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Abstract. The pseudospectral abscissa and the stability radius are well-established tools for
quantifying the stability of a matrix under unstructured perturbations. Based on first-order eigen-
value expansions, Guglielmi and Overton [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166-1192]
recently proposed a linearly converging iterative method for computing the pseudospectral abscissa.
In this paper, we propose to combine this method and its variants with subspace acceleration. Each
extraction step computes the pseudospectral abscissa of a small rectangular matrix pencil, which is
comparably cheap and guarantees monotonicity. We observe local quadratic and prove local super-
linear convergence of the resulting subspace methods. Moreover, these methods extend naturally to
computing the stability radius. A number of numerical experiments demonstrate the robustness and
efficiency of the subspace methods.
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1. Introduction. For a square matrix A ∈ C
n×n, the pseudospectrum of A with

respect to a perturbation level ε > 0 is defined as

Λε(A) =
{

z ∈ C : z ∈ Λ(A+ ε△) for some △ ∈ C
n×n with ‖△‖ ≤ 1

}

,

where ‖ · ‖ denotes the matrix 2-norm and Λ( · ) denotes the set of all eigenvalues.
Equivalently [34],

Λε(A) =
{

z ∈ C : σmin(A− zI) ≤ ε
}

, (1.1)

where σmin( · ) denotes the minimal singular value. While the pseudospectrum offers
a rich picture of the behavior of eigenvalues under perturbations, it is sometimes
more useful to supply a single quantity, like an indication of the stability of A under
perturbations. Examples of such quantities include the pseudospectral abscissa and
the stability radius.

The ε-pseudospectral abscissa αε(A) of A is defined as the real part of the right-
most point in the ε-pseudospectrum:

αε(A) := max
{

Re z : z ∈ Λε(A)
}

= max
{

Re z : σmin(A− zI) ≤ ε
}

, (1.2)

where the latter follows from the singular value characterization (1.1); see Figure 1.1
for an example. This and all subsequent figures have been generated by Eigtool [37].

In particular, αε(A) < 0 implies that A remains stable (in the sense that all
eigenvalues have negative real part) under perturbations of norm at most ε. The
smallest ε for which this fails to hold is called the stability radius β(A) of A:

β(A) := min{ε ∈ R : αε(A) ≥ 0}.
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Fig. 1.1. The pseudospectrum of A, the Grcar matrix [14] with n = 100, and αε(A) for
ε = 10−4. The eigenvalues A are denoted by black discs.

Of course, this definition makes only sense if A itself is stable. In this case, we
obtain β(A) = min{ε ∈ R : αε(A) = 0} from the continuity of the pseudospectrum.
Combined with (1.2), this yields

β(A) = min{σmin(A− zI) : z ∈ iR} = 1/max{‖(A− zI)−1‖ : z ∈ iR}.

In particular, the latter equality illustrates the close link between the stability radius
and the H∞ norm of a continuous linear time-invariant system [21].

Classical methods for computing the stability radius exploit that the intersection
points of a vertical line with the boundary of Λε(A) can be characterized as the purely
imaginary eigenvalues of a certain 2n×2n Hamiltonian matrix [10, 20]. Based on this
characterization, Byers [10] proposed and analyzed a bisection method. This bisec-
tion method has been extended to H∞ computations in [5, 19] and, subsequently,
turned into quadratically convergent algorithms by exploiting higher regularity near
a local optimum [4, 6]. Being very reliable, these algorithms are at the core of exist-
ing software for stability radius and H∞ computations, such as the Control System
Toolbox in Matlab [28] and SLICOT [2]. However, the need for detecting all purely
imaginary eigenvalues of a 2n × 2n Hamiltonian matrix in every iteration becomes
computationally challenging for a large and possibly sparse matrix A; see, e.g., [24]
for a discussion. According to [18], this disadvantage can be partly avoided by us-
ing a locally convergent procedure to minimize σmin(A − zI) on the imaginary axis.
The Hamiltonian eigenvalue problem then only needs to be solved to verify that the
obtained local optimum is also a global minimum and to restart the local procedure
if this is not the case. Recently, Freitag and Spence [12] have proposed an approach
based on a similar principle but with a different local procedure. Eigenvalue contin-
uation is employed to find a 2× 2 Jordan block corresponding to a purely imaginary
eigenvalue of the parameter-dependent Hamiltonian eigenvalue problem.

Algorithms for computing the ε-pseudospectral abscissa have been proposed only
relatively recently. The criss-cross algorithm by Burke, Lewis, and Overton [8] uses
the Hamiltonian characterization mentioned above to traverse the pseudospectrum
horizontally and vertically in an alternating way (see also Section 5.2). While this
algorithm is very robust—it converges globally and locally quadratically—the need for
solving Hamiltonian eigenvalue problems makes it again unsuitable for larger matrices.
Guglielmi and Overton [17] have proposed an algorithm that is based on first-order
eigenvalue expansions and only requires computing the right-most eigenvalue for a
rank-one perturbation of A in every iteration; see Section 2 for more details. Although
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this algorithm is not guaranteed to converge to the globally right-most point of the
pseudospectrum, such a behavior has been observed for a large number of numerical
examples in [17]. However, a disadvantage of the algorithm is that its convergence is
only linear and may become quite slow in certain cases.

In this paper, we propose a subspace method to overcome the potentially slow
convergence of the algorithm from [17]. The basic idea is to collect the essential
information from all previous iterates in a subspace and obtain a more accurate iterate
by extracting a quasi-best approximation from this subspace. Such an acceleration
can be found in many subspace methods in numerical linear algebra, including Krylov
subspace and Jacobi-Davidson methods for solving eigenvalue problems [1]. What
may be unique about our subspace approach is that it provably turns a linearly
converging iteration into a superlinearly converging one. Numerically, we even observe
local quadratic convergence. While this is reminiscent of existing results for vector
extrapolation techniques [13, 32], it is important to note that subspace methods can
generally not be viewed as vector extrapolation.

The rest of this paper is organized as follows. Section 2 provides a brief summary
of the algorithm by Guglielmi and Overton. In Section 3, we develop the fundamental
ideas behind our subspace method and prove monotonicity as well as stability of the
extraction procedure. Two different variants of the subspace are proposed and their
convergence is analyzed in Section 4. How to suitably combine these two variants and
other implementation details, such as the computation of the pseudospectral abscissa
for rectangular matrix pencils, are discussed in Section 5, along with several numerical
experiments. Section 6 is concerned with extending our methods to the computation
of the stability radius.

2. The algorithm by Guglielmi and Overton. In the following, we briefly
summarize the basic algorithm in [17] together with some results.

The algorithm of Guglielmi and Overton aims at constructing a sequence of unit
norm perturbations △0, △1, △2, . . . converging to △ ∈ C

n×n such that the right-most
eigenvalue of A+ ε△ coincides with a right-most point µα of the ε-pseudospectrum.
Considering iteration k of the algorithm, suppose that the right-most eigenvalue µk

of A + ε△k is simple. Let uk and vk denote unit-norm normalized left and right
eigenvectors belonging to µk. Since µk is simple, we have u∗

kvk 6= 0 [22, Lemma
6.3.10]. In fact, by a suitable scaling of uk or vk, we can always assume that uk and
vk are so-called RP-compatible.

