
CM-UNet: A Self-Supervised Learning-Based Model for Coronary

Artery Segmentation in X-Ray Angiography

Camille Challier1, Xiaowu Sun1, Thabo Mahendiran3, Ortal Senouf1, Bernard De Bruyne2, Denise Auberson3,

Olivier Müller3, Stephane Fournier3, Pascal Frossard1, Emmanuel Abbé1, and Dorina Thanou1
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Abstract— Accurate segmentation of coronary arteries re-
mains a significant challenge in clinical practice, hindering
the ability to effectively diagnose and manage coronary artery
disease. The lack of large, annotated datasets for model training
exacerbates this issue, limiting the development of automated
tools that could assist radiologists. To address this, we intro-
duce CM-UNet, which leverages self-supervised pre-training on
unannotated datasets and transfer learning on limited anno-
tated data, enabling accurate disease detection while minimizing
the need for extensive manual annotations. Fine-tuning CM-
UNet with only 18 annotated images instead of 500 resulted
in a 15.2% decrease in Dice score, compared to a 46.5% drop
in baseline models without pre-training. This demonstrates that
self-supervised learning can enhance segmentation performance
and reduce dependence on large datasets. This is one of the first
studies to highlight the importance of self-supervised learning in
improving coronary artery segmentation from X-ray angiogra-
phy, with potential implications for advancing diagnostic accu-
racy in clinical practice. The source code is publicly available at
https://github.com/CamilleChallier/Contrastive-Masked-UNet.

Clinical Relevance—By enhancing segmentation accuracy in
X-ray angiography images, the proposed approach aims to
improve clinical workflows, reduce radiologists’ workload, and
accelerate disease detection, ultimately contributing to better
patient outcomes.

I. INTRODUCTION

Coronary artery disease (CAD) is one of the leading causes

of mortality worldwide, affecting millions of individuals.

CAD is defined by the accumulation of plaque in coronary ar-

teries, leading to vessel narrowing (stenosis), which restricts

blood circulation and may lead to serious cardiovascular

complications. Invasive X-ray coronary angiography (ICA)

is the gold standard for CAD diagnosis, where contrast

agents are injected to visualize the arteries through X-

ray projections from multiple angles. Clinicians typically

assess stenosis severity by visually inspecting the thickness

of arteries in angiographic images, a process that is time-

intensive and relies on subjective expertise.

Accurate segmentation of coronary arteries is essential for

reliable stenosis quantification, enabling precise diagnosis

and treatment for CAD. Automated segmentation methods

offer significant advantages over traditional manual seg-

mentation by providing objective and precise quantifica-

tion analysis. However, coronary artery segmentation still

presents many challenges. First, the lack of sufficiently large,

annotated, and publicly available datasets limits deep learn-

ing model training [1]. Additionally, the coronary arteries

are extremely fine-grained structures, often approaching the

resolution limits of X-ray imaging systems and complicating

precise visualization and analysis [2]. The highly variable

topology of coronary artery trees makes it difficult to incor-

porate prior shape knowledge effectively. Furthermore, the

low signal-to-noise ratio in coronary imaging, combined with

overlapping structures such as the catheter, spine, and rib

cage, further impedes accurate segmentation [3].

To address these challenges, we propose a self-supervised

learning (SSL) based method for coronary artery segmenta-

tion from ICA imaging using limited labeled data. SSL offers

a promising solution to overcome the lack of large annotated

datasets needed for training in the medical imaging domain.

It also addresses the issue of variations in image quality and

settings across different medical labs, which often hinder the

sharing of datasets between institutions. SSL employs vast

amounts of unlabeled data during pre-training, allowing mod-

els to develop robust image representations while reducing

the need for labeled datasets [4]. Our novel segmentation

framework, namely Contrastive Masked UNet (CM-UNet)

incorporates Contrastive Masked Auto-Encoder (CMAE) [5]

with a UNet backbone. Furthermore, we conduct a com-

prehensive evaluation and benchmarking of state-of-the-art

(SOTA) SSL methods using a UNet architecture, specifically

applied for coronary artery segmentation. Our experiments

demonstrate that CM-Unet achieves substantial performance

improvements over other SSL-based methods, particularly

in low-data settings when applied to the FAME2 (Fractional

Flow Reserve Versus Angiography for Multivessel Evalu-

ation 2) dataset [6]. These advancements highlight CM-

Unet’s potential to enhance coronary artery segmentation

accuracy, ultimately aiding in the diagnosis and treatment

of cardiovascular diseases. The reduced need for annotated

data could enable broader clinical application, ultimately

contributing to more accessible cardiovascular care.

