed stiffness matrix K, ,, and shape vector
W, m are equal to the given stiffness matrix KZ,M and shape
vector WZ,M for each oligomer S, u = 1, ..., 53 in the train-
ing set. Equality between these matrices and vectors in gen-
eral cannot be achieved due in part to the relatively small size
of the parameter set and the large size of the training set, and
in part to fundamental differences between the dimer- and
oligomer-based models. Working with weighted shape vec-
tors for convenience, it is thus reasonable to seek a parameter
set that satisfies, in a least-squares sense, the over-determined
system of linear equations

Ku.m = Z,M
, m=1,...,53. 41

_ *
O'M,m - OM,M

The matrices K, ,, and vectors o, n on the left-hand side of
the above equation are explicit functions of the unknown pa-
rameter set P = {of', K{, agﬁ, O’ﬁ} as defined in (31) and
(32). The matrices K, \; and vectors o/} \; on the right-hand
side of the above equatlon are known data that have been de-
termined, or can be obtained from the oligomer-based fit.

A procedure was developed to construct a least-
squares solution of (41) (see the supplementary
material®®) and thereby obtain an admissible parameter set
P = {of, K{, a;ﬂ, K;ﬁ} to be used as an initial guess in our
numerical minimization of the nonlinear, Kullback-Leibler
objective functional in (40). In our numerical minimization
of this functional, we employed a numerical gradient flow
procedure in which the semi-positive-definiteness conditions
on the stiffness parameters and the objectivity conditions on
all parameters as discussed in Sec. III B 2 were explicitly
enforced, including the self-symmetry conditions associated
with palindromic dimers. Using this procedure, we were
able to numerically minimize the functional in (40) and
thereby obtain an admissible, best-fit parameter set P*. As
can be expected due to the high dimensionality and nonlinear
nature of the problem, different choices of initial guess
lead to different numerically computed minima. Indeed,
our computations suggest that this minimization problem
is rather delicate and worthy of further study. Throughout
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FIG. 3. Relative error in densities, stiffnesses, and shapes versus oligomer
number between the best-fit dimer-based model and the best-fit oligomer-
based model with nearest-neighbor sparsity. (Red curves) relative error in
densities D(,oﬂ me pl wm)/ Do. (Blue curves) relative error in stiffness matri-
ces HK - Kﬂ MH /| |KM um!l. (Black curves) relative error in shape vectors

|W;‘L m— ;L,Ml/lwu,Ml || - || and | - | denote the Frobenius and Euclidean

norms, respectively.

the remainder of our developments, we describe properties
of one specific choice of a best-fit parameter set P*, which
seems typical of the optimal approximations found thus far.

Figure 3 presents an assessment of the modeling errors
incurred in approximating an oligomer-based model density
p;,.m by a dimer-based model density p;; ,, constructed with
our best-fit parameter set P* for each of the training set
oligomers S, u = 1, , 53. Here, the modeling error for
each oligomer is due to differences between the stiffness ma-
trices K \; and K7, |, and the shape vectors W%, \; and W%, _,
and both of these differences arise due to the finiteness of
the parameter set P*. In physical terms, this modeling error
reflects the difference between a quadratic, nearest-neighbor
free energy model in which the parameters of the model are
allowed to depend on the sequence composition of the entire
oligomer, and one in which the parameters depend only on the
composition of the local dimer. As can be seen, the relative
errors between the internal configuration densities, stiffness
matrices, and shape vectors are all in the range 5% — 15% for
the oligomers with u = 1, ..., 36, with slightly higher errors
for the oligomers with © =37, ..., 53. One possible explana-
tion for these higher errors is that this latter set of oligomers
all have non-GC dimer ends, which are much less represented
in the training data set. Nevertheless, our conclusion is that
the dimer-based model with our best-fit parameter set P* is
able to well resolve sequence variations across all the training
set oligomers. Example model constructions, for oligomers
within and outside of the training set, are discussed in
Secs. VI and VII below.

