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ABSTRACT

Early prediction of future clinical events from invasive coro-
nary angiography (ICA) remains a daily challenge in clinical
routine practice. In this study, we hypothesize that stenosis’s
geometry information could benefit the prediction of future
events from ICA. To address this, we propose a framework
that employs graph neural networks (GNNs) to exploit ge-
ometry information from ICA and integrates it with clinical
information to predict the occurrence of events at the stenosis
level. The proposed model can be extended to predict events
using two-view imaging data as well. The performance is
compared to classical baseline models on a dataset compris-
ing 1551 stenosis, out of which 414 exhibited an event in the
following two years. The results illustrate that the proposed
approach outperforms other models, with F1-scores of 0.57
and 0.59 for one-view and two-view data, respectively. To
the best of our knowledge, this is the first work that investi-
gates the importance of the geometry information for future
events prediction in a learning context. The code is available
at https://github.com/xsunn/eventsPre.

Index Terms— Graph neural network, future clinical
events, invasive coronary angiography

1. INTRODUCTION

Cardiovascular disease (CVD) stands as the foremost cause of
global mortality, accounting for 32% of all deaths [1]. There-
fore, early prediction of future clinical events is of paramount
importance. In clinical practice, diameter stenosis (DS) and
fractional flow reserve (FFR) are used to estimate the severity
of coronary artery stenosis and the need for intervention ther-
apy to avoid CVD. DS is defined as the percentage that indi-
cates how much the artery is narrowed by plaque or other ob-
structions [2]. FFR is the gold standard for evaluating whether
a particular stenosis is responsible for a clinically significant
reduction in blood flow within the coronary arteries [3]. How-
ever, as many as 8% of patients with mild to moderate steno-
sis as observed in the ICA images, which FFR deems as not
severe, still present events within the following two years [4].

Predicting future clinical events through angiography
alone is a complex task, as the prediction relies on numerous
dynamic factors such as plaque composition, inflammation,

and clot formation. These factors are not always fully cap-
tured by angiography, making accurate prediction of future
events challenging. Several studies have been dedicated to
integrating patient data, FFR and conventional machine learn-
ing (ML) methods as prognostic indicators for events predic-
tion [5, 6]. However, ML models require manual feature
extraction, and certain features cannot be acquired through
the models’ self-learning processes.

In recent years, deep learning-based methods have been
applied and achieved immense success in angiography im-
ages analysis including vessel segmentation and stenosis de-
tection [7, 8]. However, the potential capability of deep learn-
ing methods for future events prediction has not been fully
investigated yet. The first related work used a convolutional
neural network (CNN), ResNet [9] as the backbone, and ex-
tracted patches centered on artery stenosis to predict myocar-
dial infarction (MI) at a lesion level within 5 years [10]. An
anatomy-informed multi-task deep learning framework was
proposed to predict future MI events in both patients and le-
sion level, combining different views [11]. However, none of
these existing approaches considered explicitly the geomet-
ric information, which offers a holistic perspective on coro-
nary artery structure and the effects of stenosis on blood flow
within angiography images.

In this work, we aim to extract and use the stenosis re-
lated geometric features, such as stenosis severity and overall
anatomy of arteries, for the occurrence of future events pre-
diction at a stenosis level. Graph neural networks (GNNs),
a recent advancement in deep learning techniques [12], are
capable of capturing geometric information from complex
data. GNN-based models have demonstrated promising ap-
plications in the analysis of ICA images, such as coronary
artery segmentation and reconstruction [13, 14]. In this study,
we focus on a more challenging future prediction task, and
propose a GNN-based model to explore the lesion geomet-
ric information to predict future events within 2 years at a
stenosis level. The contribution of this work is three-fold: (1)
We present, to the best of our knowledge, the first study to
introduce GNNs for incorporating the lesion geometry in pre-
dicting future events from ICA. (2) We propose a GNN-based
framework that is highly extensible, capable of integrating
both geometry information from multiple views and addi-



Fig. 1. Proposed future events prediction framework which contains a graph construction pipeline and a GNN based prediction
network which can be extended for two views. GSV: GNN network using single view as input.

tional clinical measurements, such as FFR and DS, for events
prediction. (3) We conduct a comparative analysis between
our proposed approach and clinical methods, as well as purely
image-based methods, demonstrating the importance of ge-
ometry information in events prediction.

2. METHODOLOGY

In this section, we first describe how to model the geometry
of the stenosis by extracting a graph from an ICA image. We
then propose a novel learning framework that exploits the ge-
ometry together with clinical information as input of a GNN
model to predict future events.

