
Recompression of Hadamard Products

of Tensors in Tucker Format

Daniel Kressner* Lana Perǐsa�

June 20, 2017

Abstract

The Hadamard product features prominently in tensor-based algorithms in sci-
entific computing and data analysis. Due to its tendency to significantly increase
ranks, the Hadamard product can represent a major computational obstacle in algo-
rithms based on low-rank tensor representations. It is therefore of interest to develop
recompression techniques that mitigate the effects of this rank increase. In this work,
we investigate such techniques for the case of the Tucker format, which is well suited
for tensors of low order and small to moderate multilinear ranks. Fast algorithms
are attained by combining iterative methods, such as the Lanczos method and ran-
domized algorithms, with fast matrix-vector products that exploit the structure of
Hadamard products. The resulting complexity reduction is particularly relevant for
tensors featuring large mode sizes I and small to moderate multilinear ranks R. To
implement our algorithms, we have created a new Julia library for tensors in Tucker
format.

1 Introduction

A tensor X ∈ RI1×···×IN is an N -dimensional array of real numbers, with the integer
In denoting the size of the nth mode for n = 1, . . . , N . The Hadamard product Z =
X ∗ Y for two tensors X,Y ∈ RI1×···×IN is defined as the entrywise product zi1,...,iN =
xi1,...,iN yi1,...,iN for in = 1, . . . , In, n = 1, . . . , N .

The Hadamard product is a fundamental building block of tensor-based algorithms
in scientific computing and data analysis. This is partly because Hadamard products
of tensors correspond to products of multivariate functions. To see this, consider two
functions u, v : [0, 1]N → R and discretizations 0 ≤ ξn,1 < ξn,2 < · · · < ξn,In ≤ 1 of
the interval [0, 1]. Let the tensors X and Y contain the functions u and v evaluated
on these grid points, that is, xi1,...,iN = u(ξi1 , . . . , ξiN) and yi1,...,iN = v(ξi1 , . . . , ξiN) for
in = 1, . . . , In. Then the tensor Z containing the function values of the product uv

*MATHICSE-ANCHP, École Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzer-
land. E-mail: daniel.kressner@epfl.ch.

�Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of
Split, Rudjera Boškovića 32, 21000 Split, Croatia. E-mail: lana.perisa@fesb.hr.

1

satisfies Z = X ∗ Y. Applied recursively, Hadamard products allow to deal with other
nonlinearities, including polynomials in u, such as 1 + u+ u2 + u3 + · · · , and functions
that can be well approximated by a polynomial, such as exp(u). Other applications of
Hadamard products include the computation of level sets [6], reciprocals [18], minima and
maxima [8], variances and higher-order moments in uncertainty quantification [4, 7], as
well as weighted tensor completion [9]. To give an example for a specific application that
will benefit from the developments of this paper, let us consider the three-dimensional
reaction-diffusion equation from [21, Sec. 7]:

∂u

∂t
= 4u+ u3, u(t) : [0, 1]3 → R (1)

with Dirichlet boundary conditions and suitably chosen initial data. After a standard
finite-difference discretization in space, (1) becomes an ordinary differential equation
(ODE) with a state vector that can be reshaped as a tensor of order three. When using
a low-rank method for ODEs, such as the dynamical tensor approximation by Koch
and Lubich [16], the evaluation of the nonlinearity u3 corresponds to approximating
X ∗ X ∗ X for a low-rank tensor X approximating u. For sufficiently large tensors,
this operation can be expected to dominate the computational time, simply because
of the rank growth associated with it. The methods presented in this paper allow to
successively approximate (X∗X)∗X much more efficiently for the Tucker format, which
is the low-rank format considered in [16].

The Tucker format compactly represents tensors of low (multilinear) rank. For an
I1×· · ·×IN tensor of multilinear rank (R1, . . . , RN) only R1 · · ·RN +R1I1 + · · ·+RNIN
instead of I1 · · · IN entries need to be stored. This makes the Tucker format particularly
suitable for tensors of low order (say, N = 3, 4, 5) and it in fact constitutes the basis
of the Chebfun3 software for trivariate functions [14]. For function-related tensors, it
is known that smoothness of u, v implies that X,Y can be well approximated by low-
rank tensors [10, 26]. In turn, the tensor Z = X ∗ Y also admits a good low-rank
approximation. This property is not fully reflected on the algebraic side; the Hadamard
product generically multiplies (and thus often drastically increases) multilinear ranks. In
turn, this makes it difficult to exploit low ranks in the design of computationally efficient
algorithms for Hadamard products. For example when N = 3, I1 = I2 = I3 = I, and all
involved multilinear ranks are bounded by R we will see below that a straightforward
recompression technique, called HOSVD2 below, based on a combination of the higher-
order singular value decomposition (HOSVD) with the randomized algorithms from [13]
requires O(R4I + R8) operations and O(R2I + R6) memory. This excessive cost is
primarily due to the construction of an intermediate R2 ×R2 ×R2 core tensor, limiting
such an approach to small values of R. We design algorithms that avoid this effect by
exploiting structure when performing multiplications with the matricizations of Z. One
of our algorithms requires only O(R3I +R6) operations and O(R2I +R4) memory.

All algorithms presented in this paper have been implemented in the Julia pro-
gramming language, in order to attain reasonable speed in our numerical experiments
at the convenience of a Matlab implementation. As a by-product of this work, we

2

provide a novel Julia library called TensorToolbox.jl, which is meant to be a general-
purpose library for tensors in the Tucker format. It is available from https://github.

com/lanaperisa/TensorToolbox.jl and includes all functionality of the ttensor class
from the Matlab Tensor toolbox [1].

The rest of this paper is organized as follows. In Section 2, we recall basic tensor
operations related to the Hadamard product and the Tucker format. Section 3 discusses
two variants of the HOSVD for compressing Hadamard products. Section 4 recalls iter-
ative methods for low-rank approximation and their combination with the HOSVD. In
Section 5, we explain how the structure of Z can be exploited to accelerate matrix-vector
multiplications with its Gramians and the approximation of the core tensor. Section 7
contains the numerical experiments, highlighting which algorithmic variant is suitable
depending on the tensor sizes and multilinear ranks. Appendix A gives an overview of
our Julia library.

2 Preliminaries

In this section, we recall the matrix and tensor operations needed for our developments.
If not mentioned otherwise, the material discussed in this section is based on [17].

2.1 Matrix products

Apart from the standard matrix product, the following products between matrices will
play a role.

� Kronecker product : Given A ∈ RI×J ,B ∈ RK×L,

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

 ∈ R(IK)×(JL).

� Hadamard (element-wise) product : Given A,B ∈ RI×J ,

A ∗B =


a11b11 a12b12 · · · a1Jb1J
a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ

 ∈ RI×J .

� Khatri-Rao product : Given A ∈ RI×K ,B ∈ RJ×K

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
∈ R(IJ)×K ,

where aj and bj denote the jth columns of A and B, respectively.

3

https://github.com/lanaperisa/TensorToolbox.jl
https://github.com/lanaperisa/TensorToolbox.jl

� Transpose Khatri-Rao product : Given A ∈ RI×J ,B ∈ RI×K ,

A�T B =
(
AT �BT

)T
=


aT1
aT2
...

aTI

�T


bT1
bT2
...

bTI

 =


aT1 ⊗ bT1
aT2 ⊗ bT2

...
aTI ⊗ bTI

 ∈ RI×(JK),

where aTi and bTi denote the ith rows of A and B, respectively.