II. RELATED WORKS

A. Supervised learning for ICA images analysis

CNN-based architectures have demonstrated remarkable

performance in medical image segmentation tasks [7]. For



ICA, deep learning models like UNet [8], ResNet [9], and

DenseNet [10] can effectively segment major vessels [11].

Building upon this foundation, AngioNet [12] addresses

specific challenges such as poor contrast and unclear vessel

boundaries, improving segmentation accuracy. AngioPy [13],

a deep learning model for coronary segmentation, integrates

user-defined ground-truth points to enhance performance and

reduce the need for manual correction.

However, supervised models typically learn task-specific

features, making them less adaptable across different datasets

and clinical applications. The dependency on labeled data

also presents challenges in ICA segmentation, as manual

annotation is time-consuming and error-prone due to over-

lapping structures, low-contrast images, and the fine-grained

nature of coronary arteries. These limitations highlight the

need for approaches that can leverage large amounts of un-

labeled data to learn robust and generalized representations.

B. Self-supervised learning for medical images analysis

SSL offers a promising alternative by enabling models

to learn effective representations from unlabeled data, re-

ducing the reliance on manual annotations. It has been

explored in medical imaging, with notable successes in pre-

training models for segmentation and classification tasks.

SSL methods can be categorized into four types: Innate

Relationship, Generative, Contrastive, and Self-Prediction

[4]. Innate Relationship consists of pre-training a model on

a custom-designed task and has been applied to various

medical datasets, including echocardiogram imagery [14]

and ultrasound data [15]. Generative SSL frameworks like

Models Genesis [16] are used to pre-train UNet architectures

on 3D anatomical structures in CT, X-ray, and MRI images.

Contrastive SSL approaches, such as SimCLR [17] and

MoCo [18], have been adapted for medical image analysis,

including CT classification tasks [19] and volumetric image

segmentation in MRI [20]. These methods effectively learn

meaningful image representations by maximizing agreement

between augmented views from the same image. Self-

prediction methods, such as masked auto-encoders (MAE)

[21], have recently gained popularity. Tian et al. proposed

Spark [22], a sparse convolution-based adaptation of MAE

for CNNs, which surpasses contrastive methods. Spark has

demonstrated promising results across various CT classifica-

tion tasks [19].

While numerous SSL methods have been explored in

medical imaging, their application to ICA analysis remains

underexplored. Ma et al. proposed a self-supervised ap-

proach that leverages adversarial learning for ICA vessel

segmentation [23]. Similarly, Zeng et al. proposed a self-

supervised method for single-frame subtraction and vessel

segmentation in ICA, achieving good performance with mini-

mal fine-tuning on a limited annotated dataset [24]. However,

challenges such as capturing fine-grained vessel structures,

variable coronary topology, and low signal-to-noise ratios in

ICA images remain largely unresolved.

III. SELF-SUPERVISED LEARNING-BASED FRAMEWORK

FOR CORONARY ARTERY SEGMENTATION

In this section, we introduce CM-UNet, an SSL framework

for coronary artery segmentation from ICA images. Our

approach builds on the strengths of contrastive learning and

MAE to effectively learn both global representations and

fine-grained anatomical details. The proposed framework

follows a two-step process, as illustrated in Fig. 1. The first

step is pre-training, a self-supervised stage that leverages

contrastive learning and masked image reconstruction to

learn robust feature representations from unlabeled data. The

second step is fine-tuning, a supervised refinement phase

where the pre-trained model is adapted to the coronary artery

segmentation task using a limited number of labeled images.

Fig. 1. Overview of the CM-UNet training pipeline,

including both pre-training and fine-tuning stages. For further

details on the pre-training process, refer to Figure 2.