Definition 2.1. Two vectors u, v ∈ C
n are called RP-compatible if ‖u‖ = ‖v‖ =

1 and u∗v is real and positive.
To determine the next perturbation △k+1 ∈ C

n×n, it is desirable for the real part
of the right-most eigenvalue µk+1 of

A+ ε△k+1 = A+ ε△k + ε(△k+1 −△k)

to be as large as possible. By a first-order eigenvalue expansion [22, Theorem 6.3.12],
we have

Re(µk+1) = Re(µk) +
ε

u∗
kvk

Re(u∗
k(△k+1 −△k)vk) +O(‖△k+1 −△k‖2). (2.1)

Since ‖△k+1‖ = 1, one has |u∗
k△k+1vk| ≤ 1 and therefore △k+1 = ukv

∗
k maximizes

Re(u∗
k△k+1vk) = 1.
These considerations lead to Algorithm 1 below. Note that we call µα ∈ ∂Λε(A)

a locally right-most point of the ε-pseudospectrum if µα is the right-most point of
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U ∩ Λε(A) for some open set U containing µα. By choosing U sufficiently small, this
right-most point is always unique, see [17, Lemma 2.5].

Algorithm 1 Guglielmi and Overton [17, Algorithm PSA0]

Input: Matrix A ∈ C
n×n, perturbation level ε > 0.

Output: Approximation µα to a locally right-most point of Λε(A).
Set △0 = 0.
for k = 0, 1, 2, . . . until converged do

Compute a right-most eigenvalue µk with corresponding left/right RP-compatible
eigenvectors uk, vk of A+ ε△k.
Set △k+1 = ukv

∗
k.

end for

return µα = µk

The first-order analysis based on (2.1) does not explain why one would use△k+1 =
ukv

∗
k in Algorithm 1 when ‖△k+1 − △k‖ is not small. Alternatively, the homotopy

analysis in [17] shows that △k+1 = ukv
∗
k almost surely results in an increase of the

real part of the right-most eigenvalue of A+(ε− t)△k+ t△k+1 when t → 0. To ensure
such a monotonic increase of Re(µk) for finite t, it is proposed in [17] to add a line
search strategy to Algorithm 1. Since our subspace variants of Algorithm 1 satisfy
monotonicity automatically, we omit this modification.

The following assumption is crucial for the analysis and success of Algorithm 1.
Assumption 1. Let µα be a locally right-most point of Λε(A). Then σmin(A −

µαI) is simple.
Let vα be a right singular vector belonging to σmin(A − µαI), which is equal to

ε. Then the corresponding left singular vector uα is given by uα = 1
ε (A − µαI)vα.

By [17, Lemma 2.7], Assumption 1 implies that u∗
αvα is real and negative; in other

words,

v∗α(A− µαI)vα < 0. (2.2)

Together with

(A− εuαv
∗
α − µαI)vα = 0, u∗

α(A− εuαv
∗
α − µαI) = 0,

this shows that −uα and vα are an RP-compatible pair of left/right eigenvectors for
A− εuαv

∗
α belonging to the eigenvalue µα. Because of Assumption 1, this eigenvalue

is simple.
In [17, Theorem 5.6], it has been shown that Algorithm 1 converges locally and

linearly to µα, provided that

4ε

(u∗
αvα)

2 σn−1(A− µαI)
< 1, (2.3)

where σn−1( · ) denotes the (n− 1)th singular value, and Assumption 1 is satisfied.
Numerical experiments reported in [17] indicate a surprisingly robust convergence

behavior of Algorithm 1, even when (2.3) is not satisfied. In fact, for all practically
relevant examples under consideration, Algorithm 1 converges to a point µα that is
not only locally but also globally a right-most point of Λε(A). In particular, this
yields αε(A) = Re(µα).
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3. Subspace methods. The basic idea of the approach proposed in this pa-
per is to collect the iterates vk produced by Algorithm 1 in a subspace V and locally
approximate the pseudospectrum of A by its restriction to this subspace. More specif-
ically, given an orthonormal basis V ∈ C

n×k of V we consider the pseudospectrum of
the (rectangular) matrix pencil Â− zB̂ := AV − zV . In analogy to (1.1), this can be
defined as

Λε(Â, B̂) =
{

z ∈ C : σmin(Â− zB̂) ≤ ε
}

, (3.1)

see also [38] and [34, Chapter 46]. In contrast to the ε-pseudospectrum of a square
matrix, the ε-pseudospectrum of a rectangular matrix pencil can be empty. We will
address this issue in Section 5.2.
The following lemma presents a monotonicity result, similar to [38, Theorem 2.2].

Lemma 3.1. Let U and V be orthonormal bases of subspaces U and V in C
n×n

with U ⊂ V. Then

Λε(AU,U) ⊂ Λε(AV, V ) ⊂ Λε(A).

Proof. Let z ∈ Λε(AU,U). By definition (3.1),

ε ≥ σmin(AU − zU) = min
x∈Ck, ‖x‖=1

‖(AU − zU)x‖ = min
u∈U, ‖u‖=1

‖(A− zI)u‖

≥ min
v∈V, ‖v‖=1

‖(A− zI)v‖ = σmin(AV − zV ),

which implies z ∈ Λε(AV, V ) and thus shows the first inclusion. The second inclusion
follows trivially from the first by noting that σε(A) = σε(A · I, I).

Defining αε(Â, B̂) as the maximal real part of the ε-pseudospectrum of Â− zB̂,

αε(Â, B̂) := max
{

Re z : z ∈ Λε(Â, B̂)
}

= max
{

Re z : σmin(Â− zB̂) ≤ ε
}

, (3.2)

an important conclusion from Lemma 3.1 is that

αε(AU,U) ≤ αε(AV, V ) ≤ αε(A). (3.3)

The following result characterizes when we can expect equality.
Lemma 3.2. Let A ∈ C

n×n and V be an orthonormal basis of a subspace V
of Cn×n. Then αε(AV, V ) = αε(A) if and only if V contains a vector vα with the
following property: vα is a right singular vector belonging to σmin(A− µαI) for some
µα ∈ C with Re(µα) = αε(A).

Proof. The existence of a vector vα with the described property implies that
µα ∈ Λε(AV, V ) and hence αε(AV, V ) ≥ Re(µα) = αε(A). Together with (3.3), this
implies αε(AV, V ) = αε(A).

In the opposite direction, suppose that αε(AV, V ) = αε(A). By Lemma 3.1, this
is only possible if Λε(AV, V ) and Λε(A) have a common right-most point µα. Let x
be a right singular vector belonging to σmin(AV − µαV ). Then vα := V x is a right
singular vector belonging to σmin(A− µαI).

3.1. Stability of extraction procedure. Motivated by Lemma 3.2, we aim at
constructing a subspace V that contains a good approximation to vα in the sense that
the distance

d(vα,V) := min
{

‖vα − v‖ : v ∈ V, ‖v‖ = 1
}

(3.4)
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Fig. 3.1. Jumping behavior of the right-most points µk for increasingly good approximations of
the pseudospectrum.

is small. The distance measure (3.4) will be central in our convergence proofs and is
closely related to the notion of gaps between subspaces; see [23, Section 1.2].

