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Background: Quantitative coronary angiography (QCA) typically employs traditional edge detection algorithms
that often require manual correction. This has important implications for the accuracy of downstream 3D cor-
onary reconstructions and computed haemodynamic indices (e.g. angiography-derived fractional flow reserve).
We developed AngioPy, a deep-learning model for coronary segmentation that employs user-defined ground-truth
points to boost performance and minimise manual correction. We compared its performance without correction
with an established QCA system.

Methods: Deep learning models integrating user-defined ground-truth points were developed using 2455 images
from the Fractional Flow Reserve versus Angiography for Multivessel Evaluation 2 (FAME 2) study. External
validation was performed on a dataset of 580 images. Vessel dimensions from 203 images with mild/moderate
stenoses segmented by AngioPy (without correction) and an established QCA system (Medis QFR®) were
compared (609 diameters).

Results: The top-performing model had an average F1 score of 0.927 (pixel accuracy 0.998, precision 0.925,
sensitivity 0.930, specificity 0.999) with 99.2 % of masks exhibiting an F1 score > 0.8. Similar results were seen
with external validation (F1 score 0.924, pixel accuracy 0.997, precision 0.921, sensitivity 0.929, specificity
0.999). Vessel dimensions from AngioPy exhibited excellent agreement with QCA (r = 0.96 [95 % CI 0.95-0.96],
p < 0.001; mean difference — 0.18 mm [limits of agreement (LOA): —0.84 to 0.49]), including the minimal
luminal diameter (r = 0.93 [95 % CI 0.91-0.95], p < 0.001; mean difference — 0.06 mm [LOA: —0.70 to 0.59]).
Conclusion: AngioPy, an open-source tool, performs rapid and accurate coronary segmentation without the need
for manual correction. It has the potential to increase the accuracy and efficiency of QCA.
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Stenosis assessment

Quantitative coronary angiography
Open source

1. Introduction means of assessing stenosis severity [2]. Yet, despite using sophisticated

edge detection algorithms that utilise pixel intensity to detect the vessel

Invasive X-ray coronary angiography (ICA) remains the gold stan-
dard investigation for the diagnosis of coronary artery disease (CAD). An
accurate anatomical assessment of CAD is critical for subsequent clinical
decision-making, such as the need for haemodynamic assessment or
revascularisation [1].

Quantitative coronary angiography (QCA) provides an objective

boundaries [3], current QCA systems remain prone to significant errors
in vessel segmentation. ICA images are complex two-dimensional pro-
jections of three-dimensional overlapping structures (e.g. arteries, lung,
bone, implanted cardiac devices), and are inherently noisy and of var-
iable quality. As a result, vessel annotation still requires frequent and
time-consuming manual correction by the user which also introduces
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subjectivity into an assessment that aims to be objective and reproduc-
ible [4]. This has important implications not only for the interpretation
of 2D vessel contours but also the accuracy of downstream 3D coronary
reconstructions and computed haemodynamic indices (e.g.
angiography-derived fractional flow reserve) [5]. For this reason,
amongst others, the anatomical assessment remains predominantly a
visual assessment that is prone to significant inter- and intra-operator
variation [6,7], as well as the overestimation of stenosis severity [8].

The abundance of ICA imaging makes coronary artery segmentation
an ideal target for deep learning (DL). Numerous examples of the
application of DL for coronary segmentation from ICA have been re-
ported in the literature [9-13]. However, their potential for real-world
clinical uptake is limited as they tend to perform indiscriminate seg-
mentation of the whole coronary tree without distinguishing its
branches [11] which has little clinical relevance for the interventionalist
wanting to assess a particular vessel or stenosis. Furthermore, DL models
for major artery segmentation only [9] exclude the possibility of ana-
lysing important side branches, which can subtend significant quantities
of myocardial mass. In addition, previous DL approaches, whilst offering
good overall segmentation results, are still prone to errors and issues
with consistency (e.g. across different arteries).