We let vec : RI×J → RIJ denote the standard vectorization of a matrix obtained from
stacking its columns on top of each other. For an I× I matrix A, we let diag(A) denote
the vector of length I containing the diagonal entries of A. For a vector v ∈ RI , we let
diag(v) denote the I × I diagonal matrix with diagonal entries v1, . . . , vI . We will make
use of the following properties, which are mostly well known and can be directly derived
from the definitions:

• (A⊗B)T = AT ⊗BT (2)

• (A⊗B)(C⊗D) = AC⊗BD (3)

• (A⊗B)(C�D) = AC�BD (4)

• (A⊗B)v = vec(BVAT), v = vec(V) (5)

• (A�B)v = vec(B diag(v)AT) (6)

• (A�T B)v = diag(BVAT), v = vec(V). (7)

2.2 Norm and matricizations

The Frobenius norm of a tensor X ∈ RI1×···×IN is given by

‖X‖F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

x2i1i2···iN .

The n-mode matricization turns a tensor X ∈ RI1×···×IN into an In×(I1 · · · In−1In+1 · · · IN)
matrix X(n). More specifically, the nth index of X becomes the row index of X(n) and
the other indices of X are merged into the column index of X(n) in reverse lexicographical
order; see [17] for more details.

The n-mode product of X with a matrix A ∈ RJ×In yields the tensor Y = X×n A ∈
RI1×...×In−1×J×In+1×...×IN defined by

yi1···in−1jin+1···iN =

In∑
in=1

xi1i2···iNajin .

In terms of matricizations, the n-mode product becomes a matrix-matrix multiplication,

Y = X×n A ⇔ Y(n) = AX(n).

4

In particular, properties of matrix products, such as associativity, directly carry over
to n-mode products. In terms of the vectorization of a tensor, denoted by vec(X), the
n-mode product corresponds to

Y = X×n A ⇔ vec(Y) = (IN ⊗ · · · ⊗ In+1 ⊗A⊗ In−1 ⊗ · · · ⊗ I1)vec(X),

where Ij is the Ij × Ij identity matrix. Combining both characterizations, we obtain

Y = X×1 A(1) ×2 A(2) ×3 · · · ×N A(N) ⇔

Y(n) = A(n)X(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T
. (8)

2.3 Tensors in Tucker format and multilinear rank

We say that a tensor X ∈ RI1×···×IN is in Tucker format if it is represented as

X = F×1 A(1) ×2 A(2) ×3 · · · ×N A(N) (9)

with the so called core tensor F ∈ RR1×···×RN and factor matrices A(n) ∈ RIn×Rn ,
n = 1, . . . , N .

The multilinear rank of a tensor is the N -tuple(
rank

(
X(1)

)
, . . . , rank

(
X(N)

))
.

Because of (8), a tensor X in Tucker format (9) satisfies rank(X(n)) ≤ Rn. Vice versa, any
tensor admits a Tucker decomposition with Rn = rank(X(n)), i.e., it can be transformed
into the Tucker format (9). The HOSVD discussed in Section 3.1 below is one way of
performing such a Tucker decomposition.

2.4 Matricization of Kronecker products

The Kronecker product of two tensors X ∈ RI1×···×IN and Y ∈ RJ1×···×JN is the tensor
Z = X⊗Y ∈ RI1J1×···×INJN with entries zk1···kN = xi1···iN yj1···jN for k` = j` + (i` − 1)J`.
In particular, the Hadamard product X ∗ Y ∈ RI1×···×IN is a subtensor of X⊗ Y.

The matricization of X ⊗ Y is in general not equal to the Kronecker product of
matricizations of X and Y. However, as discussed by Ragnarsson and Van Loan [23, 24],
there exists a permutation matrix Pn, only depending on the sizes of X ∈ RI1×···×IN ,
Y ∈ RJ1×···×JN and the mode of the matricization, such that

(X⊗ Y)(n) =
(
X(n) ⊗Y(n)

)
Pn. (10)

Instead of giving an explicit expression for Pn, which is tedious and not needed in
the following, we will only discuss the realization of a matrix-vector product Pnv, or
equivalently vTPT

n , for a vector v of length I1J1 · · · In−1Jn−1In+1Jn+1 · · · INJN . We first
reshape v into a tensor V of size J1×I1×· · ·×Jn−1×In−1×Jn+1×In+1×· · ·×JN ×IN ,
which matches the structure of a row on the left-hand side of (10). In order to match

5

the structure of a row on the right-hand side of (10), we need to apply the perfect shuffle
permutation

πn =
[
1 3 5 · · · (2N − 3) 2 4 · · · (2N − 2)

]
(11)

to the modes of V, that is, Ṽ(i1, . . . , i2N−2) = V(πn(i1), . . . , πn(i2N−2)). The vectoriza-
tion of Ṽ yields Pnv.

In Julia, the above procedure can be easily implemented using the commands reshape
and permutedims for reshaping and permuting the modes of a multivariate array, re-
spectively.

1 perfect shuffle = [[2*k−1 for k=1:N−1]; [2*k for k=1:N−1]]
2 tenshape = vec([J[setdiff([1:N],n)] I[setdiff([1:N],n)]]')
3 w = vec(permutedims(reshape(v,tenshape),perfect shuffle))

A matrix-vector product PT
nw is computed in an analogous fashion. First, w is

reshaped into a tensor W of size J1 × · · · × Jn−1 × Jn+1 × · · · × JN × I1 × · · · × In−1 ×
In+1 × · · · × IN . After applying the inverse permutation of (11) to the modes of W, the
vectorization of this tensor yields PT

nw.

1 tenshape=[J[setdiff([1:N],n)];I[setdiff([1:N],n)]]
2 vec(permutedims(reshape(w,tenshape),invperm(perfect shuffle)))

3 Recompression of Hadamard products by HOSVD

In the following, we discuss two basic algorithms for recompressing the Hadamard prod-
uct of two tensors of low multilinear rank. To simplify complexity considerations and the
presentation, we will often consider tensors with equal mode sizes and equal multilin-
ear ranks. All algorithms presented in this paper apply, with obvious modifications, to
tensors featuring unequal sizes and ranks. The Tucker format is best suited for tensors
of low order N . We will therefore restrict most of our description to tensors of order
N = 3.

Suppose that two tensors X,Y ∈ RI×I×I of multilinear ranks (R,R,R) are given in
Tucker format:

X = F×1 A(1) ×2 A(2) ×3 A(3), Y = G×1 B(1) ×2 B(2) ×3 B(3), (12)

where F,G ∈ RR×R×R and A(n),B(n) ∈ RI×R, for n = 1, 2, 3. Then the following lemma
shows that the Hadamard product also admits a representation in the Tucker format.
However, the multilinear ranks get squared. While the latter fact is well known and
follows directly from the corresponding result for matrices [11], the explicit expression
can be found in [19, Proposition 2.2]; we include its proof for completeness.

Lemma 3.1 For X,Y given by (12), it holds that

X ∗ Y = (F⊗ G)×1

(
A(1) �T B(1)

)
×2

(
A(2) �T B(2)

)
×3

(
A(3) �T B(3)

)
. (13)

6

Proof. By the definition of the Kronecker product of tensors, we have (F ×n aT) ⊗
(G×n bT) = (F⊗ G)×n (aT ⊗ bT) for vectors a,b ∈ RR. Denoting the jth unit vector
by ej , this implies that Zi1,i2,i3 satisfies(

X ∗ Y
)
i1,i2,i3

=
(
X×1 e

T
i1 ×2 e

T
i2 ×3 e

T
i3

)
(Y×1 e

T
i1 ×2 e

T
i2 ×3 e

T
i3)

=
(
F×1 e

T
i1A

(1) ×2 e
T
i2A

(2) ×3 e
T
i3A

(3)
)(
G×1 e

T
i1B

(1) ×2 e
T
i2B

(2) ×3 e
T
i3B

(3)
)

= (F⊗ G)×1 (eTi1A
(1) ⊗ eTi1B

(1))×2 (eTi2A
(2) ⊗ eTi2B

(2))×3 (eTi3A
(3) ⊗ eTi3B

(3))

= (F⊗ G)×1 e
T
i1(A(1) �T B(1))×2 e

T
i2(A(2) �T B(2))×3 e

T
i3(A(3) �T B(3))

=
(
(F⊗ G)×1

(
A(1) �T B(1)

)
×2

(
A(2) �T B(2)

)
×3

(
A(3) �T B(3)

))
i1,i2,i3

,

which shows the desired result.