C. The P* parameter set

The full numerical data for our best-fit parameter
set P* = {of, 7,05“3 ,Kgﬂ } is provided in the supple-
mentary material,’® including electronic files for download

and a visual presentation, and MATLAB scripts for the
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construction of the shape vector and stiffness matrix for any
given oligomer of arbitrary length and sequence. A related
and more comprehensive set of MATLAB scripts for use with
our model and parameter set is also available at the site
http://lcvmwww.epfl.ch/cgDNA.

The parameter set for our model comprises the 1-mer
stiffness parameter matrices K} € R®*6 and weighted shape
parameter vectors o € R®, along with the 2-mer stiffness pa-
rameter matrices K} € R!3<18 and weighted shape parameter
vectors oy’ P eRS, Strong variations between the two inde-
pendent sets of 1-mer parameters {o{', K{} suggests that dif-
ferences in the intra-basepair interactions within the two inde-
pendent basepairs (monomers) are being captured. Similarly,
variations in the ten independent sets of 2-mer parameters
{05 A Kgﬂ } suggests that sequence-dependent differences in
the inter-basepair, e.g., stacking, interactions within the ten in-
dependent dimer steps are also being captured. In addition to
notable differences between all ten independent 2-mer param-
eter sets, there are also striking similarities within the three
independent families of parameters for purine-pyrimidine,
pyrimidine-purine, and purine-purine dimer steps.

We remark that inspection of the eigenvalues of the 1-
mer and 2-mer stiffness parameter matrices reveals a number
of rather small eigenvalues that could reasonably be approx-
imated as zero. However, the small eigenvalues for the stiff-
ness parameter matrices do not translate into correspondingly
small eigenvalues for any oligomer stiffness matrix of length
two or more assembled from the parameter stiffness matrices.
Although some of the individual 1-mer and 2-mer interaction
energies have rather soft modes, they always stabilize each
other when superposed to yield an oligomer energy that is
relatively stiff.

Differences in the precise definitions of the intra- and
inter-basepair coordinates employed by various authors make
a detailed comparison of sequence-dependent model param-
eter values somewhat complicated. Nevertheless, for pur-
poses of comparison with other results in the literature, it
is of interest to consider the expected, or average, con-
figuration for a sequence-averaged homogeneous oligomer.
One of various ways to do this is to make a reconstruc-
tion using a sequence-averaged best-fit parameter set P**'¢
= {01a Ve K?vg, ofvg, K;Vg} obtained via Euclidean averaging of
the 1-mer and 2-mer parameters over all 4 possible monomers
and 16 possible dimers, respectively. The set P**¢ can be
interpreted as providing a homogeneous, nearest-neighbor
model of DNA in which the occurrence of each of the four
possible basepairs is assumed to be equally likely at each po-
sition in an oligomer. Using this homogeneous parameter set,
a model shape vector W;; | and stiffness matrix Ki  can then
be reconstructed for a homogeneous oligomer of arbitrary
length. Despite the fact that the oligomer is homogeneous, and
the input parameters are constant, there are, as detailed in the
supplementary material,® significant end effects in the model
reconstruction of the ground state Wﬁ,m- For some shape pa-
rameters, for example propeller, visible end effects penetrate
to a depth of 4 basepairs from either end.

For sufficiently long oligomers, the entries of the shape
Wﬁ’m and stiffness Kj  parameters approach constant val-
ues away from the ends. The constant, interior values of

J. Chem. Phys. 138, 055102 (2013)

TABLE II. Comparison of sequence-averaged, homogeneous coarse-grain
ground-state shapes away from ends. (First column) homogeneous shape
in dimensionless units obtained from a reconstruction using the sequence-
averaged best-fit parameter set P*®'¢ of the dimer-based model of this ar-
ticle. (Second column) same as first, but in Curves+° dimensional units of
degrees and Angstroms. (Third column) sequence-averaged shape obtained
directly from averaging MD simulation data; Curves+ coordinates taken from
Table 1 of Ref. 21. (Fourth column) same as first, but expressed in 3DNA
coordinates. (Fifth column) sequence-averaged inter-basepair shape obtained
from DNA crystal structure data; 3DNA coordinates taken from Table 1 of
Ref. 59.