Given a subspace V with orthonormal basis V we extract αε(AV, V ) as an approx-
imation to αε(A). In this section, we prove the stability of this extraction procedure,
that is, a small value for d(vα,V) implies that αε(AV, V ) is a good approximation
to αε(A). We indeed show below that this approximation error is proportional to
d(vα,V)2, provided that Assumption 1 holds. However, for the convergence of subse-
quent iterates of our subspace method, it is important that not only the real parts but
also the imaginary parts of the right-most points of Λε(AV, V ) and Λε(A) are close.
There are two obstacles to this. First, there could be several (globally) right-most
points of Λε(A), and the right-most point of Λε(AV, V ) could provide an approxima-
tion to a point different from the one associated with vα as depicted in Figure 3.1.
Second, even if the right-most point µα is unique, ∂Λε(A) may be arbitrarily close to
being flat along the imaginary axis.

To describe the influence of the shape of ∂Λε(A), recall from [8, Corollary 4.5]
that under Assumption 1 we can parametrize ∂Λε(A) locally around µα as the curve
µ : t 7→ µR(t) + iµI(t) with

µI(t) = Im(µα) + t, µR(t) = αε(A)− γt2j +O(t2j+1), γ > 0, (3.5)

for some integer j ≥ 1. The curvature of ∂Λε(A) in the direction of the imaginary
axis is equal to γ when j = 1 and zero otherwise. Since the slope of ∂Λε(A) at µα is
already vertical, a zero curvature increases the difficulty of linking the approximation
of the imaginary part to the approximation of the real part. While the first obstacle
from above can certainly be neglected once the approximation focuses on a particular
part of the pseudospectrum, the second obstacle appears to be more severe. For
convenience, we rule out both.

Assumption 2. There is only one µα ∈ ∂Λε(A) satisfying Re(µα) = αε(A).
Moreover, the curvature of ∂Λε(A) at µα is not zero, that is, j = 1 in (3.5).

Note that this assumption is also implicitly present in the algorithm proposed
in [12]. Moreover, there is numerical evidence that the convergence condition (2.3)
for Algorithm 1 can only be satisfied if the curvature of ∂Λε(A) at µα is not zero. A
detailed investigation of this connection is, however, beyond the scope of this paper.

Theorem 3.3. Let µα be a right-most point of Λε(A) and let vα be a right
singular vector belonging to σmin(A− µαI). Moreover, consider a subspace V with an
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orthonormal basis V . If Assumption 1 holds then

αε(A)− αε(AV, V ) = O(d(vα,V)2). (3.6)

If in addition Assumption 2 holds then any right-most point µV of Λε(AV, V ) satisfies

|µα − µV | = O(d(vα,V)). (3.7)

Proof. Because of

αε(A)− αε(AV, V ) = αε(A− µαI)− αε((A− µαI)V, V ),

we may assume w.l.o.g. that µα = 0, so that αε(A) = 0, for the rest of the proof.
By compactness, there exists v ∈ V with ‖v‖ = 1 such that d(vα,V) = ‖v−vα‖ =

‖δ‖, where we set δ := v − vα. Inequality (3.3) and Lemma A.1 imply that

αε(AV, V ) ≥ αε(Av, v) = Re(v∗Av) +
√

ε2 − ‖Av‖2 + |v∗Av|2. (3.8)

To prove the first part of the theorem, we need to compare the quantity on the right
with αε(A) = αε(Avα, vα) = 0. By a first-order expansion, it holds that

v∗Av = v∗αAvα + δ∗Avα + v∗αAδ +O(‖δ‖2).
Assumption 1 implies that v∗αAvα is real and negative, see (2.2). Consequently, we
also have

|v∗Av|2 = (v∗αAvα)
2 + 2 v∗αAvα · Re(δ∗Avα + v∗αAδ) +O(‖δ‖2).

Moreover,

‖Av‖2 = ‖Avα‖2 + 2Re(δ∗A∗Avα) +O(‖δ‖2) = ε2 + 2ε2 Re(δ∗vα) +O(‖δ‖2),
where we used ‖Avα‖ = ε and A∗Avα = ε2vα. Using that ‖v‖ = ‖vα + δ‖ = 1 implies
Re(δ∗vα) = O(‖δ‖2), we obtain

‖Av‖2 = ε2 +O(‖δ‖2).
Plugging the derived relations into (3.8) and taking a Taylor expansion of the square
root gives

αε(Av, v) = v∗αAvα + Re(δ∗Avα + v∗αAδ)

+
√

|v∗αAvα|2 + 2 v∗αAvα · Re(δ∗Avα + v∗αAδ) +O(‖δ‖2)
= v∗αAvα + Re(δ∗Avα + v∗αAδ)

+
√

|v∗αAvα|2 +
2 v∗αAvα

2
√

|v∗αAvα|2
Re(δ∗Avα + v∗αAδ) +O(‖δ‖2) = O(‖δ‖2),

which completes the proof of (3.6).
To prove the second part, we recall that Assumption 2 implies the parameteri-

zation (3.5) with j = 1. More specifically, there exists r < 0 so that every point on
∂Λε(A) with real part not smaller than r is fully parameterized by (µR(t), µI(t)) =
(−γt2 + O(t3), t). For sufficiently small ‖δ‖, Re(µV ) ≥ r and hence Re(µV ) = µR(t)
for t =

√

|Re(µV )|/γ +O(|Re(µV )|). Because of µV ∈ Λε(A), it follows that

|Im(µV )| ≤ |µI(t)| = t = O(d(vα,V)),
where we used (3.6) in the last equality. This completes the proof.

Remark 3.4. If the second part of Assumption 2 is not satisfied, the parametriza-
tion (3.5) holds for some integer j ≥ 2. A straightforward modification of the proof
of Theorem 3.3 then leads to |µα − µV | = O

(

d(vα,V)1/j
)

.
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3.2. Basic methods. Algorithm 2 realizes the subspace extraction discussed
above. For the subspace expansion, we essentially perform one step of Algorithm 1
and add the obtained eigenvector to the subspace.

Algorithm 2 Basic subspace method with eigenvectors

Input: Matrix A ∈ C
n×n, perturbation level ε > 0.

Output: Approximation µα to a locally right-most point of Λε(A).
Compute right-most eigenvalue λ0 and normalized right eigenvector v̂0 of A.
Set V1 =

[

v̂0
]

.
for k = 1, 2, . . . until converged do

Compute right-most point µk of Λε(AVk, Vk).
Compute left/right singular vectors uk and vk belonging to σmin(A− µkI).
Set △k = −ukv

∗
k.

Compute right-most eigenvalue λk and right eigenvector v̂k of A+ ε△k.
Compute Vk+1 = orth([Vk v̂k]).

end for

return µα = µk

Figure 3.2 illustrates the convergence of Algorithm 2 applied to the Grcar matrix
for ε = 10−1. In particular, note that the reduced pseudospectrum Λε(AVk, Vk)
provides an increasingly good approximation to the right-most part of Λε(A).
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Fig. 3.2. Behavior of Algorithm 2 applied to the 100 × 100 Grcar matrix with ε = 10−1. The
thick blue lines denote the boundaries of Λε(AVk, Vk) for iterations k = {1, 2, 4, 8} (from left to
right, top to bottom) with the computed right-most point denoted by “+”. The thin blue line denotes
the boundary of Λε(A).