Contrastive learning and MAE represent two of the most

prominent approaches, offering complementary strengths in

SSL. Contrastive methods excel at learning global represen-

tations by distinguishing between different instances, mak-

ing them effective for tasks requiring robust, instance-level

feature discrimination. However, they often struggle with

fine-grained structures, especially in small datasets, where

instance diversity is limited. On the other hand, MAE meth-

ods focus on reconstructing missing image regions, capturing

local and contextual information crucial for medical images

like ICA, which feature fine-grained anatomical structures.

By combining the global representation power of con-

trastive learning with the local reconstruction ability of MAE,

we aim to create a more balanced pre-training framework that

effectively handles both high-level and fine-grained features

in coronary artery segmentation.

A. Self-supervised pre-training with Contrastive Masked

UNet

CM-Unet is composed of two image transformation blocks

and two branches, including a reconstruction branch with

an encoder Er and a decoder Dr to reconstruct masked

images and a contrastive learning branch to provide con-

trastive supervision. An illustration of CM-UNet’s frame-

work is depicted in Fig. 2. In the following sections, the

three main components of CM-UNet are described: image

transformation, which generates diverse augmented views to

enhance representation learning; the reconstruction branch,



Fig. 2. Illustration of Contrastive Masked UNet (CM-UNet) method for self-supervised pre-training. The framework consists

of two key components: an online encoder-decoder (in orange) for reconstructing masked image patches, and a momentum

branch (in blue) that generates contrastive embeddings. An auxiliary feature decoder is integrated into the online branch to

refine latent representations for contrastive learning. The feature decoder and momentum encoder’s outputs are compared

through a contrastive loss to learn discriminative features. The model is trained using a combination of reconstruction and

contrastive loss. The diagram illustrates an example for image k.

responsible for recovering masked image regions to capture

fine-grained anatomical structures; and the contrastive learn-

ing branch, which ensures global feature consistency and

discriminative representation learning.

1) Image transformation: Given an unlabeled image Xk,

two random transformations are applied to generate two

distinct variations of Xk. In the reconstruction branch, trans-

formations including random cropping, flipping, and pixel

shifting are applied to produce the augmented image XA
k .

Similarly, in the contrastive branch, transformations such

as random cropping, flipping, pixel shifting, and Gaussian

noise are used to generate XB
k . The cropping technique

first extracts a base image using resized random cropping.

Both branches then generate views by slightly shifting the

cropping locations with the pixel-shifting technique, ensuring

overlapping regions for positive pairs [5]. In the reconstruc-

tion branch, masking is additionally applied to create the

transformed masked image XA+M
k .

2) Reconstruction Branch: The reconstruction encoder-

decoder (Er, Dr) employes a UNet as backbone to recon-

struct XA
k from XA+M

k . The online encoder Er maps the

masked image XA+M
k to its latent representation denoted as

ZA
k . Subsequently, the pixel decoder Dr maps the features

ZA
k to the reconstructed image X ′A

k . Mean Square Error

(MSE) is used as the loss function to compute the recon-

struction error on the masked patches between XA
k and X ′A

k :

Lr =
1

Nm

∑

m

(X ′A
km

−XA
km

)2, (1)

with Nm denoting the number of masked patches. Through

this process, Er and Dr collaboratively learn to reconstruct

the masked patches, enabling the model to develop a unified

representation for each patch within the image.

3) Contrastive learning Branch: The contrastive learning

branch aims to guide the reconstruction encoder Er in acquir-

ing more distinctive features. Therefore, the encoder Ec in

the contrastive learning branch shares the same architecture

as the encoder Er. Ec processes the augmented image XB
k ,

transforming it into a feature embedding. This embedding

is then passed through an adapter for shape compatibility,

implemented as a Conv2D layer, resulting in ZB
k .

To align the output of the contrastive encoder and the

output of the reconstruction encoder, an auxiliary feature

decoder Df , is then applied to transfer the feature embedding

ZA
k to ZAD

k . While both the feature decoder and pixel

decoder share the same architecture, their parameters are not

shared, as they serve different learning objectives.