2.1. Image to graph pipeline

The left module in Fig. 1 describes the pipeline of lesion
graph construction from an ICA image. Given that the le-
sion is a common contributor to future events, this study uses
lesion annotations to exclude the region out of the lesion.
Each lesion pixel is mapped to a node of the graph. Two ap-
proaches, namely K Nearest Neighbor (KNN) and Delaunay
triangulation (DT), are introduced to construct the edges be-
tween neighboring nodes. KNN connects the K closest nodes
in terms of proximity, while DT constructs a triangulation of
the nodes such that no node is inside the circumcircle of any
triangle. Fig. 2 illustrates three graph examples where the
four columns represent a raw ICA image, the corresponding
annotations, point cloud of node coordinates and a graph rep-
resentation of these points, respectively. Compared to the raw
image, the graph representation of the artery clearly preserves
the geometry, while filtering out the pixel noise from the back-
ground.

Given a graph G=(V, E) constructed from an ICA image,
where V is the set of nodes and E denotes the edges between
them, each node features are represented by both the artery’s
geometry and its texture. Texture features are extracted from
the gray-level intensity in the original raw image, while geo-
metric features encompass the pixel positions in the Euclidean
space of the raw image and their respective distances from the
artery’s center-line L which can be extracted using the lesion
annotation. The corresponding coordinate in the raw image
for the ith node in graph G is defined as PNi = (xi, yi), sim-

Fig. 2. Graph constructed from examples of ICA images.
Those four columns are raw image, anatomical annotations,
graph node coordination and graph edge connection.

ilarly, the corresponding coordinate in the raw image for the
jth pixel on the center-line L is denoted as PLj = (Xj , Yj).
The distance between the ith node PNi in graph G and the jth
pixel PLj on L can be derived using the following equation:

d(PNi, PLj) =
√

(xi −Xj)
2 + (yi − Yj)

2 . (1)

The distance between the ith graph node PNi and the center-
line is defined as:

D(PNi, L) = min({d(PNi, PLj)}j=1,2,...,M ), (2)

where M is the pixel number on L, min is the minimum value.
Given a set of images represented as a graph G and the

clinical information C, the goal is to design a model F(G,C)
that learns to predict the occurrence of future events, i.e., 1
for events and 0 for non-events.

2.2. GNN based Network Architecture

GSV: GNN network for a Single-View ICA image. Given
a graph representation of an ICA image as shown in Fig.1,
the GSV model first employs N Graph Isomorphism Network
(GIN) layers [15] as the backbone to learn an embedding for
each node within the graph. Then, a global pooling layer is



used to aggregate the node embeddings into a comprehen-
sive global representation of dimension 256, followed by a
fully connected (FC) layer of dimension 64. Additional clini-
cal information derived from patient and lesion level data are
concatented to the graph features, forming a joint representa-
tion. The classification head is implemented by a Multi-layer
Perceptron (MLP) comprising four hidden layers that contin-
uously reduce the dimension of the final embedding to one.
Additionally, the input to each layer is normalized by Batch
normalization (BN) and dropout is applied for regularization.
The non-linearity function at the ouput of each layer is set to
be the rectified linear unit (ReLU).

GTV: siamese GNN for Two-Views ICA image. In clin-
ical practice, cardiologists often need to integrate information
from multiple views of arteries to reach the final diagnosis.
Our framework can be easily extended to incorporate com-
plementary information from two views by using two shared
GSV as backbone. As illustrated in Fig.1, comparing with
GSV, GTV adds another branch to extract geometry from the
second view while keeping the other structures the same as
the GSV. Those two branches also employ a siamese N GIN
layers as backbone, the same as that in GSV. The global repre-
sentations from two views are concatenated and projected to a
lower dimension of 64 by a FC layer. Following that, the clin-
ical information is fused using another FC layer. Given that
considering more than two views would reduce the dataset, in
this study, we initially predict events using two views.

3. EXPERIMENTS AND RESULTS
In this section, we quantify the performance of our method.
We first introduce the dataset and discuss baseline models
including clinical parameter-based approaches, classical ML
models and ResNet-based models. Second, we investigate
the effect of the graph connectivity on the predictive perfor-
mance. The performance of our proposed models is then com-
pared to that of those baseline models. Finally, an ablation
study on the clinical data is also performed. The model’s per-
formance is evaluated using the classification metrics includ-
ing Accuracy (ACC), Recall (Rec), Precision (Prec), F1-score
(F1) and Specificity (Spec).