Figure 3.3 shows a similar behavior for the Orr–Sommerfeld matrix from Sec-
tion 5.3. To test the robustness of Algorithm 2, we have intentionally chosen an
eigenvalue λ0 that is not the right-most eigenvalue in the first step. As a side effect, the
right-most point of Λε(AV2, V2) is incorrectly computed, due to difficulties explained
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in Section 5.2. Nevertheless, the pseudospectra of subsequent pencils Λε(AVk, Vk) still
approach the right boundary of Λε(A).
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Fig. 3.3. Same setup as in Figure 3.2 but now applied to the 99× 99 Orr–Sommerfeld matrix
with ε = 10−2.5 and iterations k = {1, 2, 3, 4, 6, 8}. Furthermore, Algorithm 2 is started from the
6th right-most eigenvalue.

The use of both singular vectors and eigenvectors makes Algorithm 2 harder to
analyze. In the following, we propose another algorithm that has a similar local
convergence behavior without relying on eigenvectors. To this end, suppose that
Algorithm 2 is close to convergence in the sense that

δk := d(vα, span(Vk))

is small. Then, by Theorem 3.3, the real and imaginary parts of µk − µα are of order
δ2k and δk, respectively. Under Assumption 1, ε is a simple singular value of A− µαI
and hence a perturbation expansion [33, Theorem 3.3.4] yields

ε̃ := σmin(A− µkI) = σmin(A− µαI + (µα − µk)I)

= ε+ u∗
αvα · Re(µα − µk) +O(|µα − µk|2) = ε+O(δ2k).

This implies

‖(A− µkI − εukv
∗
k)vk‖ ≤ ‖(A− µkI)vk − ε̃uk‖+ |ε̃− ε| = |ε̃− ε| = O(δ2k).
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Table 3.1

Local convergence behavior of Algorithms 2 and 3 applied to the Grcar matrix for ε = 10−2.
Both algorithms have been initialized with µ0 = µα − (1 + i)/10.

Algorithm 2 (with EIG) Algorithm 3 (only SVD)

k Re(µk) Abs. error Re(µk) Abs. error

1 2.73 6342528409585 3.57× 10−3 2 .639914450044436 1.00× 10−1

2 2.73 8491391291922 1.42× 10−3 2 .649395239360337 9.05× 10−2

3 2.73 8493713994053 1.42× 10−3 2.7 14104187502880 2.58× 10−2

4 2.739 123965482084 7.90× 10−4 2.73 8708533085343 1.21× 10−3

5 2.739 343902454546 5.71× 10−4 2.739 611065118983 3.03× 10−4

6 2.7399 08003532771 6.45× 10−6 2.73991 2112789628 2.34× 10−6

7 2.73991445004 3420 1.02× 10−12 2.7399144500 39453 4.98× 10−12

8 2.7399144500444 53 1.60× 10−14 2.7399144500444 55 1.82× 10−14

In other words, (µk, vk) is an approximate eigenpair of A − εukv
∗
k. Note that µk is

simple and under Assumption 2 it will be a good approximation to the right-most
eigenvalue for sufficiently small δk. In particular, this implies that the eigenvector v̂k
computed in Algorithm 2 satisfies

‖vk − v̂k‖ = O(δ2k), (3.9)

provided that v̂k is suitably normalized. This suggests that replacing v̂k by vk in
Algorithm 2 will have little effect on the local convergence. These considerations
result in Algorithm 3.

Algorithm 3 Basic subspace method with singular vectors

Input: Matrix A ∈ C
n×n, perturbation level ε > 0, starting value µ0 ∈ C.

Output: Approximation µα to a locally right-most point of Λε(A).
Compute right singular vector v0 belonging to σmin(A− µ0I).
Set V1 =

[

v0
]

.
for k = 1, 2, . . . until converged do

Compute right-most point µk of Λε(AVk, Vk).
Compute right singular vector vk belonging to σmin(A− µkI).
Compute Vk+1 = orth([Vk vk]).

end for

return µα = µk

Table 3.1 illustrates the convergence of Algorithms 2 and 3, confirming that their
behavior is quite similar. Both appear to converge locally quadratically.

3.3. A hybrid method. The global convergence of Algorithm 3 is sometimes
unfavorable as is illustrated in Figure 3.4, where we have depicted typical paths of
the iterates when applying Algorithms 2 and 3 to the Grcar matrix (for ε = 10−4)
and the Orr–Sommerfeld matrix (for ε = 10−2). Both algorithms are started at the
right-most eigenvalue and Algorithm 3 is additionally started at three random points
for each matrix. Observe that the eigenvalue-based Algorithm 2 takes larger steps
in the beginning and more quickly approaches the region of local convergence. Close
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Fig. 3.4. Iterates of Algorithms 2 (blue triangles) and 3 (red open discs) for the Grcar (left
figure, ε = 10−4) and the Orr–Sommerfeld (right figure, ε = 10−2) matrices of size n = 100. The
eigenvalues are indicated by grey discs and Λε(A) is visible in a grey contour line.

to the right-most point, however, equation (3.9) holds, so both algorithms exhibit
essentially the same local convergence behavior.

Inspired by the good global convergence behavior of Algorithm 2 and the usually
cheaper cost per iteration of Algorithm 3, we propose in Algorithm 4 a hybrid strategy:
In the beginning, as long as

|σmin(A− µkI)− ε| ≥ ρ ε, (3.10)

with ρ > 0 a tolerance (we use ρ = 0.1 by default), we know that the reduced
pseudospectrum Λε(AVk, Vk) is still far away from Λε(A). Hence, we start with Al-
gorithm 2 and switch to Algorithm 3 when (3.10) does not hold. The numerical
experiments in Sections 5.3 and 5.4 demonstrate that such a hybrid approach is in-
deed considerably faster than using Algorithm 2 alone.

Algorithm 4 A hybrid strategy based on Algorithms 2 and 3

Input: Matrix A ∈ C
n×n, perturbation level ε > 0.

Output: Approximation µα to a locally right-most point of Λε(A).
Compute right-most eigenvalue λ0 and right eigenvector v̂0 of A.
Set V1 =

[

v̂0
]

.
for k = 1, 2, . . . until converged do

Compute right-most point µk of Λε(AVk, Vk).
Compute right singular vector vk belonging to σmin(A− µkI).
if condition (3.10) holds then
Compute the left singular vector uk belonging to σmin(A− µkI).
Compute right-most eigenvalue λk and right eigenvector v̂k of A− ε ukv

∗
k.

else

Set v̂k = vk.
end if

Compute Vk+1 = orth([Vk v̂k]).
end for

return µα = µk

4. Convergence analysis. In this section, we study the convergence properties
of Algorithms 2 and 3. Since Algorithm 4 has the same local behavior as Algorithm 3,
there is no need to discuss the convergence of the hybrid strategy separately.
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4.1. Stagnation. Both subspace methods converge in at most n steps: either a
basis Vn ∈ C

n×n of the full space C
n is produced and hence µn = µα, or stagnation

has occurred in an earlier step. Theorem 4.1 below characterizes the latter situation
for Algorithm 3.