3.1 Higher order singular value decomposition (HOSVD)

The (truncated) HOSVD [5] is a well-established approach to obtain a quasi-optimal
approximation of low multilinear rank to a given tensor X. It chooses the nth factor
matrix A(n) of the approximation to contain the leading left singular vectors of the
n-mode matricization and then chooses the core F optimally by projecting X. The
procedure is summarized in Algorithm 1.

Algorithm 1 HOSVD for computing low multilinear rank approximation to tensor X

1: for n = 1, . . . , N do
2: A(n) ← Rn leading left singular vectors of X(n)

3: end for
4: F← X×1 A(1)T ×2 A(2)T ×3 · · · ×N A(N)T

5: return F,A(1),A(2), . . . ,A(N)

For N = 3, Algorithm 1 requires O(I4) operations for computing the left singular
vectors of the I × I2 matrix X(n) via the SVD and, additionally, O(RI3) operations for
forming F. The complexity of the first step can be reduced significantly when R � I
by using iterative methods instead of the SVD in the first step. For example, when
using the randomized algorithm described in Section 4.2 to approximate the leading
left singular vectors of each matricization X(n), the overall complexity of Algorithm 1
reduces to O(RI3).

Remark 3.2 In Algorithm 1, number of singular vectors can either be specified or cho-
sen adaptively based on how many singular values are above requested tolerance.

3.2 Recompression by HOSVD

The most straightforward approach to (re)compress a Hadamard product is to form
Z = X ∗ Y explicitly and apply Algorithm 1. However, this becomes too expensive, in

7

terms of operations and memory requirements, as the mode size I increases. We can
combine the representation (13) of Z from Lemma 3.1 with a standard recompression
technique to reduce the cost when R2 < I. For this purpose, the columns of the factor
matrices in (13) are first orthonormalized by QR decompositions. Then the HOSVD
of the correspondingly updated core tensor can be turned into an HOSVD of Z. The
resulting procedure is described in Algorithm 2.

Algorithm 2 HOSVD of tensor Z = X ∗ Y with structure (13)

1: for n = 1, . . . , N do
2: Ĉ(n) ← A(n) �T B(n).
3: Compute QR decomposition Ĉ(n) = Q(n)R(n).
4: end for
5: Ĥ← (F⊗ G)×1 R(1) ×2 · · · ×N R(N)

6: Apply Algorithm 1: (H, C̃(1), . . . , C̃(N)) = HOSVD(Ĥ)
7: for n = 1, . . . , N do
8: C(n) ← Q(n)C̃(n)

9: end for
10: return H,C(1), . . . ,C(N)

Assuming that all multilinear ranks appearing in Algorithm 2 equal R and R2 <
I, the cost of this algorithm is as follows for N = 3. Forming the I × R2 matrices
Ĉ(n) and computing their QR decompositions requires O(R4I) operations. Forming
Ĥ and computing its HOSVD requires O(R6) memory and O(R8) operations when
using a randomized algorithm, as discussed in Section 3.1. The computation of the
factor matrices C(n) requires O(R3I) operations. This O(R8 + R4I) complexity makes
Algorithm 2 very expensive except when R is small.

Remark 3.3 As discussed in [18] for a related situation, one possibility to speed up
Algorithm 2 is to prune parts that are known to be sufficiently small a priori. Because
of (10), the R2 singular values of (F ⊗ G)(n) are given by all pairwise products of the
singular values of F(n) and G(n). In turn, a significant fraction of the singular values
of (F ⊗ G)(n) will be very small, which allows to prune the corresponding rows of (F ⊗
G)(n) and columns of A(n)�T B(n) before performing any computation. To illustrate the
potential of this technique, suppose that the singular values of F(n) and G(n) are given

by e−α(j−1) for some α > 0 and j = 1, . . . , R. Then the R2 singular values of (F⊗G)(n)
are given by

e−α(j−1)e−α(k−1) = e−α(j+k−2), j, k = 1, . . . , R.

Thus, the number of singular values not smaller than e−α(R−1) is given by

card{(j, k) : 1 ≤ j ≤ R, 1 ≤ k ≤ R, j + k ≥ R} = R+ (R− 1) + · · ·+ 1 =
R(R+ 1)

2
.

This allows to discard R(R − 1)/2 columns a priori, which brings an improvement but
does not reduce the order of complexity of Algorithm 2.

8

4 Algorithms for low-rank approximation

The HOSVD, Algorithm 1, requires approximating a dominant R-dimensional subspace
for each matricization X(n). Equivalently, one can consider the Gramian A = X(n)X

T
(n)

and aim at a low-rank approximation of the form

A ≈ UΛUT , Λ ≈ UTAU, (14)

where the matrix U ∈ RI×R is a basis of the desired subspace. This section described
variants of two popular algorithms for performing the approximation (14) using matrix-
vector multiplications with A.

4.1 Lanczos algorithm for low-rank approximation

Simon and Zha [28] explained how Lanczos bidiagonalization and tridiagonalization can
be used to approximate general and symmetric matrices, respectively. After k steps of
Lanczos tridiagonalization applied to A ∈ RI×I , see Algorithm 3, one obtains a Lanczos
decomposition of the form

AQ = QT + βkqk+1e
T
k , (15)

where Q =
[
q1 · · · qk

]
has orthonormal columns, ek ∈ Rk denotes the kth unit vector,

and

T = QTAQ =


α1 β1
β1 α2 β2

. . .
. . .

. . .

βk−2 αk−1 βk−1
βk−1 αk

 .

Algorithm 3 Lanczos tridiagonalization with full orthogonalization

1: procedure lanczos tridiag(tol = 10−8, maxit = 1000)
2: Choose random vector v and set q = v/‖v‖, Q =

[
q
]

3: for k = 1, 2, . . . ,maxit do
4: r = Aq
5: αk = qT r
6: r = r− αkq
7: Orthogonalize r versus the columns of Q, reorthogonalize if needed
8: Set βk = ‖r‖ and compute ωk according to (16).
9: if ωk < tol then quit

10: q = r/βk
11: Q =

[
Q q

]
12: end for
13: T = tridiag((α1, . . . , αk), (β1, . . . , βk−1))
14: end procedure

9

The relation (15) implies

‖A−QTQT ‖2F = ‖A‖2F − α2
1 −

k∑
j=1

(α2
j + β2j) =: ω2

k; (16)

see [2] for details. This formula potentially suffers from cancellation and one may instead
use the heuristic criterion βk < tol for stopping Algorithm 3.

Given the output of Algorithm 3, one computes a spectral decomposition of T and
performs a low-rank approximation

T ≈ VΛVT , Λ ∈ RR×R, V ∈ Rk×R,

where R is chosen such that ‖T−VΛVT ‖F ≤ tol. Setting U = QV, we obtain

‖A−UΛUT ‖F ≤ 2 tol.

Numerical experiments from [2] indicate that O(R) iterations of Algorithm 3 are
sufficient to produce the desired accuracy, independent of the singular value distribution
of A, but we are not aware of a formal proof of this statement.

4.2 Randomized algorithm for low-rank approximation

Randomized algorithms [13] offer a simple and powerful alternative to the Lanczos al-
gorithm. If A had exactly rank R, one could choose a random I × R matrix Ω and,
with probability one, the columns of Y = AΩ would span the range of A. For the
more realistic case of a matrix A that can be well approximated by a rank-R matrix we
choose a random I × (R + p) matrix Ω where p is a small oversampling parameter, say
p = 10. Letting Q ∈ RI×(R+p) denote the orthogonal factor from the QR decomposition
of Y = AΩ. Then, with high probability,

A ≈ QQTA

holds with an error not much larger than the best rank-R approximation error; see [13]
for the precise mathematical statement. This procedure is summarized in Algorithm 4.