To this end, we propose AngioPy Segmentation (herein referred to as
AngioPy), an open-source, DL-driven coronary artery segmentation tool
and compare its performance with an established QCA system. Criti-
cally, AngioPy incorporates the user’s clinical expertise through the se-
lection (via clicking) of ground-truth points along the target vessel to
boost accuracy and minimise/eliminate the need for manual correction.
We provide AngioPy as an open-source tool to facilitate further research
in the field (https://gitlab.com/epfl-center-for-imaging/angiopy/ang
iopy-segmentation).

2. Methods
2.1. Study population
(i) Internal dataset.

For the internal dataset, ICA DICOMS were obtained from the Frac-
tional Flow Reserve versus Angiography for Multivessel Evaluation 2
(FAME 2) trial. Details of the trial have been published previously [14].
Briefly, FAME 2 evaluated fractional flow reserve (FFR)-guided PCI plus
optimal medical treatment (OMT) versus OMT alone in patients with
stable coronary artery disease. For the present study, ICA examinations
of patients in the control (OMT) and registry groups were included [15].
ICA images were not available for six patients and thus 561 patients
were included in the final study.

(ii) External dataset.

For the external dataset, ICA DICOMS were obtained from the Future
Culprit study [16]. Future Culprit is a retrospective case-control study of
83 patients hospitalised between 2008 and 2019 with an MI who had
undergone ICA in the five years preceding the MI (baseline ICA). For the
present study, baseline ICA images were included.

Both the FAME 2 and Future Culprit studies received full ethical
approval. Both studies conformed to the ethical guidelines of the 1975
Declaration of Helsinki as reflected in a priori approval by the partici-
pant institution’s human research committee.

2.2. Expert annotation

For both datasets, ground truth masks were produced by qualified
interventional cardiologists who performed manual coronary artery
segmentation using specialised in-house software and a customised
tablet with stylus. Manual segmentation was performed for each major
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epicardial vessel (left anterior descending artery (LAD), left circumflex
(LCx), right coronary artery (RCA)). In addition, in the internal dataset,
masks for the left main stem (LM) (if clearly visible) and any major
branches (proximal vessel diameter ~ 2 mm or more) were also
produced.

For a given patient, and a given artery, the annotation protocol
consisted of the following steps: (i) A DICOM file with the artery clearly
visible with minimal foreshortening was selected; (ii) An end-diastolic
frame was selected from the DICOM; (iii) Manual segmentation was
performed using the customised tablet and stylus; (iv) Crucially, a set of
5-10 ground truth points (points in the true artery) along the length of
the artery were then defined including the start and end of segmenta-
tion, to guide the segmentation process; (v) Steps (i) to (iv) were
repeated for a second view of the same artery (ideally as close to
orthogonal as possible), if available.

The final internal and external datasets consisted of 2455 and 580
labelled images, respectively.

2.3. Neural networks

Deep learning models were constructed using the U-Net architecture
for semantic segmentation [17], but with replacement of the backbone
of U-Net with three popular state-of-the-art architectures that have been
shown to perform well with image segmentation tasks: ResNet101 [18],
DenseNet121 [19], and InceptionResNet-v2 [20]. ResNet uses skip
connections between consecutive layers to facilitate the training pro-
cess, whilst DenseNet is a variant of ResNet that uses skip connections
from each layer to every other layer (hence dense). Each block of the
InceptionResNet architecture incorporates branching layers of filters of
different sizes which promotes the representation of features of different
resolutions. Input images of 512 x 512 pixels were normalized with 2-D
min/max normalisation. Initial weights were adopted from ImageNet for
transfer learning.

Critically, the input image was then modified to integrate the user’s
clinical expertise through the addition of the ~5 ground-truth points in
separate channels in the input image. A first channel was added that
stored the coordinates of the start and end points of segmentation. A
further channel was added that stored the remaining ground truth points
(i.e. those between the desired start and end points). Accordingly, the
final input image shape used for training was 3 x 512 x 512. By
incorporating ground-truth points into the input image, i.e. points that
should appear in the final mask, the segmentation of areas of the image
where the vessel edge was ambiguous (e.g. vessel branch, overlapping
vessel) could be guided by nearby ground-truth points. This approach
was hypothesised to reduce the risk of unwanted excursions away from
the true vessel lumen and thus boost segmentation performance.