We call a boundary point µ ∈ ∂Λε(A) stationary if either ∂Λε(A) is not differen-
tiable at µ or the tangent line to ∂Λε(A) at µ is vertical. Clearly, every locally right-
most point is stationary. However, local minima and saddle points of t 7→ Re(γ(t)),
with γ(t) a curve in C tracing ∂Λε(A), are also stationary.

Theorem 4.1. Let the right-most points µ1, µ2, . . . in Algorithm 3 be uniquely
defined. Suppose that Algorithm 3 stagnates and let k < n denote the smallest integer
such that µk = µk+1. Then µk is a boundary point of Λε(A) and

1. µk is an isolated point of Λε(AVk, Vk); or
2. µk is stationary.
Proof. Suppose that µk is not a boundary point, i.e., σmin(A−µkI) < ε. Then the

corresponding right singular vector vk satisfies ‖Avk − (µk + δ)vk‖ ≤ ε for sufficiently
small δ > 0. Hence, the pseudospectrum Λε(Avk, vk) ⊂ Λε(AVk+1, Vk+1) contains
points with real part larger than µk. This contradicts stagnation.

Recall that k < n is the smallest integer such that µk = µk+1. Suppose now that
µk ∈ ∂Λε(A) but µk is not stationary. This implies that ∂Λε(A) is differentiable at
µ and the tangent to Λε(A) at µk is not vertical. On the other hand, ∂Λε(AVk, Vk)
is not differentiable at µk, as can be seen as follows. Combined with the fact that µk

is the rightmost point of Λε(AVk, Vk), differentiability would imply that the tangent
to ∂Λε(AVkVk) at µ is vertical, which contradicts Λε(AVk, Vk) ⊂ Λε(A). The non-
differentiability of ∂Λε(AVk, Vk) means that the smallest singular value ε of AVk −
µkVk has multiplicity at least two, unless µk is an isolated point of Λε(AVk, Vk). By
dimension counting, there is a right singular vector wk of AVk − µkVk belonging to
ε such that Vkwk ∈ span(Vk−1). Therefore µk ∈ Λε(AVk−1, Vk−1). By monotonicity
and the uniqueness of µk−1, this implies µk−1 = µk and therefore contradicts the
assumption.

Note that Theorem 4.1 only shows necessary conditions for stagnation. Because of
the nonlocal nature of subspace methods, it seems to be difficult to provide sufficient
conditions, except for trivial situations. For a similar reason, it seems to be difficult
to characterize the stagnation of Algorithm 2.

4.2. Local convergence. The numerical experiments strongly suggest that Al-
gorithms 2 and 3 converge faster than linearly, see in particular Table 3.1. The analysis
below indeed shows local superlinear convergence for both algorithms, provided that
certain assumptions are met. However, based on the numerical evidence, we conjec-
ture that both algorithms actually converge locally quadratically. Unfortunately, our
proof technique does not seem to admit such a stronger convergence result.

Theorem 4.2. Let Assumptions 1 and 2 hold for the rightmost point µα of Λε(A).
Consider any µ1, µ2 ∈ C sufficiently close to µα such that Re(µ1) ≤ Re(µ2) ≤ Re(µα)
and

|µα − µ2| < β |µα − µ1| for some fixed 0 < β < 1. (4.1)

Let vk ∈ C
n be right singular vectors belonging to σmin(A − µkI) for k ∈ {1, 2}, and

choose an orthonormal basis V for V = span{v1, v2}. Then

αε(A)− αε(AV, V ) = O
(

|αε(A)− Re(µ1)|2). (4.2)
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Proof. By shifting the matrix A, we may assume w.l.o.g. that µα = 0. Let us
denote µ1 = x1 + iy1 and µ2 = x2 + iy2 with x1, x2, y1, y2 ∈ R. Then, according to
Assumption 2, we have y21 = O(x1) and y22 = O(x2).

The idea of the proof is to “remove” the influence of the imaginary parts of µ1, µ2

and then apply Theorem 3.3. However, we need to separately address the situation
for which the imaginary parts are already sufficiently small. For this purpose, define
C =

√
2β/

√

1− β2. If |y1| ≤ C|x1| then |µα − µ1| = O(x1). By Assumption 1,
σmin(A) is simple and a standard perturbation result for singular vectors [35] implies
d(vα, v1) = O(x1), where vα is a right singular vector belonging to σmin(A). Clearly,
d(vα,V) ≤ d(vα, span{v1}) and thus (4.2) follows directly from Theorem 3.3.

From now on, assume |y1| > C|x1| and choose β̃2 = 1
2 (1+β2) satisfying β < β̃ < 1.

Then inequality (4.1) implies

y22 < β̃2y21 − 1
2 (1− β2)y21 + β2x2

1

< β̃2y21 − [ 12 (1− β2)C2 − β2]x2
1 = β̃2y21 .

Hence,

|y2 − y1| > (1− β̃)|y1|. (4.3)

Let the vector-valued function µ 7→ v(µ) denote a right singular vector belonging
to σmin(A−µI) =: ε(µ), with v(µα) = v(0) = vα. Of course, v(µ) is also an eigenvector
belonging to the smallest eigenvalue ε(µ)2 of the Hermitian matrix H(µ) := (A −
µI)∗(A−µI). Since this eigenvalue is simple for µ = 0, it follows from [23, Sec. II.4.6]
that ε(µ)2 and v(µ) are real analytic in the real and imaginary parts of µ for all µ
sufficiently close to 0, provided that v is suitably normalized. In particular, we have
the following perturbation expansion [30, Thm. 1]:

v(µ1) = v(x1)−
(

H(x1)− ε(x1)
2I
)+

(H(µ1)−H(x1))v(x1) +O(y21)

= v(x1)− iy1
(

H(x1)− ε(x1)
2I
)+

(A−A∗)v(x1) +O(y21), (4.4)

where (·)+ denotes the Moore-Penrose pseudoinverse of a matrix. Since the eigenvalue
zero ofH(0)−ε(0)2I = A∗A−ε2I is simple, the rank ofH(µ)−ε(µ)2I remains constant
for sufficiently small µ. Consequently, Wedin’s perturbation result [36, Thm. 2.1]

yields
(

H(x1) − ε(x1)
2I
)+

=
(

A∗A − ε2I
)+

+ O(x1). Inserted into (4.4), and using
once again a perturbation expansion of v(x1), this shows

v(µ1) = vα − iy1
(

A∗A− ε2I
)+

(A−A∗)vα +O(y21) +O(x1).

Analogously,

v(µ2) = vα − iy2
(

A∗A− ε2I
)+

(A−A∗)vα +O(y22) +O(x2).

A straightforward verification shows that the following linear combination of these
two expressions leads to

ṽ := − y2
y1 − y2

v(µ1) +
y1

y1 − y2
v(µ2) = vα +O(x1),

where we have used (4.3), |y2| < |y1|, |x2| ≤ |x1|, and y21 = O(x1). Since ṽ ∈ V, we
obtain d(vα,V) = O(x1) and (4.2) follows once again from Theorem 3.3.
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Theorem 4.2 can be applied to two subsequent iterates µk, µk+1 of Algorithm 3,
provided that these iterates converge at least linearly to µα. By the monotonicity of
the rightmost point (Lemma 3.1), it follows from (4.2) that

αε(A)− Re(µk+2) = O
(

|αε(A)− Re(µk)|2).