1 2 3 4 5

Dimensionless °orA °orA °orA °orA
Buckle 0 0 1.2 0.0
Propeller —1.09 —-124 —11.0 —125
Opening 0.11 1.2 2.1 —-0.8
Shear 0 0 0.02 0.00
Stretch 0.02 0.02 0.03 -0.03
Stagger 0.17 0.17 0.09 0.15 .
Tilt 0 0 —-0.3 0.0 0
Roll 0.26 2.9 3.6 2.9 1.4
Twist 2.96 33.0 32.6 33.0 35.4
Shift 0 0 —0.05 0.00 0
Slide —0.56 —0.56 —0.44 —0.62 0.35
Rise 3.31 3.31 3.32 3.32 3.32

W;: . are shown in Table II, which also contains compara-
ble data reported in two other sources, namely, sequence-
averaged values computed directly from the original atomistic
MD ABC database,?! and from crystal structures of DNA-
protein complexes.”® To make meaningful comparisons, we
also provide our constant, interior homogeneous shape pa-
rameters in both dimensional Curves+ coordinates®® and di-
mensional 3DNA coordinates.”® We remark that the compu-
tation of a 3DNA version of our results is not straightforward,
and involves various choices as discussed in the supplemen-
tary material.®® We note that the entries in the second, third,
and fourth columns of Table II, which are all based ultimately
on MD and are expressed in either Curves+ or 3DNA coordi-
nates, are in reasonable agreement. The fifth column, which
contains inter-basepair data from crystal structures expressed
in 3DNA coordinates, has noticeable differences compared to
the previous three columns: the value of roll is smaller, twist
is larger, and slide is of the opposite sign.

In the sequence-independent, homogeneous case and
away from the ends, we note that there are coarse-grain quan-
tities, defined independently of any specific coordinates, that
can be compared without ambiguity. Specifically, away from
the ends, the reference points of the bases along each strand
in a homogeneous oligomer should lie on a circular helix,
the geometric properties of which are independent of any
choice of coordinates. Using our sequence-averaged param-
eters, we find that there are 10.9 basepairs in a complete rev-
olution of this helix. Remarkably, this value of the helical re-
peat is within 5% of the experimentally reported value of 10.4
+ 0.1.%* Other geometric properties of this helix can also be
computed. For example, for the pitch or vertical rise we ob-
tain a value of 35.4 A per revolution, or equivalently 3.25 A
per basepair, and for the radius (traced out by the reference
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points) we obtain a value of 1.49 A. From this and the com-
parisons in Table II, we conclude that our best-fit parameter
set is consistent, in the sense of sequence-averaged values,
with accepted properties of B-form DNA.

VI. EXAMPLE OLIGOMERS FROM THE TRAINING SET

To illustrate the accuracy of the sequence dependence of
our dimer-based model, we used it to reconstruct the shape
vector W, stiffness matrix K7, . and density p*  for each
of the training set oligomers S, listed in Table I. For brevity,
we only present results for the two oligomers Sy and Sg in
the main text, with the additional cases S; and Sy, in the sup-
plementary material,®® and results for all the oligomers on-
line at http://lcvmwww.epfl.ch/cgDNA. Specifically, for each
oligomer we used our model and best-fit parameter set to con-
struct Wﬁ,m’ K;m, and pj, ., and compare these to the analo-
gous quantities W, o, Ko, and p,, , observed in MD simula-
tion. Additionally, we also make comparison to the analogous
quantities WZ,M’ K'.m>and pj; y; of the oligomer-based model.