2.4. Experimental setup
(i) Training and testing

The models were trained in Python using the Pytorch library using
two NVIDIA A100 80GB GPUs. Models were trained for a maximum of
150 epochs, using an Adam optimizer with f; = 0.9, p2 = 0.999, and a
mini-batch size of 10. The learning rate, which was initially set to 1072,
was reduced by half up to less than 10~° each time the validation loss
remained saturated for 20 epochs. Data augmentation was performed
with random rotation (—30° to 30°), translation shift (—20-20 % of
image size in horizontal and vertical axes), and zoom (—20-20 %).

The internal dataset was divided into five folds at random and five-
fold cross-validation was performed using the following proportions
3:1:1 for training, validation, and test sets, respectively.

The models trained on the internal dataset were then tested on the
external dataset.
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(ii) Loss function

The loss function consisted of generalized dice loss (GDL), which
provides information on global segmentation quality, and focal loss (FL),
which provides a pixel-wise evaluation focused on the harder-to-classify
pixels [21,22]. The loss function used was:

Loss = GDL + FL

(iii) Evaluation metrics

The evaluation metrics used to assess the predictive performance of
the deep learning models were: precision, recall, specificity, accuracy,
and F1 score which were defined using the following equations where
TP is true positive, FP is false positive, and FN is false negative:

precision = TP/(TP + FP)

recall = TP/(TP + FN)

specificity = TN/(TN + FP)

accuracy = (TP + TN)/(TP + TN + FP + FN)

F1 = 2 X precision x recall/ (precision + recall)

2.5. Comparison with QCA

A total of 203 ICA frames from the Future Culprit study were ana-
lysed with an established commercial QCA package (Medis QFR®) to
obtain vessel diameters at the site of coronary stenoses (proximal, distal,
and minimal luminal diameter (MLD)). Segmentation with the QCA
system was performed as per standard instructions provided by the
manufacturer, with automatically detected contours corrected by the
operator as required. Segmentation using AngioPy was then performed
on the same frames by a separate operator who was aware of the vessel
to be segmented but blinded to the QCA output.

In a final step, the segmentation output of the two approaches was
compared. The locations of the measured vessel diameters were
extracted from the QCA output and applied to a Euclidean distance
transform map of the AngioPy segmentation mask to automatically
calculate the equivalent diameter at the same location as detected by
AngioPy [23]. A total of 609 vessel diameter measurements were
compared.

2.6. Web application

In order to turn the trained DL model into a user-friendly tool, a web
application was created using Python version 3.8.10 and Streamlit
version 1.25.0. A demonstration of the web application along with the
source code (including the final segmentation model) is available online
(https://gitlab.com/epfl-center-for-imaging/angiopy/angiopy-seg
mentation).

2.7. Statistical analysis

Continuous values are presented as mean + standard deviation or
median and interquartile range, as appropriate. Categorical variables
are presented as numbers and percentages. The association between two
continuous variables was assessed using: (i) Pearson’s correlation coef-
ficient to assess for a linear correlation, and (ii) Bland-Altman analysis
and the intraclass correlation coefficient (ICC) computed using a two-
way mixed-effect model to assess the absolute agreement between
values. Passing-Bablok regression was used in the agreement analysis
comparing vessel diameters measured by QCA and AngioPy to assess for
systematic and proportional differences. For Passing-Bablok regression
analysis, no systematic bias between measurements was assumed if 95 %
CI of the intercept included the value 0, whereas an absence of signifi-
cant proportional bias was assumed if 95 % CI of the slope included the
value 1.
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Values of p < 0.05 were considered statistically significant. Statisti-
cal analyses were performed using Python version 3.8.10.

3. Results
3.1. Model performance with internal dataset

The baseline characteristics of the patients from the FAME 2 study
have been reported previously [15], and are summarised in Supple-
mentary Table 1. The distribution of the segmented arteries in the in-
ternal dataset is shown in Supplementary Fig. 1, with all major vessels
being well represented. In addition, arteries were segmented from im-
ages acquired from a wide range of classically utilised incidences
employed during ICA (Supplementary Fig. 2).