In other words, the real parts of µk converge at least superlinearly with order
√
2 to

αε(A); see [31, Thm. 2.1]. This result directly extends to Algorithm 2. Replacing the
singular vector vk by the eigenvector v̂k introduces another small perturbation (3.9),
which can be easily incorporated into the proof of Theorem 4.2. Thus, Algorithm 2
also converges superlinearly to αε(A) under the same assumptions.

The assumed local linear convergence of Algorithms 2 and 3 is not unreasonable:
Algorithm 2 is a subspace acceleration of Algorithm 1 and for the latter algorithm
local linear convergence has been shown in [17]. For Algorithm 3, we can again use a
second-order perturbation argument based on (3.9).

5. Implementation details and numerical experiments. In this section, we
detail some implementation aspects of the proposed subspace algorithms and report
on numerical results for a suite of dense and sparse test problems. All experiments
were done with Matlab version R2010b on an Intel Core2 2.66 GHz CPU.

5.1. Stopping condition. We use the stopping condition from [17]: the itera-
tion is stopped when k > 1 and

|Re(µk)− Re(µk−1)| < ηmax(1, |Re(µk−1)|), (5.1)

where η is a user-specified tolerance. For all experiments in this section, we use
η = 10−12.

5.2. Pseudospectral abscissa for rectangular matrix pencils. Each itera-
tion of our subspace methods needs to determine the right-most point of Λε(AVk, Vk)
for the rectangular matrix pencil AVk − zVk ∈ C

n×k, that is,

max{Re(z) : z ∈ Λε(AVk, Vk)} = max{Re(z) : σmin(AVk − zVk) ≤ ε}. (5.2)

Several additional complications may occur in the case of rectangular matrix pen-
cils, for example, the pseudospectrum could be empty. Fortunately, in Algorithm 2,
this situation is avoided since the eigenvector v̂0 of A is contained in all subspaces.
Hence, the pseudospectrum Λε(Av̂0, v̂0), which is a ball of radius ε around λ0, is a
subset of Λε(AVk, Vk) for all k.

As a first step to address (5.2), we reduce the size of the pencil AVk − zVk when
n ≥ 2k by computing a reduced QR decomposition

[

Vk, AVk

]

= Q
[

B̃, Ã
]

. This
results in the pencil

Ã− zB̃ =:

[

Ã1

Ã2

]

− z

[

B̃1

0

]

=





❅



− z





❅


 ∈ C
2k×k (5.3)

with the property that Λε(AVk, Vk) = Λε(Ã, B̃); see also [38, 3]. To this reduced
pencil, we apply a variant of the criss-cross algorithm from [8].

Our variant of the criss-cross algorithm repeatedly performs a series of horizontal
and vertical searches in the complex plane to find intersections z = x + iy with the
boundary of Λε(Ã, B̃). By a straightforward generalization of Lemmas 2.1 and 2.5
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Fig. 5.1. Left figure: Λε(AV5, V5) for Algorithm 2 applied to the matrix chebspec(100)

from Section 5.3. The crosses denote Λ(Ã1, B̃1). Right figure: Zoom of right-most component
of Λε(AV5, V5), showing that it does not contain any eigenvalue of Ã1 − zB̃1 for ε = 10−4.

in [8], these intersections can be found by computing the imaginary eigenvalues of
certain matrix pencils.

Lemma 5.1. The following equivalences hold:

ε ∈ σ(Ã− (x+ iy)B̃) ⇐⇒ iy ∈ Λ

([

xB̃∗ − Ã∗ εI

−εI Ã− xB̃

]

,

[

B̃∗ 0

0 B̃

])

⇐⇒ ix ∈ Λ

([

−yB̃∗ + iÃ∗ εI

−εI iÃ+ yB̃

]

,

[

B̃∗ 0

0 B̃

])

.

Based on this lemma, a criss-cross algorithm for Λε(Ã, B̃) can be performed in
virtually the same manner as in [8, Algorithm 3.1]. We omit the details but point out
a difficulty related to rectangular matrix pencils.

To find the right-most point, the rectangular pencil variant of the criss-cross algo-
rithm needs to be started from inside the right-most component of Λε(AVk, Vk). This
is in contrast to the criss-cross algorithm for Λε(A) where starting from the right-most
eigenvalue is sufficient. By the monotonicity of the pseudospectra Λε(AVk, Vk), the
previous right-most point of Λε(AVk−1, Vk−1) is guaranteed to be in Λε(AVk, Vk). Un-
fortunately, this point may be in a component different from the right-most one. Mo-
tivated by the observation that for any λ ∈ Λε(AVk, Vk), there is an ε-pseudoeigenpair
(λ, v) satisfying [38]

‖(Ã− λB̃)v‖2 = ‖(Ã1 − λB̃1)v‖2 + ‖Ã2v‖2 ≤ ε2, (5.4)

with Ã, B̃ from (5.3), we also consider the points that make ‖(Ã1−λB̃1)v‖ zero, that
is,

{

λ ∈ Λ(Ã1, B̃1) : σmin(Ã− λB̃) ≤ ε
}

. (5.5)

Among these candidate points, we take the right-most one as the initial guess. A
similar heuristic is also used in [3] and it turns out to work well in our experiments too.
However, it may fail on difficult problems since Λε(AVk, Vk) may have a disconnected
component that does not contain any λ satisfying (5.5). Such a situation is depicted
in Figure 5.1.

5.3. Numerical experiments with small-scale problems. Our small-scale
test problems essentially consist of the matrices from EigTool that are used in [17,
Sec. 8]. We have omitted or modified examples of size up to 10, as using a subspace
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Table 5.1

Computational results on a subset of small-scale problems for ε = 10−4. All times in seconds.

Algorithm 2 (always EIG) Algorithm 4 (only EIG if (3.10))

Problem Rel. error Iters Time Rel. error Iters Eig Time

airy(100) 3× 10−15 5 0.342 2× 10−16 4 2 0.121
boeing(’S’) 4× 10−19 15 0.336 2× 10−19 14 3 0.202
chebspec(100) 8× 10−14 12 0.640 1× 10−13 13 3 0.308
gaussseidel(100,’C’) 2× 10−15 3 0.207 1× 10−15 3 1 0.049
grcar(100) 1× 10−14 13 0.814 1× 10−15 13 3 0.372
kahan(100) 3× 10−13 5 0.115 3× 10−13 5 2 0.067
orrsommerfeld(100) 2× 10−13 9 0.398 2× 10−13 6 3 0.149
randomtri(100) 7× 10−5 (6) (0.134) 1× 10−12 11 3 0.216

approach makes little sense for such small examples. All eigenvalue and SVD calcu-
lations were performed by calls to the Matlab commands eig and svd, respectively.

First, we compare the eigenvalue-based approach (Algorithm 2) with the hybrid
approach (Algorithm 4). Table 5.1 gives a representative subset of the obtained
computational results for matrices up to size 100 and for ε = 10−2. Note that the
error of the obtained approximation µk is reported as

relative error :=
|Re(µk)− αε(A)|
‖A‖ · |αε(A)|

.