Figures 4 and 5 show entries of the shape vector and
stiffness matrix as a function of position along the oligomers
S| and S, respectively. The top four panels in each figure
show the entries of the observed shape parameter vector Wy, ,
(which are the MD time series averages) in solid lines, and the
constructed dimer-based model shape parameter vector W%,
in dashed lines, each versus sequence position. In each figure,
the base sequence of the reference strand of the oligomer is in-
dicated on the abscissa, with intra-basepair parameter values
indicated at each basepair, and inter-basepair parameter val-
ues indicated at each junction; for clarity these discrete values
are interpolated by piecewise linear curves. The bottom four
panels in each figure are analogous and show the diagonal en-
tries of the observed stiffness matrix K, , in solid lines, and
of the constructed dimer-based model stiffness matrix K7,  in
dashed lines. For further comparison, the diagonal entries of
the nearest-neighbor oligomer-based model stiffness matrix
K'..m are also indicated in dashed-dotted lines. Although, as
illustrated in Figure 1, the stiffness matrices have many non-
zero entries, we choose for brevity to plot only the diagonal
entries.

The data in Figures 4 and 5 illustrate the rather high qual-
ity of the dimer-based model constructions. Frequently, the
differences between the observed and the constructed quanti-
ties are indistinguishable, and with very few exceptions, the
pointwise differences in the quantities are less than the vari-
ation with sequence. Visually, the errors in the intra-basepair
shape and stiffness parameters appear larger, but the scales
in the plots of the intra- and inter-basepair parameters are
of necessity different, although the units are identical. For
both intra- and inter-basepair shape parameters, rather few
errors are larger than 0.1 A in translational variables and 2°
in rotational variables. All constructed parameters shown for
oligomers S; and Sg are visibly consistent with the period-
icity of their interior sequences. By design, the constructed
parameters exactly satisfy the requisite symmetry conditions
for the palindromic oligomer S;. The observed parameters
computed directly from the MD time series data (shown in

J. Chem. Phys. 138, 055102 (2013)

the solid lines) for the most part also closely satisfy the req-
uisite symmetries, but errors can arise from a lack of con-
vergence of the MD simulation of the relevant oligomer. For
example, the breaking of evenness in the plot of the observed
shape parameter stagger, and of the observed stiffness param-
eter twist-twist in Figure 4 violates the palindromic symmetry
of oligomer S|, and must reflect a lack of convergence of the
MD time series. Results for other sequences (see the supple-
mentary material®®) indicate that there is a tendency for the
constructed quantities to exhibit larger errors at the ends than
the interior, which may reflect the fact that all possible dimer
ends are not equally represented in our training data set.

Figures 6-8 show various one-dimensional marginal dis-
tributions (or histograms) for each type of intra- and inter-
basepair coordinate at each location along the two oligomers
S; and Sg. These marginal distributions provide a way to as-
sess the quality of the Gaussian assumption in our modeling
approach and further illustrate sequence and end effects. For
each type of coordinate, at each location along each oligomer
S,., we compare four different marginal distributions: the ac-
tual distribution obtained directly from the MD data (solid
lines), and the three fitted distributions associated with the
training set density p, , (dotted lines), the oligomer-based
model density P;,M (dashed-dotted lines), and the constructed
dimer-based model density pz.m (dashed lines). Whereas the
marginal distribution obtained from the MD data could in
principle be far from Gaussian, the marginal distribution
associated with each model fit must necessarily be Gaus-
sian because the model density is itself a (high-dimensional)
Gaussian. For the intra-basepair coordinates considered in
Figure 6, the monomer at each position on the reference strand
is marked in each panel. For the inter-basepair coordinates
considered in Figures 7 and 8, the dimer at each junction on
the reference strand is marked in each panel. The middle rows
of panels in the figures reflect the repeating sub-sequence in
the interiors of the oligomers, whereas the middle columns
of panels reflect the different recurring monomers or dimers
within each sub-sequence; similarities in the marginals due to
periodicity and differences due to sequence dependence are
quite apparent.