Five-fold cross-validation is applied to evaluate the per-
formance of different models. In each run, one fold is held out
as the testing fold, while the remaining four folds are utilized
for training and validation. The optimal hyper-parameters of
GIN layers, learning rate and weight decay are determined
using optuna [16] with 20 trials based on the best F1 score
on training and validation set. They are set to 6, 0.00115 and
0.08, respectively. With these hyper-parameters, we train a
model on the training and validation data using cross-entropy
as the loss function. The testing data is only used for the fi-
nal evaluation of a model. The averaged values and standard
deviation of testing fold across five folds are reported as the
final results. All the experiments are excuted on a machine
equipped with an NVIDIA A100 GPU with 80 GB internal

memory and implemented in Pytorch with the following pa-
rameters: Adam optimizer and batch size as 50.

3.1. Dataset

FAME2 dataset [17] includes 563 patients with stable coro-
nary artery diseases. Each patient has at least one lesion in
their main arteries. Both the arteries and lesions have been
annotated by the cardiology team from the Lausanne Univer-
sity Hospital (CHUV), Switzerland. Two rotation projections
with various angles are employed to multiple 2D images to
image the complete coronary lesions. The primary end point
of events in this datast is a composite of cardiac death, MI,
urgent and non-urgent revascularization. The patients under-
went re-evaluation after a follow-up period of two years, and
their lesions are categorized into events or not. In this dataset
of 1748 2D images, 1551 images have been detected with le-
sions. Furthermore, 414 images are labeled as events. Only
the images with lesion are used to train and test the mod-
els. FFR measurement in the area of the lesion, diameter of
the stenosis (DS), the minimum lumen diameter (MLD), the
length of the lesion, age and gender are also collected as the
clinical information. The data is divided into five folds with
113, 113, 113, 112, 112 patients (306, 310, 314, 305, 316
2D images). The folds are stratified, i.e, the same ratio of
events/no-events lesions is maintained across folds.

3.2. Baseline models
Clinical baselines: In clinic routine practice, the cutoff
thresholds of ≥0.5 and ≤0.75 for DS and FFR [3] respec-
tively, are used as guidelines to categorize a lesion as poten-
tially contributing to future events.

Traditional machine learning baselines: XGBoost,
SVM, Logistic Regression, and Decision Tree are employed
as machine learning baseline models. 46 radiomics fea-
tures extracted from the entire artery and lesion using PyRa-
diomics [18] are combined with the clinical information as
the inputs. The type of radiomics features are related to the
shapes of the lesion, such as the 2D mesh surface and Spheric-
ity, and the texture including the Grey Level Co-occurrence
Matrix (GLCM).

ResNet based baseline: Fig. 3 shows the architecture of
ResNet [9] based model which takes 200x200 image patch
containing the whole lesion and clinical information as input.
The cropped patch and corresponding lesion annotation are
concatenated along the channel dimension as the input. The
image features extracted using the ResNet are projected to a
lower dimension via a FC layer. Then those features are con-
catenated with the clinical information, followed by another
FC layer.

3.3. Choice of graph construction strategy
Table 1 reports the prediction results on the FAME2 dataset
derived from GSV model, using the graph generated by KNN
and DT. For KNN, we set the number of neighbors to 5 and
10, respectively. For DT, the values of 5 and 10 represent the



Fig. 3. ResNet based baseline model. The cropped image
patch, lesion annotation and the clinical information are com-
bined as the input.

Table 1. Prediction performance on FAME2 derived from
GSV using different graph generation approaches for single
view. The best results are highlighted in bold.

Input Accuracy Recall Precision F1 Spec
KNN-5 0.71±0.04 0.70±0.06 0.47±0.03 0.56±0.04 0.72±0.06
KNN-10 0.69±0.06 0.66±0.06 0.47±0.07 0.55±0.03 0.69±0.10

DT-5 0.68±0.02 0.69±0.05 0.48±0.05 0.57±0.04 0.67±0.02
DT-10 0.73±0.05 0.68±0.04 0.48±0.07 0.56±0.03 0.74±0.08

maximum allowed Euclidean distance for a connection to be
preserved. The results reveal that a DT construction outper-
forms KNN overall, yielding better results in term of ACC,
Pre, F1 and Spec. Although DT-10 achieved higher ACC and
Spec, DT-5 show the best performance with Prec of 0.48 and
F1 of 0.57, respectively. For the rest of the experiments, we
construct the graph using DT-5.

3.4. Prediction results
Table 2 summarizes the averaged prediction results across
all testing folds in the five-fold cross-validation derived from
different models using data with either single view or exclu-
sively with two views. The results demonstrate that when
considering each view as a single input, the proposed GSV
achieves superior performance, particularly in terms of Prec,
F1-score and Spec with 0.48, 0.57 and 0.67, respectively.
Although machine learning classifiers may achieve a better
Spec, the Recall is significantly lower, leading to a subpar
F1 score. ResNet shows reasonable values across all metrics,
but still lower than GSV. In the case of two-view data, the
GSV model treats each view as two separate cases, whereas
the GTV model treats both views as a single subject. When
evaluating the performance obtained from GTV and GSV us-
ing data with two views, GTV exhibits a slight improvement
with a Recall of 0.69, Precision of 0.51 and an F1-score of
0.59. This demonstrates that integrating two views can lead
to an enhanced prediction. Additionally, only the GNN based
models outperform the FFR method in terms of F1-score,
even though both CNN and GNN integrate lesion features.