To map these two representations (ZB
k and ZAD

k ) to the

space where contrastive loss is applied, the “projection-

prediction” head is added after the feature decoder and the

“projection” head after the contrastive learning encoder. The

projection head g is a multi-layer perceptron (MLP) with two

hidden layers. The architecture consists of a fully connected

layer (FC), followed by batch normalization, a ReLU acti-

vation, and a second hidden layer. The predictor q uses the

same architecture as g. Thus, the following representations

are obtained: ZBP
k = g(ZB

k ) and ZADP
k = q(g(ZAD

k )).
To ensure that the online encoder’s representations capture

holistic and discriminative features while improving gener-

alization performance, the InfoNCE loss [25] is applied for

contrastive learning. This loss compares two embeddings:

ZBP
k , the output of the contrastive learning encoder, and



ZADP
k , the output from the feature decoder Df .

The output ZBP
k is saved alongside the latent space

representations of the contrastive learning encoder from other

images of the batch, specifically [ZBP
0 , ..., ZBP

k −1, ZBP
k +1,

..., ZBP
N ]. This list thus contains one element, ZBP

k , which

is derived from the same original image as the output of

the reconstruction branch ZADP
k , forming the positive pair,

and many elements from different original images, which

represent the negative pairs. The encoder model is trained to

differentiate between representations from the same original

image (positive pairs) and representations that come from

different original images (negative pairs). We compute the

cosine similarity s between a pair:

s =
ZADP
m · ZBP

n

∥ZADP
m ∥2∥ZBP

n ∥2
, (2)

where n and m represent two different images. We note s+
and s− as the cosine similarities between the positive and

negative pairs, respectively. InfoNCE loss can be written as

follows:

Lc = − log

(

exp(s+/τ)

exp(s+/τ) +
∑K−1

j=1
exp(sj−/τ)

)

, (3)

where τ is a temperature hyperparameter.

The total learning objective of CM-Unet for pre-training

is a weighted sum of the reconstruction loss Lr and the

contrastive loss Lc, defined as: L = Lr + λcLc.

4) Pre-training: During pre-training, the contrastive

learning encoder and projection head parameters are updated

using an exponential moving average algorithm (EMA) [5].

The parameters of the momentum encoder are updated as

a weighted average of the current momentum encoder and

online encoder parameters.

B. Downstream task: ICA image segmentation

Following the pre-training phase, the online reconstruction

encoder Er and the pixel decoder Dr are leveraged for

downstream segmentation tasks. The encoder and decoder

are initialized with pre-trained weights and combined to

form a UNet model with skip connections. However, the

weights and biases of the pre-trained final convolution layer

are excluded to enable task-specific adjustments. The UNet

model is fine-tuned on the labeled dataset. A hybrid loss

function is used, combining Dice and Cross-Entropy loss:

L = LDice + λCELCE. (4)

Dice loss ensures overlap with the ground truth, while Cross-

Entropy penalizes pixel-wise mis-classifications.

IV. EXPERIMENTS

A. Dataset

The Fractional Flow Reserve Versus Angiography in

Multivessel Evaluation 2 RCT (FAME2) dataset [6] used

in this work includes 563 patients with stable coronary

artery diseases, collected from 28 different clinical sites.

The dataset comprises 1,738 labeled ICA images. All studies

were approved by the local medical ethics committee, and

participants provided written informed consent. Coronary

arteries were manually annotated by the cardiology team at

Lausanne University Hospital (CHUV).

The data pre-processing pipeline for the FAME2 dataset

includes several key steps to enhance image quality and

ensure consistency. First, mask smoothing is applied to re-

duce noise and improve the accuracy of boundary delineation

in segmentation masks. The images are then cropped to a

fixed size, and corner inpainting is performed to address

missing or corrupted pixels. To further refine image quality,

unsharp masking filters are used with specific parameters

(radius=60, amount=1) to highlight important features. Z-

score intensity normalization is applied using the mean and

standard deviation of the dataset. The dataset is divided into

training and testing sets, consisting of 1390 and 348 images,

respectively. The training set is subsequently split into two

subsets: a pre-training set and a fine-tuning set.

B. Evaluation metrics

1) Segmentation metrics: Dice measures the overlap be-

tween the prediction and ground truth (GT). Equivalent to

the F1 score in binary segmentation, it is defined as:

Dice =
2TP

2TP + FP + FN
(5)

where TP, FP, and FN denote true positives, false positives,

and false negatives based on prediction–GT overlap.