Figure 6 shows the marginal distributions for the intra-
basepair coordinates along oligomer Sg. Notice that the four
distributions for each coordinate at each position are prac-
tically indistinguishable. This shows that each of the three
Gaussian densities py, o, p;; v» and p, ;,, can adequately repre-
sent the actual distribution of each intra-basepair coordinate
along the oligomer. Similar results and conclusions hold for
the distributions of intra-basepair coordinates along oligomer
Si; the four distributions at each position on this oligomer
are in even better agreement than they are for oligomer Sg
and are accordingly not shown. Figures 7 and 8 provide anal-
ogous plots for the inter-basepair coordinates. Now it can be
seen that there are cases where the actual marginal distribution
obtained from the MD data is noticeably non-Gaussian, even
away from the ends. The marginals of slide for the various
TA dimers in Figure 7, and the marginals of twist for the vari-
ous CG dimers in Figure 8 are among the most non-Gaussian
cases (see the supplementary material®® for further exam-
ples). The bi-modal properties of the CG dimer have been
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FIG. 4. Entries of shape vectors and stiffness matrices in dimensionless units for the palindromic, interior period two, 18-mer S; from the training set. (Top
four panels) entries of observed vector Wl,o (solid) and constructed dimer-based model vector WT,m (dashed). (Bottom four panels) diagonal entries of observed
matrix K , (solid), constructed dimer-based model matrix KT,m (dashed) and nearest-neighbor oligomer-based model matrix KT,M (dashed-dotted).
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noted previously.?! While such bi-modal and otherwise non-
Gaussian behavior is beyond the scope of the Gaussian ap-
proach considered here, the results show that the dimer-based
model with the best-fit parameter set can capture the dominant
features of sequence variation in a satisfactory way. Specifi-
cally, when comparing the dimer-based model construction to
the MD data, the errors in both the mean and half-width of
the constructed marginal of any coordinate can be seen to be

almost always qualitatively smaller than the variation in these
quantities due to sequence.

VIl. AN EXAMPLE OLIGOMER NOT FROM THE
TRAINING SET

To further illustrate the accuracy and discriminatory reso-
lution of the sequence dependence of our dimer-based model,
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FIG. 6. Normalized marginal distributions for intra-basepair coordinates at each position along oligomer Sg. Positions are ordered left-to-right beginning at
top-left in each of the two groups. The panel for each position shows the monomer on the reference strand and the marginals from each of four sources (MD
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marginals from the different sources are virtually indistinguishable.
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FIG. 7. Normalized marginal distributions for inter-basepair coordinates at each junction along oligomer S;. Junctions are ordered left-to-right beginning at
top-left in each of the two groups. The panel for each junction shows the dimer on the reference strand and the marginals from each of four sources (MD data,
solid; density pj o, dotted; density pi" M> dashed-dotted; density pi‘ e dashed) for each of three coordinates (black, blue, red) in dimensionless units.

we used it to predict the shape vector VAV*,,m and stiffness ma-
trix KJ, , for an 18-basepair oligomer Sy not in the original
training set. Specifically, oligomer Sy is a single point mu-
tation of the training set oligomer S;; these two oligomers
differ by a single base at position 6: S;- has a T in this posi-

tion, whereas Sy has an A. We constructed the quantities W*,’m
and K7, | directly from our existing best-fit parameter set P*
discussed in Sec. V C. To assess the accuracy of the predic-
tion, we then carried out a full MD simulation of oligomer
Sy’ and obtained an observed shape vector ngo and stiffness
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FIG. 8. Normalized marginal distributions for inter-basepair coordinates at each junction along oligomer Sg. Junctions are ordered left-to-right beginning at
top-left in each of the two groups. The panel for each junction shows the dimer on the reference strand and the marginals from each of four sources (MD data,
solid; density pg o, dotted; density pgyM, dashed-dotted; density pg"m, dashed) for each of three coordinates (black, blue, red) in dimensionless units.
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FIG. 9. Entries of shape vectors and stiffness matrices in dimensionless units for oligomer S/, which is a single point mutation of S;. The base sequence of
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matrix Ky, for comparison. We stress that the MD data for
oligomer Sy were not part of the training set from which P*
was derived.