Algorithm 4 Approximate range of fixed dimension

1: procedure fixed rand range(R, p = 10)
2: Draw an I × (R+ p) Gaussian random matrix Ω.
3: Form I × (R+ p) matrix Y = AΩ
4: Compute QR decomposition Y = QR and return Q.
5: end procedure

Usually, the target rank R is not known and we need to modify Algorithm 4 such
that the size of Q is chosen adaptively until

‖A−QQTA‖2 ≤ tol (17)

10

for a prescribed tolerance tol is satisfied. Checking this criterion is too expensive and
we therefore test it with a sequence {w(i) : i = 1, 2, . . . , q} of standard Gaussian vectors
for a small integer q. By a result from [13, Lemma 4.1], the relation

‖(I−QQT)A‖2 ≤ 10

√
2

π
max
i=1,...,q

‖(I−QQT)Aw(i)‖2,

with probability 1− 10−q. Thus, if

‖(I−QQT)Aw(i)‖2 ≤
√
π

2

tol

10

holds for i = 1, . . . , q, we have found, with high probablity, an approximation Q satisfy-
ing (17). Otherwise, we include Aw(i) into Q and repeat the procedure. The resulting
procedure is summarized in Algorithm 5.

Algorithm 5 Approximate range with adaptively chosen dimension

1: procedure adaptive rand range(tol = 10−8, q = 10)
2: Draw standard Gaussian vectors w(1), . . . ,w(q) of length I
3:

[
y(1) y(2) · · · y(q)

]
= A

[
w(1) w(2) · · · w(q)

]
4: Set j = 0 and Q =

[]
(empty I × 0 matrix)

5: while max{‖y(j+1)‖, ‖y(j+2)‖, . . . , ‖y(j+q)‖} > tol/(10
√

2/π) do
6: j = j + 1
7: y(j) ← (I−QQT)y(j)

8: q = y(j)/‖y(j)‖,Q =
[
Q q

]
9: Draw standard Gaussian vector w(j+q) of length I

10: y(j+q) = (I−QQT)Aw(j+q)

11: for i = j + 1, j + 2, . . . , j + q − 1 do
12: y(i) ← y(i) − q〈q,y(i)〉
13: end for
14: end while
15: end procedure

After Q has been computed by Algorithm 4 or Algorithm 5, the matrix U ∈ RI×R
is computed via a spectral decomposition of QTAQ, as explained in Section 4.1. Over-
all, the complexity for obtaining U is O(R) matrix-vector multiplications with A and,
additionally, O(IR2) operations.

Remark 4.1 In principle, one can apply the randomized algorithms discussed in this
section directly to A = X(n) in order to approximate its range, instead of proceeding

via the (symmetric) Gramian X(n)X
T
(n), as suggested in the beginning of the section.

The obvious disadvantage is that A now has I2 columns, which requires to use random
vectors of length I2 and the involved matrix-vector products become expensive. As we
will see in Section 5.2, one can greatly reduce the cost when using rank-1 vectors for

11

the situation at hand. In this variant of randomized algorithms one proceeds as follows.
Instead of generating R + p unstructured random vectors of size I2, we first generate
standard Gaussian vectors x(i),y(i) ∈ RI , for i = 1, . . . , R + p, and then multiply A by
w(i) = x(i) ⊗ y(i). After that we continue with the procedure described in Algorithms 4
and 5.

We would like to emphasize that the use of such rank-1 random vectors is not covered
by the existing analyses of randomized algorithms. It is by no means trivial to extend
the results from [13] to this random model. Nevertheless, our numerical experiments
indicate that they work, perhaps surprisingly, well; see, in particular, Figure 3 below.

4.3 Lanczos algorithm versus randomized algorithm

According to experiments from [2], the Lanczos and randomized algorithms described
above are often quite similar in terms of the number of matrix-vector multiplications
needed to attain a certain accuracy. For slow singular value decays, randomized algo-
rithms tend to require slightly more iterations. On the other hand, randomized algo-
rithms benefit in situations where the multiplication of A with a block of vectors is faster
than multiplying A with each individual vector. This is the case, for example, when A is
explicitly available. We therefore use randomized algorithms in such a situation. When
A is only available via matrix-vector products, we use the Lanczos algorithm.

An alternative, which we have not explored, is to combine randomized and Lanczos
algorithms into a block Lanczos algorithm; see [20] for an example.

4.4 HOSVD based on approximate ranges

Algorithm 6 describes a variant of the HOSVD that is based on approximations of the
range of X(n) instead of leading left singular vectors. When using a randomized algorithm
for obtaining this approximation, the required oversampling will lead to an orthonormal
basis Ã(n) that is unnecessarily large. To mitigate this effect, the resulting core tensor
is recompressed in Line 5.

Algorithm 6 HOSVD based on approximate ranges of matricizations

1: for n = 1, . . . , N do
2: Ã(n) ← orthonormal basis for approximation of range of X(n)

3: end for
4: F̃← X×1 Ã(1)T ×2 Ã(2)T ×3 · · · ×N Ã(N)T

5: Apply Algorithm 1: (F,B(1), . . . ,B(N)) = HOSVD(F̃)
6: for n = 1, . . . , N do
7: A(n) ← Ã(n)B(n)

8: end for
9: return F,A(1),A(2), . . . ,A(N)

In the following, we perform an error analysis of Algorithm 6, similar to the analysis

12

in [5] for the HOSVD. Given a tolerance ε, it is assumed that

‖(I−Πn)X(n)‖F ≤ ε, (18)

with the orthogonal projector Πn = Ã(n)Ã(n). Using Algorithm 5, this can be achieved
by choosing tol = ε/

√
I; see (17). For the Lanczos algorithm, the Frobenius norm can

be controlled directly; see, e.g., [2]. By writing

X = X×1 Π1 + X×1 (I−Π1)

= X×1 Π1 ×2 Π2 + X×1 Π1 ×2 (I−Π2) + X×1 (I−Π1) = · · ·

= X×1 Π1 · · · ×N ΠN +

N∑
n=1

X×1 Π1 · · · ×n−1 Πn−1 ×n (I−Πn)

and letting
X̃ = X×1 Π1 · · · ×N ΠN = F̃×1 Ã(1) · · · ×N Ã(N),

we obtain

‖X− X̃‖F ≤
N∑
n=1

‖X×1 Π1 · · · ×n−1 Πn−1 ×n (I−Πn)‖F

≤
N∑
n=1

‖X×n (I−Πn)‖F ≤ Nε.

By requiring the 2-norm of the truncated singular values in each matricization of F to be
not larger than ε, the HOSVD performed in Line 5 satisfies an analogous error estimate:

‖F̃−F×1 B(1) · · · ×n B(N)‖F ≤ Nε,

see [5]. In turn, the output of Algorithm 6 satisfies

‖X−F×1 A(1) · · · ×N A(N)‖F ≤ ‖X− X̃‖F + ‖X̃−F×1 A(1) · · · ×N A(N)‖F
≤ ‖X− X̃‖F + ‖F̃−F×1 B(1) · · · ×n B(N)‖F ≤ 2Nε.

This allows to prescribe the accuracy of Algorithm 6.

5 Exploiting structure in the recompression of Hadamard
products

The complexity of the basic algorithms presented in Section 3 renders them unattractive
in situations where the mode sizes I are fairly large and the involved multilinear ranks
R are not small. In this section, we develop tools that exploit the structure (13) of
Z = X ∗ Y. in Section 6 below, these tools will be combined with iterative methods in
order to yield faster algorithms for recompressing Z.