Centerline Dice (Cl-Dice) is a Dice coefficient based on

the Centerlines of the predicted and GT segmentations [26].

Intersection over Union (IoU) also evaluates overlap:

IoU =
TP

TP + FP + FN
(6)

Hausdorff Distance (HD) is the distance between the

points on the predicted and GT boundaries, indicating the

maximum deviation. Here, the modified HD is used, as it has

demonstrated superior performance compared to the directed

HD [27]. The distance between two points g and p is defined

as the Euclidean distance: d(g, p) = ∥g − p∥. The distance

between a point g and a set of points P = {p1, p2, . . . , pN} is

defined as: d(g,P) = minp∈P ∥g−p∥. The directed distance

between two point sets G = {g1, ..., gNg} and point set

P = {p1, ..., pNp} is given by d(G,P) = 1

Ng

∑

g∈G d(g,P).
The undirect distance measure of the modified HD is finally

denoted by :

HD = max(d(G,P), d(P,G)). (7)

2) Clinical metrics: Arteries Diameter Difference

(ADD) is the difference in diameter between the GT and the

predicted coronary arteries. It is computed by first extracting

the skeleton of the binary mask and identifying the contour

points. The radius at each skeleton point is then calculated by

finding the nearest contour point. The final metric is derived

by evaluating the mean diameters of the skeleton.
3) Statistical Analysis: Pearson correlation coefficient

(PCC) is introduced to quantify the correlation of the clinical

metrics between the manual and automatic segmentation

approaches. Bland-Altman analysis [28] is used to assess the

agreement between the predicted and GT arteries’ diameters.



C. Experimental settings

CM-UNet pre-training uses a batch size of 256 and 300

epochs. The learning rate is dynamically adjusted based

on the batch size, update interval, and GPU configuration.

A linear warmup learning rate schedule is applied for the

initial 40 epochs, followed by cosine annealing until epoch

300. Optimization is performed using the AdamW optimizer

with betas set to (0.9, 0.95), a weight decay of 0.05, and

parameter-specific decay adjustments. The training process

incorporated momentum updates, custom hooks, and a fixed

random seed to ensure reproducibility. Masking is applied

with a patch size of 16× 16 and a coverage ratio of 65%.

Concerning fine-tuning for the segmentation task, data

augmentation techniques such as Gaussian noise, Gaussian

blur, random cropping, brightness modification, flipping, and

rotations are applied to the fine-tuning set of the FAME2

dataset to enhance model robustness. Three-fold cross-

validation is performed on the fine-tuning set to identify

the best hyperparameters. Hyperparameter tuning includes

a learning rate range from 1×10−1 to 1×10−5, batch sizes

of 16 and 32, and training over 256 epochs.

All the models are implemented in Pytorch and trained

with an NVIDIA A100 GPU with 80 GB memory.

We compare CM-UNet with several SSL models including

Model Genesis [16], MAE [21], SparK [22] and MoCoV2

[18]. All these model employs UNet as the backbone

and are evaluated for transfer learning in coronary artery

segmentation. The UNet used in all experiments has four

downsampling blocks with 64, 128, 256, and 512 channels,

followed by a 1024-channel bottleneck layer. This is paired

with a mirrored upsampling path and skip connections.

D. Model Performance

In this work, 20% of the dataset is reserved for testing

segmentation performance across SSL models, while the

remaining 80% is split into pre-training and fine-tuning sets

in varying ratios. The performance of the models is evaluated

based on segmentation accuracy, quantified using the Dice

score and HD, as well as the PCC to evaluate the relationship

between the predicted and GT artery diameters.

1) Segmentation results: As shown in Fig. 3, the pre-

trained models consistently outperformed the non-pre-trained

model, particularly when less than 10% of the data (i.e.,

fewer than 200 images) are available. The performance gap

between pre-trained and non-pre-trained models increases as

the amount of fine-tuning data decreases, demonstrating the

effectiveness of SSL in addressing data-scarce scenarios.

For the 70-10 pre-training-fine-tuning (PT-FT) ratio, the

mean Dice score of pre-trained models is 0.68, compared to

0.66 for the non-pre-trained model, representing an improve-

ment of 3.03%. The performance gain across pre-trained

models ranges from 0.8% to 5.4%. In the case of the 79-

1 ratio, where only 1% of the dataset is used for fine-tuning,

pre-trained models achieve a mean Dice score of 0.56, while

the non-pre-trained model scored significantly lower at 0.38.