Figure 9 shows the results of our prediction and com-
parison. The top four panels show the entries of the predicted
shape parameter vector VAV*[,,m in dashed lines and the observed
vector Wy, in solid lines as a function of position along
oligomer Sy. For reference, the entries of the observed shape
parameter vector W , from the original, unmutated oligomer
S, is taken from Figure 4 and is here plotted with dotted lines.
In each panel, the base sequence of the reference strand of the
oligomer is indicated on the abscissa just as before, with the
mutation site indicated at position 6. The bottom four panels
are analogous and show the diagonal entries of the nearest-
neighbor oligomer-based model stiffness matrix K7, ; in solid
lines and the constructed dimer-based model stiffness matrix
K1 . in dashed lines for oligomer Sy, and for reference the
diagonal entries of the observed stiffness matrix K, , of the
unmutated oligomer S; are shown in dotted lines.

The data in Figure 9 show that a change of one base in an
oligomer can have pronounced effects on the oligomer shape
and stiffness parameters. The changes in the oligomer shape
parameters can be significantly nonlocal as illustrated by the
predicted and observed data in the top four panels. Indeed, the
predicted and observed effects of the mutation are in rather
good agreement. The nonlocal effects are most pronounced
for buckle, propeller and stagger, where the major effects
are spread over approximately five bases, and are less pro-
nounced, but still noticeable, for shear, twist, shift and slide,
where the effects are spread over approximately three bases.
For other quantities, for example, roll, the effect of the muta-
tion appears rather local, and for others, for example, open-
ing, stretch, and rise, any effect is not clearly visible on the
scale of the plots. The changes in the oligomer stiffness pa-
rameters are illustrated in the bottom four panels. The dimer-
based model, by design, predicts that the stiffness parameters
can only change locally near the mutation site, and here too
the prediction is in rather good agreement with the observed
results.

Table III provides a further quantitative comparison be-
tween the predicted and observed effects of the single point
mutation. The table compares the constructed dimer-based
model and observed values of the intra-basepair parameters
buckle and propeller for the central monomer Xg of the pen-
tamer sub-sequence X¢X7XgXoXjg of oligomers S; and Sy.
Specifically, this pentamer has sequence ATATA in S; and
TTATA in S;. The mutation site is at position 6, and we
compare the values of buckle and propeller for the central
monomer A at position 8. The nonlocal effects of the mu-
tation can be interpreted as context effects for the parame-
ters of the central monomer. The table shows that the ob-
served values of buckle and propeller for the central monomer
depend significantly on the surrounding pentamer context,
and that the dimer-based model can predict this dependence.
The table also compares the constructed dimer-based model
and observed values of the inter-basepair parameter slide for
the junction in the central dimer X;Xg of the tetramer sub-
sequence XgX7XgXo of oligomers S; and Sy. This tetramer
has sequence ATAT in S; and TTAT in Sy, with the cen-
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TABLE III. Comparison between predicted and observed nonlocal se-
quence dependence of buckle, propeller and slide in dimensionless units from
two different sequence contexts arising in oligomers S; and Sy/. (Top) val-
ues of buckle and propeller in the central monomer Xg = A of the pentamer
sub-sequence XgX7XgX9X]o. (Bottom) values of slide in the central junction
X7Xg = TA of the tetramer sub-sequence X¢X7XgXg.