13

5.1 Fast matrix-vector multiplication with Z(n)Z
T
(n)

Given the n-mode matricization Z(n) of Z = X ∗ Y, we develop a fast algorithm for

multiplying Z(n)Z
T
(n) with a general vector v ∈ RI . This operation will be used in the

Lanczos method (see Section 4.1) for approximating the left singular vectors of Z(n).
In the following, we assume n = 1 without loss of generality. From (13), (8), and (10),

we obtain

Z(1) =
[

(F⊗ G)×1

(
A(1) �T B(1)

)
×2

(
A(2) �T B(2)

)
×3

(
A(3) �T B(3)

)]
(1)

=
(
A(1) �T B(1)

)
(F⊗ G)(1)

[(
A(3) �T B(3)

)
⊗
(
A(2) �T B(2)

)]T
=

(
A(1) �T B(1)

) (
F(1) ⊗G(1)

)
P1

[(
A(3)T �B(3)T

)
⊗
(
A(2)T �B(2)T

)]
.

We perform the matrix-vector multiplication w = Z(1)Z
T
(1)v in four steps.

Step 1. w1 =
(
A(1)T �B(1)T

)
v

Step 2. w2 = PT
1

(
FT
(1) ⊗GT

(1)

)
w1

Step 3. w3 =
[(

A(3) �T B(3)
)
⊗
(
A(2) �T B(2)

)]
w2

w4 =
[(

A(3)T �B(3)T
)
⊗
(
A(2)T �B(2)T

)]
w3

Step 4. w =
(
A(1) �T B(1)

) (
F(1) ⊗G(1)

)
P1w4

In the following, we discuss an efficient implementation for each of these steps.

Step 1. Using (6), we obtain

w1 =
(
A(1)T �B(1)T

)
v = vec

(
B(1)Tdiag(v)A(1)

)
.

Equivalently, by reshaping w1 into an R×R matrix W1,

W1 = B(1)T︸ ︷︷ ︸
R×I

(diag(v)A(1)︸ ︷︷ ︸
I×R

).

This matrix multiplication requires O(R2I) operations.

Step 2. We have

w2 = PT
1

(
FT
(1) ⊗GT

(1)

)
w1 = PT

1 vec
(

GT
(1)︸︷︷︸

R2×R

W1︸︷︷︸
R×R

F(1)︸︷︷︸
R×R2

)
.

The matrix multiplication requires O(R5) operations, while the cost for applying PT
1 –

using the techniques described in Section 2.4 – is negligible.

14

Step 3. Variant A. We present two variants for performing Step 3 and, as will be
explained below, the choice of the variant depends on the relation between I and R. In
Variant A, we first reshape w2 into a matrix W2 of size R2 ×R2 and obtain

w3 =
[(

A(3) �T B(3)
)
⊗
(
A(2) �T B(2)

)]
w2 = vec

[(
A(2) �T B(2)

)
W2

(
A(3)T �B(3)T

)]
.

Let cj ∈ RR2
denote the jth column of W2 for j = 1, . . . , R2, which is reshaped into

the R × R matrix Cj . Then the jth column of W′
3 =

(
A(2) �T B(2)

)
W2 is a vector of

length I given by (
A(2) �T B(2)

)
cj = diag

(
B(2)︸︷︷︸
I×R

Cj A(2)T︸ ︷︷ ︸
R×I

)
, (19)

where we have used (7). Exploiting that only the diagonal entries are needed, this re-
quires O(R2I) operations for each cj and hence O(R4I) operations in total for computing

W′
3 ∈ RI×R2

.

The matrix W3 = W′
3

(
A(3)T �B(3)T

)
=
[(

A(3) �T B(3)
)
W′

3
T]T is computed anal-

ogously. Letting c′j ∈ RR2
denote the jth column of W′

3
T for j = 1, . . . , I, the jth

column of WT
3 is given by(

A(3) �T B(3)
)
c′j = diag

(
B(3)C′jA

(3)T
)
. (20)

Therefore, the computation of W3 ∈ RI×I from W′
3 requires O(R2I2) operations.

We now consider the computation of

w4 =
[(

A(3)T �B(3)T
)
⊗
(
A(2)T �B(2)T

)]
w3 = vec

[(
A(2)T �B(2)T

)
W3

(
A(3)�T B(3)

)]
.

Letting dj denote the jth column of W3 for j = 1, . . . , I, the jth column of W′
4 =(

A(2)T �B(2)T
)
W3 is given by(

A(2)T �B(2)T
)
dj = vec

(
B(2)Tdiag(dj)A

(2)
)
. (21)

Therefore, the computation of W′
4 ∈ RR2×I requires O(R2I2) operations.

Analogously, the jth column of WT
4 is computed from the jth column d′j of W′

4
T

for j = 1, . . . , R2 via (
A(3)T �B(3)T

)
d′j = vec

(
B(3)Tdiag(d′j)A

(3)
)
.

This requires O(R4I) operations for all columns of W4.
Overall, Variant A of Step 3 has a computational complexity of O(R2I2 +R4I).

Step 3. Variant B. For tensors of large mode sizes the quadratic growth with respect
to I in the complexity of Variant A is undesirable. We can avoid this by utilizing (3):

w4 =
[(

A(3)T �B(3)T
)
⊗
(
A(2)T �B(2)T

)][(
A(3) �T B(3)

)
⊗
(
A(2) �T B(2)

)]
w2

=
[(

A(3)T �B(3)T
)(

A(3) �T B(3)
)
⊗
(
A(2)T �B(2)T

)(
A(2) �T B(2)

)]
w2

= vec
[(

A(2)T �B(2)T
)(

A(2) �T B(2)
)
W2

(
A(3)T �B(3)T

)(
A(3) �T B(3)

)]
.

15

As in Variant A, we first perform W′
3 =

(
A(2) �T B(2)

)
W2, which requires O(R4I)

operations. Then, analogous to (21), we compute the R2 × R2 matrix W3 =
(
A(2)T �

B(2)T
)
W′

3 within O(R4I) operations. Analogous to (20), the computation of the R2× I
matrix W′

4 = W3

(
A(3)T � B(3)T

)
requires again O(R4I) operations. Finally, as in

Variant A, we compute W4 = W′
4

(
A(3) �T B(3)

)
within O(R4I) operations.

In total, Variant B has complexity O(R4I) and thus avoids the term R2I2 in the
complexity of Variant A. Let us compare the sizes of the intermediate matrices created
by the two variants:

W′
3 W3 W′

4 W4

Variant A I ×R2 I × I R2 × I R2 ×R2

Variant B I ×R2 R2 ×R2 R2 × I R2 ×R2

In terms of storage requirements it could be preferable to use Variant A when I < R2. In
this situation, Variant A also turns out to be faster than Variant B. This can be clearly
seen in Figure 1, which shows that a matrix-vector multiplication based on Variant A
becomes faster for R ≥ 35 ≈

√
1000 =

√
I; see Section 7.1 for a description of the

computational environment.

R

10 15 20 25 30 35 40 45 50

― Variant A
‐‐‐ Variant B

Variant

0

1

2

3

T
im

e
 (

s)

I=1000

Figure 1: Execution time in seconds for matrix-vector multiplication with
Z(1)Z

T
(1) for random tensors X and Y with I = 1000 and ranks R =

10, 15, 20, 25, 30, 31, 32, 33, 34, 35, 40, 45, 50 using either Variant A or Variant B in Step
3.

To conclude, we use Variant A for I < R2 and Variant B otherwise.

Step 4. In the final step, we calculate w =
(
A(1) �T B(1)

)(
F(1) ⊗G(1)

)
P1w4. The

permutation matrix P1 is applied as explained in Section 2.4. The Kronecker product

16

F(1)⊗G(1) is applied with two matrix multiplications, requiring O(R5) operations. The

matrix A(1) �T B(1) is applied as in (19), requiring O(R2I) operations.

Summary. When Variant B in Step 3 is used, the matrix-vector multiplication w =
Z(1)Z

T
(1)v can be performed within O(R4I + R5) operations, which compares favorably

when I > R2 with the O(I3) operations needed by applying Z(1) and ZT(1) without
exploiting structure.

5.2 Fast multiplication of Z(n) with a rank-1 vector

Given a vector w = x⊗y with x,y ∈ RI , we now discuss the fast multiplication of Z(n)

with w. This operation will be used in a randomized algorithm for estimating the range
of Z(n). Again, we assume n = 1 w.l.o.g.