This corresponds to a substantial improvement of 49.2%,

with individual pre-trained models showing gains ranging

Fig. 3. Evalution of the Dice score and Hausdorff distance

across various PT-FT ratios and self-supervised methods.

from 38.9% to 66.8%. These results highlight the robustness

of pre-trained models in scenarios with extremely limited

labeled data. Moreover, when transitioning from the 50-30

to the 79-1 PT-FT ratio: the dice score decreases by 46.5%

(from 0.71 to 0.38) for the non-pre-trained model, and by

22.2% (0.72 to 0.56) for the pre-trained ones on average.

Among the self-supervised pre-training techniques, CM-

UNet outperforms the other methods. For the 50% pre-

training and 30% fine-tuning ratio, the non-pre-trained model

achieves a Dice score of 0.71, while the pre-trained CM-

UNet achieves a Dice score of 0.74. This trend is consistent

across all PT-FT ratios, further emphasizing CM-UNet’s

effectiveness in leveraging SSL pre-training for coronary

artery segmentation tasks.

We also investigate the performance of SSL methods under

extreme data scarcity, where only 1% of the training dataset

(18 images) is available for fine-tuning. This analysis is

critical for assessing the robustness and generalizability of

SSL models in low-data scenarios, which are common in

medical imaging tasks. As shown in Table I, CM-UNet

achieves the highest performance among the SSL methods.

Specifically, CM-UNet achieves a Dice score of 0.626, a

significant improvement over the supervised UNet model’s

score of 0.375 and surpassing the highest score of 0.563

achieved by other SSL methods. CM-Unet outperforms com-

peting SSL approaches, yielding significant mean percentage

improvements in segmentation metrics: +14.58% in Dice

score, +10.52% in Cl-Dice score, +15.77 % in IoU score,

along with reductions of -10.90% in HD and -13.33% in

ADD. This superior performance, despite the higher pa-

rameter count (121.49M), demonstrates that the increased

complexity enhances segmentation accuracy and robustness

compared to models with fewer parameters.

TABLE I

SEGMENTATION PERFORMANCE OF SUPERVISED (SL)

UNET AND SSL MODELS WITH A 79:1 PT-FT RATIO.

Method Model # Params Dice Cl-Dice IoU HD ADD

SL UNet 31.04 M 0.375 0.417 0.248 44.54 3.929

SSL

Model Genesis 31.04 M 0.563 0.584 0.414 22.72 0.893
MAE 31.04 M 0.557 0.589 0.410 25.85 1.066
Spark 34.18 M 0.521 0.537 0.370 27.25 1.564
MoCo 37.70 M 0.556 0.566 0.385 24.56 1.117
CM-UNet 121.49 M 0.626 0.628 0.457 22.26 0.965



The results of this study clearly demonstrate that SSL pre-

training is essential for improving segmentation performance,

particularly when fine-tuning data is limited. By bridging

the gap between global and local feature learning, SSL

approaches such as CM-UNet provide a robust foundation

for coronary artery segmentation, outperforming traditional

non-pre-trained models across a variety of settings.

2) Statistical results: Diameter measurements from CM-

UNet with a PT-FT ratio of 50:30 exhibit excellent agreement

with GT labels, as shown in Fig. 4. At this ratio, CM-UNet

achieves a PCC of 0.76 with p < 0.001 and a mean difference

of 0.03 pixels (limits of agreement: -1.93 to 1.86). The p-

value, obtained through a t-test, indicates a highly significant

linear relationship between the predicted and GT values,

with a value of less than 0.001 suggesting strong statistical

significance. For the 79:1 ratio, performance is slightly lower

but still significant, with a PCC of 0.57 (p < 0.001) and a

mean difference of 0.90 pixels (limits of agreement: -1.44

to 3.23). These findings demonstrate CM-UNet’s ability to

maintain strong agreement with GT labels, even under data-

scarce conditions. This highlights the model’s robustness and

potential to provide clinically acceptable diameter measure-

ments in real-world applications.