The reference value for αε(A) is computed by the criss-cross algorithm [7]. All prob-
lems, except randomtri, were solved up to a relative error below 10−12 which strongly
indicates convergence to the global optimum. For randomtri, Algorithm 2 nearly stag-
nates but Algorithm 4 succeeds. From the table, we can clearly see that Algorithm 4
is always faster than Algorithm 2—most of the time by at least a factor of two—
while still being as reliable and accurate. Usually, three eigenvalue computations are
sufficient before resorting to SVDs only.

Table 5.2 provides a comprehensive comparison between Algorithm 4, the criss-
cross algorithm1 from [8], and the GO algorithm2 from [17]. It can be seen that
Algorithm 4 outperforms the two other methods for all problems except the Grcar
matrix, where the criss-cross algorithm is slightly faster.

To investigate the performance of the algorithms on small to medium scale prob-
lems, we enlarge the test set from Table 5.2 by adding matrices of size 200 and 300 for
all scalable examples. Figure 5.2 displays the resulting logarithmic performance pro-
file [11]. That is, for each solver, we plot the probability P (α) that a method is faster
within a factor α of the best time over all methods using a log10 scale for α. All prob-
lems could be solved by the criss-cross algorithm. When the relative error of another
method was higher than 10−10, we deemed that method unsuccessful and took its
time to be infinite. Algorithm 4 turns out to be the fastest for almost 90% of the test
problems while being only slightly less reliable (95%) than the criss-cross algorithm
(100%). A subset of these problems are reported in Table 5.3. Not surprisingly, with
increasing matrix sizes, the relative performance of the criss-cross algorithm becomes
worse compared to the GO algorithm and Algorithm 4.

Remark 5.2. Our subspace methods usually converge in less than 20 iterations.
The notable exception is demmel(100) from EigTool, for which Algorithm 4 requires

1Code PSPA (March 10, 2005) from http://www.cs.nyu.edu/mengi/robuststability.html.
2Code PSAPSR (1.01) from http://www.cs.nyu.edu/overton/software/psapsr/index.html.

http://www.cs.nyu.edu/mengi/robuststability.html
http://www.cs.nyu.edu/overton/software/psapsr/index.html
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Table 5.2

Computational results on small-scale problems for ε = 10−2. All times in seconds.

Criss-Cross [8] GO [17] Algorithm 4

Call Time Iters Rel. error Time Iters Rel. error Time Iters

airy(100) 1.670 5 9× 10−16 0.785 12 7× 10−17 0.110 5
basor(100) 1.058 4 3× 10−16 0.415 5 3× 10−16 0.108 4
boeing(’S’) 0.395 8 1× 10−19 1.296 63 3× 10−20 0.319 17
boeing(’O’) 0.345 8 6× 10−17 3.007 192 2× 10−19 0.234 15
chebspec(100) 0.436 2 1× 10−15 4.596 64 2× 10−15 0.247 11
convdiff(100) 0.343 3 6× 10−18 0.158 5 9× 10−18 0.149 8
davies(100) 0.463 2 4× 10−21 0.179 2 4× 10−20 0.048 3
frank(100) 0.233 2 2× 10−18 0.194 4 5× 10−17 0.149 5
g..seidel(100,’C’) 0.523 2 1× 10−12 1.823 32 9× 10−15 0.049 3
g..seidel(100,’D’) 0.277 2 3× 10−12 9.235 75 3× 10−15 0.226 7
g..seidel(100,’U’) 0.553 2 3× 10−11 64.744 504 5× 10−15 0.253 8
grcar(100) 0.258 2 7× 10−12 36.049 430 3× 10−15 0.279 10
hatano(100) 0.393 2 2× 10−13 2.270 54 5× 10−16 0.075 5
kahan(100) 0.205 2 6× 10−16 0.320 9 2× 10−16 0.103 5
landau(100) 0.648 4 3× 10−15 0.250 5 3× 10−13 0.046 4
orrsommerfeld(100) 1.323 7 2× 10−15 3.516 59 1× 10−15 0.220 10
random(100) 0.536 3 4× 10−15 0.263 6 5× 10−15 0.128 4
randomtri(100) 0.299 2 2× 10−12 4.941 66 2× 10−15 0.230 10
riffle(100) 0.142 2 3× 10−13 0.601 33 1× 10−15 0.099 5
transient(100) 0.432 2 6× 10−13 0.815 8 2× 10−15 0.213 6
twisted(100) 0.891 4 7× 10−16 0.427 5 8× 10−17 0.111 9
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Fig. 5.2. Performance profile for an enlarged test set of small to medium scale problems (left
figure) and sparse, large-scale problems (right figure), both for ε = 10−2 and ε = 10−4. Note the
logarithmic scale for the factor α.

Table 5.3

Computational results on a subset of small-scale problems for ε = 10−4. All times in seconds.

Criss-cross [8] GO [17] Algorithm 4

Call Time Iters Time Iters Time Iters

airy(100) 0.93 3 0.24 3 0.10 4
airy(200) 6.29 4 0.94 3 0.60 5
airy(300) 8.45 2 2.46 3 2.23 7
grcar(100) 0.24 2 44.5 522 0.37 13
grcar(200) 1.94 3 225 651 1.13 11
grcar(300) 4.11 2 861 981 2.73 11
landau(100) 0.41 3 0.13 2 0.05 3
landau(200) 1.41 2 0.65 2 0.20 3
landau(300) 9.16 4 1.53 2 0.50 3
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59 iterations. This implies that the subspace dimension usually does not become larger
than 20. We therefore have not investigated or implemented a restarting strategy for
limiting the subspace dimension.

5.4. Numerical experiments with large-scale problems. The subspace
methods proposed in this paper can be applied to sparse large matrices. For this
purpose, all eigenvalue and singular value computations need to be performed by an
iterative method. For computing the right-most eigenvalue of a matrix, we use the
software package ARPACK [26] available through eigs in Matlab. For computing
the smallest singular value σmin(A − µI), we use PROPACK3 from [25]. For this
purpose, the inverse (A − µI)−1 is applied to a vector via a sparse LU factorization
of A− µI using lu in Matlab.

Our set of large-scale test problems consists of the matrices from EigTool used
in [17, Sec. 9] and all the sparse matrices of the benchmark set COMPleib [27].
The obtained results are shown in Table 5.4. For all examples but skewlap3d and
sparserandom, our subspace methods are faster compared to the GO algorithm. For
some examples, this is due to less iterations. However, there are also examples with
essentially the same number of iterations, for which Algorithms 2 and 4 benefit from
not having to compute left eigenvectors as in the GO algorithm. For the matrices
skewlap3d and sparserandom the sparse LU factorization of A − µI is too costly
and should be replaced by the use of an iterative method. Note that the failures for
tolosa and convdiff fd, indicated by — in the table, are due to failures of eigs
using its default options to compute right-most eigenvalues.

A performance profile can be found in Figure 5.2. To assess the accuracy of
the methods, checking whether the obtained points correspond to the globally right-
most one is unfortunately not feasible in a large-scale setting. Instead, we started
Algorithms 2 and 4 not only from the right-most eigenvalue, but also from the second,
third, . . . , 10th most right eigenvalue. For all three methods, we observed relative
differences between 10−7 and 10−15 over all the examples except those for which
eigs failed, suggesting convergence to the globally right-most point. We therefore
considered all those problems solved and included them in the performance profile.