In a precomputation step, we construct D(m) = A(m) �T B(m) for m = 1, 2, 3. This
gives

Z(1)w = D(1)(F⊗ G)(1)
(
D(3) ⊗D(2)

)T
(x⊗ y)

= D(1)(F⊗ G)(1)
(
D(3)Tx⊗D(2)Ty

)
.

We compute x̃ = D(3)Tx ∈ RR2
and ỹ = D(2)Ty ∈ RR2

in O(R2I) operations and then
form

z1 = x̃⊗ ỹ

in O(R4) operations. To perform the product

(F⊗ G)(1)z1 =
(
F(1) ⊗G(1)

)
P1z1, (22)

we first perform the permutation z2 = P1z1 as discussed above. The multiplication
z3 =

(
F(1) ⊗G(1)

)
z2 requires O(R5) operations when using (5). The last step consists

of the product D(1)z3, which requires O(R2I) operations.
In summary, the matrix-vector product Z(1)w can be performed in O(R2I + R5)

operations. In fact, this can be reduced further to O(R2I+R4) by evaluating (22) more
carefully, but we refrain from providing this more complicated procedure because it does
not reduce the overall complexity of our algorithms.

5.3 Calculating core tensor of Hadamard product

Assuming that we have calculated factor matrices C(1),C(2),C(3), we now discuss the
efficient computation of the core tensor

H = Z×1 C(1)T ×2 C(2)T ×3 C(3)T

required in Step 4 of Algorithm 1. Using (13), we have

H = (F⊗ G)×1C
(1)T

(
A(1) �T B(1)

)
×2C

(2)T
(
A(2) �T B(2)

)
×3C

(3)T
(
A(3) �T B(3)

)
.

17

To simplify the complexity considerations, we assume that the size of each matrix C(n)

is I ×R, matching the sizes of A(n) and B(n).
We first calculate

D(n) =
(
A(n)T �B(n)T

)
C(n),

for n = 1, 2, 3, which requires O(R3I) operations. We rewrite H = (F⊗ G)×1 D(1)T ×2

D(2)T ×3 D(3)T , in terms of the mode-1 matricization:

H(1) = D(1)T︸ ︷︷ ︸
R×R2

(F⊗ G)(1)︸ ︷︷ ︸
R2×R4

(
D(3) ⊗D(2)︸ ︷︷ ︸

R4×R2

)
= D(1)T (F(1) ⊗G(1))P1(D

(3) ⊗D(2)).

Letting di ∈ RR2
and li ∈ RR4

denote the ith column of D(1) and
(
D(1)T

(
F⊗ G

)
(1)

)T
,

respectively, we have

li = PT
1

(
FT
(1) ⊗GT

(1)

)
di.

Exploiting the property (5) of the Kronecker product, computing li requires O(R5)
operations. Similarly, computing

lTi
(
D(3) ⊗D(2)

)
has complexity O(R5) and gives the ith row of H(1) for i = 1, . . . , R. In summary, the
computation of H requires O(R3I +R6) operations.

6 Algorithms

This section presents four different algorithms for recompressing Z = X ∗ Y into the
Tucker format. In preliminary numerical experiments, we have ruled out other algorith-
mic combinations and believe that these four algorithms represent the most meaningful
combinations of the techniques discussed in this paper. For the complexity considera-
tions, we again assume that all mode sizes equal I, all multilinear ranks equal R, and
the iterative algorithms from Appendix 4.2 require O(R) matrix-vector multiplications.

HOSVD1: Algorithm 1 for full tensor Z + randomized

HOSVD1 creates the full tensor Z explicitly and applies Algorithm 1 to Z using the
randomized algorithm from Appendix 4.2 for approximating the factor matrices. This
requires O(RI3) operations and O(I3) memory.

HOSVD2: Algorithm 2 + randomized

HOSVD2 is Algorithm 2, with the HOSVD of the R2×R2×R2 core tensor Ĥ performed
by Algorithm 1 using again the randomized algorithm (Appendix 4.2) for approximating
the factor matrices. This requires O(R4I +R8) operations and O(R2I +R6) memory.

18

HOSVD3: Algorithm 1 + structure-exploiting Lanczos

HOSVD3 is a variant of Algorithm 1, where the Lanczos algorithm (Appendix 4.1) is
combined with the fast matrix-vector multiplication described in Section 5.1 to obtain
approximations of the factor matrices. The procedure from Section 5.3 is used for cal-
culating the core tensor. For I < R2, using Variant A in Step 3 of the matrix-vector
multiplication, O(R3I2 + R5I + R6) operations and O(I2 + R2I + R4) memory are re-
quired. For I ≥ R2, using Variant B in Step 3 of the matrix-vector multiplication,
O(R5I +R6) operations and O(R2I +R4) memory are required.

HOSVD4: Algorithm 1 + rank-1 randomized

HOSVD4 applies a randomized algorithm (i.e., Algorithm 4) to estimate the range of
Z(n) ∈ RI×I2 , using rank-1 vectors w(i) = x(i) ⊗ y(i), where x(i),y(i) ∈ RI are randomly
chosen for i = 1, . . . , R+ p. This allows for using the procedure described in Section 5.2
when performing the matrix-vector multiplications Z(n)w

(i).

The orthonormal bases Ã(n) of the estimated ranges are used to compress the size
of the tensor, followed by Algorithm 1; see Algorithm 6. Again, the procedure from
Section 5.3 is used for calculating the core tensor F̃ in line 4. Overall, HOSVD4 requires
O(R3I +R6) operations and O(R2I +R4) memory.

Remark 6.1 The discussion above on the complexity easily generalizes to N > 3.
HOSVD1 requires O(RIN) operations and O(IN) memory, HOSVD2 O(R4I + R2N+2)
operations and O(R2I + R2N) memory, and O(R3I + R2N) operations and O(R2I +
R2N−2) memory for HOSVD4. For HOSVD3, when I < R2, using Variant A in
Step 3 of matrix-vector multiplication, O(

∑N−1
n=1 I

nR2(N−n)+1 + R2N) operations and

O(
∑N−1

n=1 I
N−nR2n−2 + R2N−2) memory are required, while when I ≥ R2 and Variant

B is used in Step 3 of matrix-vector multiplication O(IR2N−1 + R2N) operations and
O(IR2N−4 +R2N−2) are required.

7 Numerical Experiments

7.1 Computational environment

We have implemented and tested the algorithms from Section 6 in Julia version 0.5.2,
on a PC with an Intel(R) Core(TM) i5-3470 quadcore 3.20GHz CPU, 256KB L2 cache,
6MB L3 cache, and 4GB of RAM. Multithreading is turned on and all four cores are
utilized.

7.2 Execution times for function-related tensors

To test our algorithms, we generate function-related tensors X, Y by evaluating the
functions

f(x, y, z) =
1

x+ y + z
, g(x, y, z) =

1√
x+ y + z

19

on the grid {0.1, 0.2, . . . , I/10} for x, y, z. The following table reports the approximate
multilinear ranks (R,R,R) of X, Y, and Z = X ∗ Y obtained when discarding singular
values smaller than 10−8:

I = 50 I = 100 I = 200 I = 400

X 11 12 15 17
Y 11 12 15 17
Z 12 13 15 17

Figure 2 shows the execution times obtained for the four different HOSVD algorithms

1 2 3 4

HOSVD1
HOSVD2
HOSVD3
HOSVD4

Method

0

5

10

I=400

1 23 4
0.0

0.5

1.0

1.5

I=200

1 2 3 4
0.00

0.05

0.10

0.15

I=100

1 2 3 4
0.00

0.02

0.04

0.06

0.08

T
im

e
 (

s)

I=50

Figure 2: Execution times (in seconds) of HOSVD algorithms applied to Hadamard
product of function-related tensors from Section 7.2.

from Section 6 applied to the tensors X,Y in Tucker format and targeting an accuracy
of 10−8. In particular, the latter implies that Algorithm 5 is used for the randomized
algorithms. Except for I = 50, HOSVD4 outperforms all other algorithms. For example,
for I = 400, HOSVD4 requires 0.16 seconds while HOSVD3, the next best algorithm,
requires 2 seconds.