S1,Sy pentamer X¢X7XgXo X0 ATATA TTATA
Buckle at Xg (observed) —-0.27 —-0.73
Buckle at Xg (predicted) —0.25 —0.53
Propeller at Xg (observed) —1.03 —-0.72
Propeller at X3 (predicted) —1.09 —-0.75
S1,Sy tetramer X¢X7XgXg ATAT TTAT
Slide at X7Xg (observed) —0.56 —0.29
Slide at X7Xg (predicted) —0.48 —0.24

tral dimer in both cases being TA. The table shows that
the observed value of Slide for the central dimer step de-
pends significantly on the surrounding tetramer context, and
that our dimer-based model can again predict this nonlocal
dependence.

Vill. SUMMARY AND CONCLUSIONS

This presentation has introduced a novel hierarchy of
coarse-grain, sequence-dependent, rigid-base models of B-
form DNA in solution, each of which provides an immediate
approximation of the configuration-space equilibrium distri-
bution for oligomers of arbitrary length and sequence. The hi-
erarchy depends on both the assumed range of energetic cou-
plings, and the assumed extent of sequence dependence of the
model parameters. Attention was focussed on the particular
model in the hierarchy that has nearest-neighbor interactions
and dimer sequence dependence of the model parameters. For
a Gaussian version of this model, a complete coarse-grain pa-
rameter set was estimated starting from a recent and extensive
database of atomic-resolution MD simulations. The Kullback-
Leibler divergence between probability density functions was
used to make several quantitative assessments of the accuracy
of the nearest-neighbor, dimer-dependent model with the spe-
cific parameter set. This particular model was compared both
against others in the hierarchy to assess the validity of various
assumptions pertaining to the locality of the energetic cou-
plings and the level of sequence dependence of its parameters,
and also against an all-atom MD simulation not in the train-
ing data set to assess its predictive capabilities. The results
suggest that, compared to more sophisticated models with
larger parameter sets, the nearest-neighbor, dimer-dependent
model represents a practical compromise between simplic-
ity and accuracy. Moreover, within various natural limita-
tions pertaining to bi-modality and end effects, the model
can quantitatively predict the equilibrium statistical proper-
ties of various oligomers rather well. Specifically, the model
can successfully resolve sequence effects both within and be-
tween oligomers. In particular, the model can successfully
predict the nonlocal structural consequences of a single point
mutation.
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Perhaps the most significant conceptual feature of all of
our models is that they exhibit the phenomenon of frustration.
To our knowledge, this phenomenon has not been considered
or exploited in previous efforts on modeling the sequence-
dependent curvature and flexibility of DNA; it provides a sim-
ple mechanism for describing and understanding the nonlo-
cal dependence on sequence of the minimum energy shape
of an oligomer, as has been observed in recent MD stud-
ies. This frustration, or pre-existing stress, adds a new di-
mension to the structural code of DNA and may potentially
have functional implications in recognition, binding and other
kinds of interactions that involve full or partial denaturation
of the double-helix. Sequences with a high, localized con-
centration of frustration energy could well be denaturation
hot-spots.

Our nearest-neighbor, dimer-dependent model with its
initial parameter set, should, we hope, already provide a use-
ful tool for understanding the sequence-dependent mechan-
ics of DNA in various contexts. Due to the relatively high
structural resolution of a rigid-base model, the ability to pre-
dict the ground-state or minimum energy conformation of an
oligomer could prove useful in the refinement of future crys-
tallographic and spectroscopic structures of DNA, especially
in the analysis of larger structures for which only partial in-
formation may be available. Moreover, the ability to predict
the elastic coupling matrix for an entire oligomer could prove
useful in studying the interdependence of displacements and
rotations of the bases of an oligomer in response to external
loads. A detailed analysis of DNA wrapped around a nucle-
osome using our model is one obvious target application.””’
The sign and magnitude of the elastic coupling constants in
our parameter set provide useful information about the polar-
ity and strength of correlations and could reveal key mecha-
nisms of the initial, sequence-dependent pathways in various
protein binding and related interactions.