6. Extension to stability radius computation. The extension of the sub-
space methods to the computation of the stability radius β(A) of a stable matrix
A is relatively straightforward and will be outlined in this section. Recall that
β(A) = min{σmin(A − zI) : z ∈ iR}. An analogous quantity for a rectangular ma-
trix pencil Â− zB̂ can be defined as

β(Â, B̂) = min{σmin(Â− zB̂) : z ∈ iR}.

From Lemma 3.1, it follows that

β(A) ≤ β(AV, V ) ≤ β(AU,U) (6.1)

for orthonormal bases U, V of subspaces U ,V, respectively, such that U ⊂ V ⊂ C
n.

The following lemma extends the first part of Theorem 3.3 to the stability radius.
Lemma 6.1. Let µβ ∈ iR such that β(A) = σmin(A − µβI) and let vβ be an

associated right singular vector. Then for a subspace V with an orthonormal basis V
it holds that

β(AV, V )− ‖A− µβI‖ · d(vβ ,V) ≤ β(A) ≤ β(AV, V ).

3PROPACK version 1.1 from http://soi.stanford.edu/~rmunk/PROPACK/.

http://soi.stanford.edu/~rmunk/PROPACK/
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Table 5.4

Computational results on large-scale problems from EigTool and a representative subset of
COMPleib for ε = 10−2. All times in seconds.

GO [17] Algorithm 2 Algorithm 4

Problem n Iters Time Iters Time Iters Time

dwave(2048) 2048 7 0.597 3 0.207 3 0.174
markov(100) 5050 65 16.71 5 1.651 5 1.080
convdiff fd(10) 400 — (1.187) — (1.984) 11 2.240
olmstead(500) 500 3 1.038 3 0.387 3 0.325
pde(2961) 2961 11 1.711 5 0.819 5 0.659
rdbrusselator(3200) 3200 4 1.328 3 0.760 3 0.792
sparserandom(1000) 1000 5 0.143 4 1.164 4 1.144
skewlap3d(30) 24389 5 27.52 5 53.933 13 70.90
supg(20) 400 90 2.692 5 0.263 6 0.282
tolosa(4000) 4000 — (3.118) — (5.736) — (5.034)

COMPleib(’HF2D9’) 3481 2 0.422 2 0.273 2 0.269
COMPleib(’HF2D IS2 M529’) 529 3 0.316 3 0.133 3 0.087
COMPleib(’HF2D IS4 M484’) 484 2 0.087 2 0.054 2 0.047
COMPleib(’HF2D CD3 M576’) 576 3 0.275 4 0.164 4 0.140
COMPleib(’HF2D IS4’) 3600 2 0.588 2 0.341 2 0.273
COMPleib(’HF2D CD3’) 4096 3 1.978 4 1.077 4 0.903

Proof. Let v ∈ V be with ‖v − vβ‖ = d(vβ ,V). Then

β(AV, V ) ≤ ‖Av − µβv‖ ≤ ‖Avβ − µβvβ‖+ ‖(A− µβI)(v − vβ)‖
≤ β(A) + ‖A− µβI‖ · d(vβ ,V),

which shows the statement of the lemma.

Algorithm 5 Stability radius computation

Input: Matrix A ∈ C
n×n.

Output: Approximation to the stability radius β(A).
Compute right-most eigenvalue λ0 and right eigenvector v̂0 of A.
Set V1 =

[

v̂0
]

.
for k = 1, 2, . . . until converged do

Compute minimizer µk of min{σmin(AVk − zVk) : z ∈ iR}.
Compute right singular vector vk belonging to σmin(A− µkI).
Compute Vk+1 = orth([Vk v̂k]).

end for

return σmin(A− µkI)

Algorithm 5 is a suitable adaption of Algorithm 3 to stability radius computation.
In each step, we have to compute the minimizer µk corresponding to β(AVk, Vk). For
simplicity this is done by a variant of Byers’ bisection method [10], but the quadratic
algorithm from [4] could be extended to the rectangular case similarly to the variants
described in Section 5.2.

Remark 6.2. When the right-most point µβ of Λβ(A)(A) is real (which happens
quite frequently for real matrices), Algorithm 5 usually converges in one iteration. For
λ0 ∈ R, it can be easily seen that µ1 = 0 = µβ. This implies vβ ∈ span(Vk) for all
k ≥ 2. Combined with (6.1), this shows β(AVk, Vk) = β(A) for all k ≥ 2. In contrast,
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Table 6.1

Convergence of Algorithm 5 applied to the 100× 100 matrix airy(100).

k β(AVk, Vk) Abs. error Rel. error

1 7.826030706964750× 10−2 3.01× 10−2 4.31× 10−4

2 4.874014867731968× 10−2 5.92× 10−4 4.31× 10−4

3 4.815056990918770× 10−2 2.24× 10−6 3.21× 10−8

4 4.814833244814336× 10−2 2.67× 10−12 3.83× 10−14

when µβ is not real, vβ will in general not be in span(V1) and Algorithm 5 has not yet
converged.

We refrain from giving a detailed presentation of numerical experiments; the
observed results are quite similar to the ones for the ε-pseudospectral abscissa, see
Section 5. An example illustrating local quadratic convergence is given in Table 6.1.

6.1. Further extensions. Based on the algorithms from [17, 29], it is relatively
straightforward to develop a subspace method for the computation of the pseudospec-
tral radius. In contrast, it seems to be difficult to turn the method from [15] for
computing the H∞ norm into a subspace method. The major problem is to find a
suitable replacement for the rectangular matrix pencils that played a major role in
our developments. Similarly, the lack of efficient algorithms for computing right-most
points of structured rectangular pseudospectra currently prevents the extension of our
subspace methods to real or otherwise structured pseudospectra, see [9, 16] for some
recent developments.

7. Conclusions. In this paper, we have proposed novel subspace methods for
computing the ε-pseudospectral abscissa of a matrix. Supported by the numerical
experiments, we recommend the use of these methods for matrices of size greater
than 100. A Matlab implementation is available from http://anchp.epfl.ch.
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Appendix A. Pseudospectra of n× 1 pencils.

The following lemma fully characterizes the rectangular pseudospectrum of n× 1
matrix pencils.

Lemma A.1. Let v, w ∈ C
n with ‖v‖ = 1. If ‖w‖2 − |v∗w|2 > ε2, the ε-

pseudospectrum of w − zv is empty. Otherwise, the ε-pseudospectrum is given by the
disc with center v∗w and radius

r =
√

ε2 − ‖(I − vv∗)w‖2 =
√

ε2 − ‖w‖2 + |v∗w|2.

In the latter case, αε(w, v) = Re(v∗w) + r.
Proof. Consider the orthogonal decomposition w = v(v∗w) + (I − vv∗)w. Then

for λ ∈ C

‖w − λv‖2 = |v∗w − λ|2 + ‖(I − vv∗)w‖2 = |v∗w − λ|2 + ‖w‖2 − |v∗w|2.

http://anchp.epfl.ch
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In particular, this implies that ‖w − λv‖2 ≤ ε2 cannot be satisfied if the condition of
the lemma is not met. Otherwise, it is easily seen that the set

{λ ∈ C : |v∗w − λ|2 + ‖w‖2 − |v∗w|2 ≤ ε2}

describes a disc with center v∗w and radius r. The formula for αε(w, v) now follows
immediately.
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