3.5. Ablation study on clinically-relevant features

Table 3 presents the results from an ablation study conducted
on clinically-relevant information and its impact on the events
prediction performance. When comparing Table 2 to Table
3, we observe that the F1-score obtained from GSV using
single-view input decreases from 0.57 to 0.49, while the F1-
score of GTV decreases from 0.59 to 0.51. As expected, when

Table 2. Prediction performance derived from different mod-
els. DS: diameter stenosis. FFR: fractional flow reserve. LR:
Logistic Regression. DTr: Decision Tree. GSV: GNN model
using a single view. GTV: GNN model using two views.

Data Model Accuracy Recall Precision F1 Spec

All images
(Single view)

DS 0.56 0.69 0.34 0.45 0.51
FFR 0.59 0.85 0.38 0.52 0.49

XGBoost 0.69±0.02 0.28±0.04 0.32±0.04 0.30±0.04 0.81±0.02
SVM 0.75±0.02 0.09±0.05 0.37±0.10 0.14±0.06 0.95±0.03
LR 0.76±0.01 0.05±0.04 0.29±0.25 0.28±0.40 0.92±0.11
DTr 0.65±0.01 0.39±0.05 0.30±0.04 0.34±0.04 0.72±0.02

ResNet 0.61±0.05 0.59±0.09 0.38±0.02 0.46±0.03 0.62±0.09
GSV 0.68±0.02 0.69±0.05 0.48±0.05 0.57±0.04 0.67±0.02

Images with
two views

GTV 0.72±0.04 0.69±0.07 0.51±0.05 0.59±0.04 0.73±0.05
GSV 0.72±0.03 0.68±0.08 0.50±0.04 0.58±0.05 0.74±0.01

Table 3. Prediction performance without clinically-relevant
features on FAME2 dataset. LR: Logistic Regression. DTr:
Decision Tree. GSV: GNN model using a single view. GTV:
GNN model using two views.

Data Model Accuracy Recall Precision F1 Spec

All images
(Single view)

XGBoost 0.67±0.01 0.19±0.05 0.24±0.05 0.21±0.04 0.82±0.02
SVM 0.76±0.02 0.01±0.01 0.11±0.15 0.02±0.03 0.99±0.01
LR 0.76±0.02 0.06±0.04 0.38±0.23 0.11±0.07 0.97±0.004
DTr 0.61±0.04 0.26±0.06 0.22±0.05 0.24±0.05 0.72±0.04

ResNet 0.32±0.06 0.88±0.12 0.28±0.01 0.42±0.01 0.10±0.11
GSV 0.53±0.02 0.73±0.06 0.37±0.02 0.49±0.02 0.44±0.06

Images with
two views

GTV 0.64±0.06 0.65±0.08 0.43±0.08 0.51±0.04 0.64±0.12
GSV 0.64±0.05 0.64±0.07 0.41±0.04 0.50±0.04 0.63±0.09

clinically relevant information is absent, not only GNN-based
models underperform, but all baseline models perform worse
as well, demonstrating the critical importance of incorporat-
ing clinical data for accurate events prediction. Moreover, it is
noteworthy that even without the utilization of clinical infor-
mation, the GNN-based models still consistently outperform
the other models.

4. DISCUSSION AND CONCLUSION

In this work, we developed and evaluated a novel GNN based
framework which takes into account the geometry of the
stenosis combined with clinical information for the auto-
mated prediction of future events from coronary angiography
images. The main findings of our study are the following:
(1) Geometry feature is a key factor for events prediction,
which integrated with clinical relevant features such as FFR
and DS, can boost the prediction performance. (2) The
proposed GNN-based approach exhibits a promising perfor-
mance in predicting future events, outperforming the clinical
measurements of FFR, DS and the other baseline methods.
(3) Although the improvement from using two views may
not be substantial, view fusion can contribute to improved
predictions.

Future events prediction is a highly complex task, as an-
giography alone may not encompass all the necessary infor-
mation. Nevertheless, our study demonstrates that through
proper exploitation of these data, a substantial performance
improvement can be achieved, surpassing the metrics com-
monly employed in clinical practice. In this study, we con-
sider only two views from the same lesion for view fusion.
However, an efficient fusion module for more than two views
should be investigated in future research.
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