Table 1 shows the performance of the three trained DL models in the
test set during five-fold cross-validation. Examples of test set inputs,
ground-truth labels and DL model outputs are shown in Fig. 1. The mean
F1 scores were 0.925 + 0.0021, 0.927 + 0.0017, and 0.927 + 0.0012,
for ResNet101, DenseNet121, and InceptionResNet-v2, respectively. F1
scores were consistently high in the test set with over 99 % of masks
having an F1 score > 0.8 (ResNet101: 99.4 %, DenseNet121: 99.5 %,
InceptionResNet-v2: 99.3 %).

All models performed equivalently well on the internal dataset with
no statistically significant differences between models with regards to F1
score, recall, precision, accuracy or specificity. In addition, all models
performed well, regardless of the target artery, although the highest F1
scores were seen with the RCA (ResNetl101: 0.939 4+ 0.0015, Dense-
Netl121: 0.940 + 0.0012, InceptionResNet-v2: 0.940 + 0.0019) (Sup-
plementary Table 2).

3.2. Model performance with external dataset

The three DL models also demonstrated excellent performance in the
external dataset (Table 2). The mean F1 scores were 0.925 + 0.0021,
0.924 + 0.028, and 0.924 + 0.028, for ResNet101, DenseNet121, and
InceptionResNet-v2, respectively.

As seen with the internal dataset, F1 scores were consistently high
with over 99 % of masks having an F1 score > 0.8 (ResNet101: 99.8 %,
DenseNet121: 99.5 %, InceptionResNet-v2: 99.7 %). All models per-
formed well on all three major epicardial arteries, with the RCA
exhibiting the highest F1 scores (ResNet101: 0.935 + 0.019, Dense-
Net121: 0.935 + 0.019, InceptionResNet-v2: 0.935 + 0.020) (Supple-
mentary Table 3).

3.3. AngioPy vs QCA

Examples of artery contours produced by AngioPy (using the
InceptionResNet-v2 encoder) and QCA (Medis QFR®) are shown in
Fig. 2A. Compared with diameters measured with QCA, diameters
measured with AngioPy (without correction) exhibited excellent corre-
lation (r = 0.96, 95 % CI 0.95-0.96, p < 0.001) and absolute agreement
(ICC = 0.96, 95 % CI 0.95-0.96, p < 0.001; mean difference — 0.18 mm
[limits of agreement: —0.84 to 0.49]) (Fig. 2B + C). Passing-Bablok
regression analysis found no significant systematic bias (intercept A:

Table 1

Comparison of the segmentation performance of deep learning models with the
internal dataset. Mean values of metrics along with standard deviations between
folds are presented.

Metric ResNet101 DenseNet121 InceptionResNet-v2
F1 0.925 + 0.0021 0.927 + 0.0017 0.927 + 0.0012
Recall 0.929 + 0.0024 0.930 + 0.0023 0.930 + 0.0030
Precision 0.924 + 0.0032 0.925 + 0.0029 0.925 + 0.0027
Accuracy 0.997 + 0.0000 0.998 + 0.0001 0.998 + 0.0000
Specificity 0.999 + 0.0001 0.999 + 0.0001 0.999 + 0.0001
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TRAINING

Input image Label
(+ user-defined vessel points) (cardiologist ground truth)

ResNet101
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DEEP LEARNING OUTPUTS

DenseNet121

InceptionResNet-v2

Fig. 1. Examples of major vessel segmentation by the three trained DL models. Columns from left to right: an input image from the test set (including ground truth
points), the label (mask provided by cardiologist), outputs from ResNet101, DenseNet121, and InceptionResNet-v2.

Table 2

Comparison of the segmentation performance of deep learning models with the
external dataset. Mean values of metrics along with standard deviations within
the external dataset are presented.

Metric ResNet101 DenseNet121 InceptionResNet-v2
F1 0.924 + 0.029 0.924 + 0.028 0.924 + 0.028
Recall 0.929 + 0.036 0.928 + 0.036 0.929 + 0.037
Precision 0.920 + 0.046 0.922 + 0.043 0.921 + 0.044
Accuracy 0.997 + 0.001 0.997 + 0.001 0.997 + 0.001
Specificity 0.999 + 0.001 0.999 + 0.001 0.999 + 0.001

0.04 [-0.04-0.13]) but a weak proportional bias (slope B: 1.04
[1.02-1.07D).