Another evident application of our model is to study
cyclization and other looping rates of DNA oligomers as
a function of their sequence.’' In the context of our
model, this classic experimental technique can be de-
scribed as computing the marginal probability for the rel-
ative displacement and orientation of the first and last
basepair frame in the oligomer. Because of the non-
linear geometry involved in the reconstruction of the
global shape of an oligomer, this is not an explicit
computation even within a Gaussian model, but it is
a well-studied problem at least when the starting point
is a rigid-basepair model. Although such looping prob-
lems can be addressed within the context of the dis-
crete models themselves,® they can also be considered
in the context of the analogous limiting continuum mod-
els, which can be computationally advantageous on the
pertinent longer length scales of several tens to several
hundreds of basepairs.?®3:3%85 For discrete rigid-basepair
models, the continuum limit is an inhomogeneous elas-
tic rod or worm-like chain.’®2?%40 In contrast, the contin-
uum limit of our nearest-neighbor, dimer-dependent, rigid-
base model leads naturally to an inhomogeneous, contin-
uum bi-rod model,’® which incorporates structural features
beyond the conventional elastic rod and worm-like chain
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models, and whose mathematical analysis may offer en-
hanced understanding of DNA supercoiling, looping, and re-
lated phenomena, including the prediction of hot-spots for
denaturation.

In another direction for future work, it is evident that
the nearest-neighbor model could itself be refined in various
ways. Most simply it is certainly to be expected that the ac-
curacy of the model parameterization will improve as more
MD simulation data becomes available. The question of er-
godicity of the MD simulations underlying our training data
set remains open. The database used here had between 50 and
200 ns simulations of each oligomer, but longer simulations
would certainly be desirable, and are already becoming avail-
able. A 10 us simulation of a single ABC oligomer (carried
out on specialized hardware®’) suggests that a database of 3
wus simulations should be sufficient to sample the main fluctu-
ations of B-family DNA at room temperature.®® It is also cer-
tainly true that as the MD potentials underlying the fine-grain
simulation data evolve, the quality of the associated coarse-
grain parameters should improve correspondingly. One bene-
fit of using MD simulations to provide the coarse-grain train-
ing data set is that if it is desired to study the effects of dif-
ferent solvent and ion conditions on the coarse-grain model,
then it is just necessary to run the appropriate set of MD
simulations, thereby modify the training data set, and reap-
ply the parameter extraction procedure described here. Simi-
larly, if a coarse-grain model of methylated bases is desired,
this can be simply done provided that an appropriate set of
MD simulations is available, as has already been carried out
for a rigid-basepair model.*® Now of course there will be a
larger parameter set to allow for methylated and unmethylated
bases.

Staying within the context of Gaussian models, the
methodology introduced here could be used to estimate pa-
rameters for more sophisticated models in our hierarchy with
beyond nearest-neighbor interactions, in much the same way
as is done here explicitly for the nearest-neighbor, dimer-
dependent case. The errors plotted in Figure 2 suggest that
a next-nearest-neighbor type of model may provide a signif-
icant improvement in accuracy and hence be worthy of fu-
ture study. The estimation of parameters for such a model
would naturally require MD training data with a sufficiently
rich set of sequences, including a sufficiently rich set of end
sequences.

Finally, and more challengingly, it is evident that it would
be of interest to introduce functional forms in the free energy
that are more general than shifted quadratics, and to fit param-
eters in the resulting non-Gaussian distributions in order to at-
tempt to capture effects such as the bi-modality,”"* which is
evident in marginal distributions for some junction parameters
at some dimer steps, end-fraying, and the sequence-dependent
probability of DNA melting. Such a generalization would ap-
pear to be challenging, but it would be of considerable inter-
est to combine the strengths of our Gaussian rigid-base mod-
els with their sequence-dependent frustration and detailed
configuration variables, with existing models®'->* of melting,
which are non-Gaussian but with a comparatively simplified
approximation to configuration space with fewer degrees of
freedom.
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