Fig. 4. Comparison of CM-UNet diameter predictions with

diameter computed on GT annotations. (A) CM-UNet 50:30,

(B) CM-UNet 79:1 PT-FT ratio. Left panels: Pearson corre-

lation and linear regression analysis. Right panels: Bland-

Altman plots showing agreement across all vessel diameters.

3) Visualization Results: This section visualizes and com-

pares CM-UNet’s segmentation performance against other

models under varying PT-FT ratios. Reconstruction visual-

izations are also presented to assess how well different SSL

approaches capture vessel structures and fine-grained details.

Figure 5 illustrates test set segmentation examples, includ-

ing input ICA images, GT labels, and segmentation outputs

from models with no pre-training (None) and CM-UNet,

evaluated under different PT-FT ratios. For the 50:30 ratio,

CM-UNet closely aligns with GT labels, accurately capturing

vessel structures and maintaining continuity, whereas the

non-pre-trained model produces fragmented and less precise

outputs. Under the 79:1 ratio, where fine-tuning data is lim-

ited, CM-UNet continues to outperform, preserving overall

vessel morphology despite minor discontinuities. In contrast,

the non-pre-trained model exhibits severe degradation, with

fragmented and incomplete segmentations. The last row

shows the limits of CM-UNet under challenging conditions,

such as poor contrast and faint vessel boundaries, where both

models produce sparse or noisy segmentations.

Fig. 5. Segmentation examples of major vessels using UNet

(without SSL) and CM-UNet, comparing the 50:30 and 79:1

pPT-FT ratios.

Figure 6 visualizes the reconstruction results from vari-

ous SSL models, including Model Genesis, MAE, SparK,

and MoCo, to assess their effectiveness in learning robust

representations. Among these, CM-UNet achieves the best

performance, exhibiting the fewest discontinuities and the

most accurate vessel reconstructions. MoCo and MAE follow

as the next best methods, though they fall short of CM-UNet

in preserving structural integrity. As seen in the last row, all

models struggle with unclear vessel demarcation.

Fig. 6. Segmentation examples of major vessels comparing

UNet (without SSL) and all SSL methods using 79:1 PT-FT

ratios.



V. DISCUSSION AND CONCLUSION

In this work, we propose an SSL-based model, CM-UNet,

to address the challenge of segmentation in medical imaging,

particularly when annotated data is limited. Our findings

emphasize the critical role of data quantity and provide in-

sights into selecting the most effective approach based on the

available data. The proposed CM-UNet architecture exhibited

significant enhancements in segmentation performance with

a fine-tuning dataset of 500 images. Specifically, it achieved

a 4.3% increase in Dice coefficient when pre-trained on the

FAME2 dataset, a statistically significant improvement (p-

value < 0.05) over the non-pre-trained model. Furthermore,

fine-tuning the model with only 18 images instead of 500 led

to a Dice coefficient decrease of only 15.2%. This contrasts

sharply with the baseline non-pre-trained models, which

experienced a far greater drop of 46.5%. This difference

underscores the robustness of CM-UNet, even when fine-

tuned with limited data, highlighting its ability to adapt and

generalize effectively in settings with scarce labeled data.

CM-UNet shows strong potential for clinical translation.

Requiring minimal annotations, it can quickly adapt across

imaging protocols and machine-specific settings, making it

well-suited for deployment in diverse clinical environments.

CM-UNet could serve as a valuable tool in computer-assisted

diagnosis of CAD, particularly in settings where expert

resources are limited or rapid decision-making is required.

This work still has some limitations. Future work could

extend the CM-UNet strategy to other datasets, medical

imaging modalities, and segmentation tasks to assess its

generalizability across diverse domains. An ablation study of

the reconstruction and contrastive components could provide

valuable insight into the contribution of each pre-training

strategy. Additionally, incorporating post-processing tech-

niques to address both discontinuity and over-segmentation

of arteries segmentation simultaneously, could further im-

prove segmentation performance, making it more robust and

reliable for complex clinical scenarios.

In conclusion, our study highlights the effectiveness of

CM-UNet in enhancing segmentation performance, partic-

ularly in data-scarce scenarios, by leveraging SSL. These

findings demonstrate its robustness and adaptability, enabling

a wider range of applications in medical imaging.
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