MLD measurements from AngioPy exhibited excellent agreement
with QCA (r = 0.93, 95 % CI 0.91-0.95; ICC = 0.93, 95 % CI 0.91-0.95,
both p < 0.001; mean difference — 0.06 mm [limits of agreement: —0.70
to 0.59]) (Fig. 2D + E). Additionally, Passing-Bablok regression analysis
found no significant systematic (intercept A: —0.10 [—0.28-0.08]) or
proportional bias (slope B: 1.06 [1.00-1.12]).

A summary of the study findings is shown in the Graphical Abstract.
A video example of segmentation by AngioPy is shown in Supplemen-
tary Video 1.

4. Discussion

We present AngioPy, an open-source, DL model for coronary artery
segmentation from ICA. The principal findings of this study can be
summarised as follows:

i. We demonstrate the feasibility of a user-guided, DL-driven seg-
mentation approach that integrates user expertise via a set of
rapid clicks along the artery to boost performance

ii. Models trained on images from the FAME 2 study demonstrated
excellent segmentation performance that generalized well to an
external dataset

iii. Segmentation masks from AngioPy without manual correction
demonstrated excellent agreement with an established QCA sys-
tem, highlighting the validity of a DL-driven segmentation
approach over traditional edge detection algorithms

4.1. The limitations of QCA

Whilst a range of QCA systems are now available [24-27], current
systems present practical limitations that have limited uptake into
routine clinical practice. Notably, commonly employed edge detection
algorithms are prone to significant errors in vessel segmentation. ICA
images are complex two-dimensional projections of three-dimensional
overlapping structures (e.g. arteries, lung, bone, implanted cardiac de-
vices), and are inherently noisy and of variable quality. As a result,
automatically detected vessel contours still require frequent and time-
consuming manual correction by the user. Whilst there are limited
data on the amount of manual correction required with current QCA
systems, reported figures vary from ~10 % to ~30 % of analysed vessels
[24,28]. This figure likely varies significantly depending on the QCA
system being used, the quality of images, as well as the user.

Crucially, manual correction introduces subjectivity into an assess-
ment that aims to be objective and reproducible. In fact, even in the core
lab setting, QCA exhibits marked variability when the same images are
analysed by different core labs [4]. This variation is concerning as it has
important downstream consequences. Firstly, it affects the interpreta-
tion of lesion severity directly from the 2D vessel contours. Secondly, it
affects the accuracy of the 3D geometries generated by QCA as these are
highly dependent on the quality of the original arterial segmentation.
Inaccurate segmentation produces inaccurate 3D geometries, and this
also has implications for downstream haemodynamic simulations (e.g.
virtual computation of FFR). Westra et al. reported significant intra- and
inter-operator variability in the calculation of quantitative flow ratio
(QFR) from the same ICA images, with marked variability in the use of
manual correction [5]. This, at least in part, may help to explain the
imperfect agreement between angiography-derived FFR and pressure
wire-based FFR [29].

4.2. The potential of DL-driven approaches

Examples of the application of DL for coronary segmentation from
ICA have been reported in the literature [9-12]. However, their poten-
tial for real-world clinical uptake is limited as they tend to perform
indiscriminate segmentation of the whole coronary tree [11], or just the
major coronary arteries without important branches [9]. For example,
Yang et al. trained a DL model for major coronary vessel segmentation (i.
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Fig. 2. AngioPy vs QCA: (A) examples of artery contours produced by an established QCA system and AngioPy; agreement between AngioPy and QCA for all vessel
diameters (B + C), and for lesion MLD (D + E).
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e. LAD, LCX, RCA) with an average F1 score of 0.917 and 93.7 % of
masks exhibiting an F1 score > 0.8 [9]. Iyer et al. developed AngioNet, a
DL model that segmented the whole coronary tree from an ICA frame
with an average F1 score of 0.864 [11]. Most recently, Liu et al. pre-
sented AI-QCA, a DL model that segments major epicardial vessels as
well as their branches [13]. Whilst this represented progress in the field,
the reported F1 score of 0.879 was not an improvement on previously
reported data. Furthermore, agreement with QCA measurements was
moderate (e.g. Pearson’s r for MLD = 0.765).