7.3 Accuracy of HOSVD3 vs. HOSVD4

We tested the accuracy of the structure-exploiting algorithms HOSVD3 and HOSVD4
in dependence of the oversampling parameter p. For HOSVD3, p refers to the R + p
iterations of the Lanczos method, while for HOSVD4 it refers to the number R + p of
columns in the random matrix Ω. We used the function-related tensors X and Y from
Section 7.2 with I = 50 and required the multilinear rank to be (R,R,R), with R = 9
and R = 15. Figure 3 shows the resulting error calculated as ‖X ∗ Y − T‖F , where T

is the output of the corresponding algorithm. Generally, it can be said that very small
values of p are sufficient for both algorithms, in the sense that the limiting accuracy
determined by the choice of R is reached. HOSVD4 is more accurate in situations where

20

the limiting accuracy is below O(10−8), because it works directly with Z(n) instead of

the Gramian Z(n)Z
T
(n).

HOSVD3
HOSVD4

Method

10210

3 43 43 43 4

10-6

10-5

10-4

10-3

10-2

10-1

100

E
rr
o
r

R=9

HOSVD3
HOSVD4

Method

10210

3 43 43 43 4

10-15

10-10

10-5

100

E
rr
o
r

R=15

Figure 3: Error of HOSVD3 and HOSVD4 versus oversampling parameter p =
0, 2, 4, . . . , 20.

7.4 Execution times for random tensors

We now choose I × I × I tensors X and Y of prescribed multilinear rank (R,R,R) by
letting all coefficients of the Tucker format contain random numbers from the standard
normal distribution. We measure the time needed by our algorithms for truncating
Z = X ∗ Y back to multilinear rank (R,R,R).

Precisely, we use Algorithm 4 with oversampling parameter p = 10 inside algorithms
HOSVD1, HOSVD2 and HOSVD4 and Algorithm 3 with maxit = R + p, for p = 10, in
HOSVD3 algorithm. Choosing different reasonable oversampling parameter (e.g. any
p ≤ 20) does not notably change the execution times.

The times obtained for I = 50, 100, 200, 400 with respect to R are shown in Figure 4.
As expected the performance of HOSVD1, based on forming the full tensor Z, depends
only mildly on R. All other algorithms have a cost that is initially smaller than HOSVD1
but grows asR increases. The observed breakeven points match the theoretical breakeven
points between R = O(I2/5) and R = O(I3/5) quite well. For larger I, it is impossible to
store Z and hence Figure 5 only displays the times of HOSVD2, HOSVD3, and HOSVD4
for I = 500, 900. Among these three algorithms, HOSVD4 is nearly always the best.
Based on these observations, we conclude the following recommendation:

� Use HOSVD1 when Z fits into memory and the involved multilinear ranks are
expected to exceed I3/5.

� In all other situations, use HOSVD4.

21

R

2 4 6 8 10 12 14 16 18 20

⸻ HOSVD1
–––  HOSVD2
‐‐‐‐‐‐‐  HOSVD3
– ‐ – HOSVD4

Method

10-3

10-2

10-1

100

101

Ti
m

e
(s

)
I=50

R

3 6 9 12 15 18 21 24 27 30

⸻ HOSVD1
–––  HOSVD2
‐‐‐‐‐‐‐  HOSVD3
– ‐ – HOSVD4

Method

10-3

10-2

10-1

100

101

Ti
m

e
(s

)

I=100

R

4 8 12 16 20 24 28 32 36 40

⸻ HOSVD1
–––  HOSVD2
‐‐‐‐‐‐‐  HOSVD3
– ‐ – HOSVD4

Method

10-3

10-2

10-1

100

101

102

Ti
m

e
(s

)

I=200

R

5 10 15 20 25 30 35 40 45 50

⸻ HOSVD1
–––  HOSVD2
‐‐‐‐‐‐‐  HOSVD3
– ‐ – HOSVD4

Method

10-3

10-2

10-1

100

101

102

103

Ti
m

e
(s

)

I=400

Figure 4: Execution times (in seconds) of HOSVD algorithms applied to the Hadamard
product of random tensors of low multilinear rank from Section 7.4.

R

5 10 15 20 25 30 35 40 45 50

–––  HOSVD2
‐‐‐‐‐‐‐  HOSVD3
– ‐ – HOSVD4

Method

10-3

10-2

10-1

100

101

102

103

Ti
m

e
(s

)

I=500

R

10 20 30 40 50 60 70 80 90

–––  HOSVD2
‐‐‐‐‐‐‐  HOSVD3
– ‐ – HOSVD4

Method

10-2

10-1

100

101

102

103

104

Ti
m

e
(s

)

I=900

Figure 5: Execution times (in seconds) of HOSVD algorithms applied to the Hadamard
product of random tensors of low multilinear rank from Section 7.4.

Finally, Figure 6 shows the performance of HOSVD4 with respect to R and I. Note
that some of the displayed configurations, such as I = 5 000 and R = 90, are intractable
for any other algorithm discussed in this paper.

Remark 7.1 Presented algorithms can also be used on matrices, i.e. tensors of order
N = 2. In that case the recommendation for when to use HOSVD1 still holds, while

22

I

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

– ‐ – HOSVD4

Method

101.1

101.2

101.3

101.4

101.5

101.6

101.7

101.8

101.9

Ti
m

e
(s

)

R=50

R

10 20 30 40 50 60 70 80 90

– ‐ – HOSVD4

Method

10-1

100

101

102

103

Ti
m

e
(s

)

I=5000

Figure 6: Execution times (in seconds) of HOSVD4 applied to the Hadamard product
of random tensors of low multilinear rank from Section 7.4.

HOSVD3 algorithm outperforms HOSVD2 algorithm in other situations, as is evident
from the complexities.

7.5 Testing complexities

Here we test that the complexities presented in this paper match the actual complexities
of the algorithms HOSVD1, HOSVD2, HOSVD3 and HOSVD4. Using randomly gener-
ated tensors X and Y, as in Section 7.4, of size I× I× I and multilinear ranks (R,R,R),
with t(I,R) we denote the time needed by our algorithms to recompress Z = X ∗ Y to
multilinear rank (R,R,R). We measure times for two different pairs (I1, R1) and (I2, R2)
and compare the ratio t(I1, R1)/t(I2, R2) with the expected ratio e, which is for each
algorithm defined as follows:

� HOSVD1. Since I3 is the dominating term in the complexity of HOSVD1 algo-
rithm, we choose I2 = 2I1 and R1 = R2, so the expected ratio is

e =
R1I

3
1

R2I32
=

R1I
3
1

R123I31
=

1

23
,

� HOSVD2. Choosing I2 = 24I1 and R2 = 2R1, we have

e =
R4

1I1 +R8
1

R4
2I2 +R8

2

=
R4

1I1 +R8

24R4
124I1 + 28R8

=
1

28
,

� HOSVD3 + Variant A. We use this variant when I < R2 so we have to choose I
and R accordingly. If I2 = 2I1 and R2 = 2R1, then

e =
R3

1I
2
1 +R5

1I1 +R6
1

R3
2I

2
2 +R5

2I2 +R6
2

=
R3

1I
2
1 +R5

1I1 +R6
1

23R3
122I21 + 25R5

12I1 + 26R6
1

≈ 1

26
,

� HOSVD3 + Variant B. We use this variant when I ≥ R2 so we have to choose I
and R accordingly. If I2 = 2I1 and R2 = 2R1, then

e =
R5

1I1 +R6
1

R5
2I2 +R6

2

=
R5

1I1 +R6

25R5
12I1 + 26R6

=
1

26
,

23

I1 I2 R1 R2 t(I1, R1)/t(I2, R2) e

HOSVD1 200 400 20 20 0.11615999 0.125
HOSVD2 50 800 10 20 0.00225188 0.00390625
HOSVD3 + Var. A 200 400 20 40 0.06338479 0.015625
HOSVD3 + Var. B 400 800 10 20 0.06642512 0.015625
HOSVD4 100 800 20 40 0.02764474 0.015625

Table 1: Comparison of ratios t(I1, R1)/t(I2, R2) and expected ratios e for algorithms
HOSVD1, HOSVD2, HOSVD3 and HOSVD4.