AngioPy presents several advantages over previously reported work.
Firstly, it directly integrates the user’s clinical expertise through the
rapid selection of a handful of ground truth points along the vessel to
guide the segmentation process. This permits the segmentation of any
coronary vessel including side branches, with the interface providing the
user with complete control over the choice of vessel, as well as the start
and endpoint point of segmentation. This approach resulted in excellent
segmentation performance with an average F1 score of 0.927. Further-
more, this approach resulted in consistently high-level segmentation
with over 99 % of masks exhibiting an F1 score > 0.8. This consistency
was also exemplified by the consistent segmentation performance across
artery types (mean F1 scores: LAD 0.922, RCA 0.940, LCX 0.920, LM
0.930) which was markedly better than the inter-arterial variation
previously reported [9,13].

Our study also demonstrated the excellent generalisability of AngioPy
to an external dataset. In addition to the integration of user-defined
ground truth points, this generalisability is likely also thanks to the di-
versity of the training dataset. The ICA images from FAME 2 come from
28 different centres (in Europe, the U.S., and Canada) representing a
range of different coronary angiography machines, variable image
quality, as well as variability in image acquisition practices such as the
incidences used (Supplementary Fig. 2).

Finally, vessel diameters measured from uncorrected AngioPy seg-
mentation masks demonstrated excellent agreement with QCA, high-
lighting that a DL-driven approach can produce similar results, whilst
avoiding manual correction and its associated time cost and risk of
subjectivity. Of note, the weak proportional bias (1.04) can be consid-
ered clinically insignificant given its small size.

Ultimately, these results suggest the potential for faster and more
reproducible segmentation with AngioPy that opens the door to the use
of QCA “live” during ICA in a way that could influence clinical decision-
making. This is in contrast to current QCA systems which are typically
used “offline” after the procedure, with the patient no longer on the
cardiac catheterisation table. Further work is now needed to demon-
strate the feasibility and efficacy of using AngioPy “online” in a real-
world catheterisation laboratory setting.

4.3. Open-source software

Currently, available QCA systems are proprietary, closed source and
purchased at a significant cost. This creates significant barriers to their
use in both clinical and research contexts. As such we release AngioPy as
an open-source tool to promote innovation and advancements in the
field (https://gitlab.com/epfl-center-for-imaging/angiopy/angiopy-seg
mentation).

4.4. Limitations

First, AngioPy still requires the user to select an ICA frame for seg-
mentation. Whilst the identification of an optimal end-diastolic frame
for segmentation could easily be automated with a DL-based approach,
this was not a goal of the present study. Second, whilst AngioPy permits
the segmentation of any coronary artery including major branches, the
accuracy of bifurcation segmentation was not evaluated. Previous
studies have shown single-vessel QCA software to be inaccurate in this
setting due to the specific anatomical characteristics of bifurcations
[30]. Further work will aim to assess the validity of AngioPy in the
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assessment of bifurcations and bifurcation lesions specifically. Third,
previous deep learning models developed for ICA have either not been
released as open-source, or have been released without pre-trained
model weights. As a result, a direct comparison of AngioPy with these
previous methods was not possible. This limitation further highlights the
importance of open-source code and vindicates our decision to release
the source code of AngioPy for the wider community. Finally, we did not
perform a formal comparison of the time required to perform segmen-
tation with AngioPy and QCA. However, segmentation takes just seconds
with AngioPy, and given that manual correction is not required, we
believe that the use of AngioPy results in ultimately faster and more
consistent segmentation.

5. Conclusion

AngioPy performs rapid and accurate coronary segmentation of any
vessel without the need for manual correction and compares favourably
with an established QCA system. Available as an open-source tool,
AngioPy has the potential to increase the efficiency and reliability of
QCA.
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