� HOSVD4. Choosing I2 = 23I1 and R2 = 2R1, we have

e =
R3

1I1 +R6
1

R3
2I2 +R6

2

=
R3

1I1 +R6

23R3
123I1 + 26R6

=
1

26
,

The results are presented in Table 1.

8 Conclusions

Exploiting structure significantly reduces the computational effort for recompressing the
Hadamard product of two tensors in the Tucker format. Among the algorithms discussed
in this paper, HOSVD4 clearly stands out. It uses a randomized algorithm that employs
random vectors with rank-1 structure for approximating the range of the matricizations.
The analysis of this randomized algorithm is subject to further work. It is not unlikely
that the ideas of HOSVD4 extend to other SVD-based low-rank tensor formats, such as
the tensor train format [22] and hierarchical Tucker format [12].

We view the algorithms presented in this work as a complement to existing tools
for recompressing tensors. Apart from the HOSVD, other existing tools include the
sequentially truncated HOSVD [29], alternating optimization such as HOOI [27], cross
approximation [25], and a Jacobi method [15]. As far as we know, none of these tech-
niques has been tailored to the recompression of Hadamard products.

Acknowledgments. The authors thank the referees for helpful remarks on an earlier
version that improved the manuscript and Ivan Slapničar for helpful discussions.

A Julia package

We have created a Julia [3] package for tensors in Tucker format in programming language
Julia, following the nomenclature of Matlab’s Tensor Toolbox [1]. A notable difference
to the Tensor Toolbox is that we do not construct a separate object tensor for dealing
with full tensors but instead directly use built-in multidimensional arrays. Our package
has a standard structure:

TensorToolbox.jl/

24

src/

Tensortoolbox.jl

tensor.jl

ttensor.jl

helper.jl

test/

create test data.jl

paperTests.jl

runtests.jl

test data func.jld

The module TensorToolbox is contained in TensorToolbox.jl, functionality for full
tensors is in tensor.jl, and functionality for tensors in the Tucker format is in ttensor.

jl. The object (or composite type) for tensors in Tucker format is called ttensor and
consists of the fields cten (core tensor), fmat (factor matrices), as well as isorth (flag
for orthonormality of factor matrices).

1 type ttensor{T<:Number}
2 cten::Array{T}
3 fmat::Array{Matrix,1}
4 isorth::Bool
5 end

All figures from the paper can be recreated using functions from test/paperTests.jl

file, following instructions in the file.
Even though in Section 7 we present numerical results only for N = 3 and tensors of

size I× I× I with multilinear ranks (R,R,R), our package implements these algorithms
for arbitrary order, different mode sizes and different multilinear ranks.

The following tables summarize the functionality of our package.

Functions for tensors - tensor.jl

hosvd HOSVD.
innerprod Inner product of two tensors.
krontm Kronecker product of two tensors times matrix (n-mode multiplication).
matten Matrix tensorisation - fold matrix into a tensor.
mkrontv Multiplication of matricized Kronecker product of two tensors by a vector.
mrank Multilinear rank of a tensor.
mttkrp Matricized tensor times Khatri-Rao product.
nrank n-rank of a tensor.
sthosvd Sequentially truncated HOSVD.
tenmat Tensor matricization - unfold tensor into matrix.
tkron Kronecker product of two tensors.
ttm Tensor times matrix (n-mode multiplication).
ttt Outer product of two tensors.
ttv Tensor times vector (n-mode multiplication).

25

Functions for tensors in Tucker format - ttensor.jl

ttensor Construct Tucker tensor for specified core tensor and factor matrices.
randttensor Construct random Tucker tensor.

coresize? Size of the core of ttensor.
full Construct full tensor (array) from ttensor.
had (.*)? Hadamard product of two ttensor.
hadcten? Construct core tensor for Hadamard product of two ttensor with specified

factor matrices.
hosvd? HOSVD for ttensor.
hosvd1? HOSVD1 - computes Tucker representation of Hadamard product of two

ttensor.
hosvd2? HOSVD2 - computes Tucker representation of Hadamard product of two

ttensor.
hosvd3? HOSVD3 - computes Tucker representation of Hadamard product of two

ttensor.
hosvd4? HOSVD4 - computes Tucker representation of Hadamard product of two

ttensor.
innerprod Inner product of two ttensor.
isequal (==) True if each component of two ttensor is numerically identical.
lanczos? Lanczos algorithm adapted for getting factor matrices in algorithm hosvd3.
mhadtv? Matricized Hadamard product of two ttensor multiplied by a vector.
minus (-)? Subtraction of two ttensor.
mrank? Multilinear rank of a ttensor.
msvdvals? Singular values of matricized ttensor.
mtimes (*) Scalar multiplication for a ttensor.
mttkrp Matricized ttensor times Khatri-Rao product.
ndims Number of modes for ttensor.
norm Norm of a ttensor.
nrank? n-rank of a ttensor.
nvecs Compute the leading mode-n vectors for ttensor.
permutedims Permute dimensions of ttensor.
plus (+)? Addition of two ttensor.
randrange? Range approximation using randomized algorithm adapted for Hadamard

product of two ttensor.
randsvd? Randomized SVD algorithm adapted for getting factor matrices in algo-

rithm hosvd3.
reorth? Reorthogonalization of ttensor. Creates new ttensor.
reorth!? Reorthogonalization of ttensor. Overwrites existing ttensor.
size Size of a ttensor.
tenmat? Unfold tensor into matrix - matricization.
ttm Tensor times matrix for ttensor (n-mode multiplication).
ttv Tensor times vector for ttensor (n-mode multiplication).

26

uminus (-) Unary minus for ttensor.

Functions denoted by ? are not part of Matlab’s Tensors Toolbox and the function
permutedims is called permute in MATLAB.

References

[1] Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version 2.6. Avail-
able online, February 2015.

[2] Jonas Ballani and Daniel Kressner. Matrices with hierarchical low-rank structures.
In Exploiting hidden structure in matrix computations: algorithms and applications,
volume 2173 of Lecture Notes in Math., pages 161–209. Springer, Cham, 2016.

[3] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: a fresh
approach to numerical computing. SIAM Rev., 59(1):65–98, 2017.

[4] F. Bonizzoni, F. Nobile, and D. Kressner. Tensor train approximation of moment
equations for elliptic equations with lognormal coefficient. Comput. Methods Appl.
Mech. Engrg., 308:349–376, 2016.

[5] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value
decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[6] Sergey Dolgov, Boris N. Khoromskij, Alexander Litvinenko, and Hermann G.
Matthies. Polynomial chaos expansion of random coefficients and the solution of
stochastic partial differential equations in the tensor train format. SIAM/ASA J.
Uncertain. Quantif., 3(1):1109–1135, 2015.

[7] A. Doostan and G. Iaccarino. A least-squares approximation of partial differential
equations with high-dimensional random inputs. J. Comput. Phys., 228(12):4332–
4345, 2009.

[8] M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and E. Zander. Efficient
analysis of high dimensional data in tensor formats. In J. Garcke and M. Griebel,
editors, Sparse Grids and Applications, volume 88 of Lecture Notes in Computa-
tional Science and Engineering, pages 31–56. Springer, 2013.

[9] M. Filipović and A. Jukić. Tucker factorization with missing data with application
to low-n-rank tensor completion. Multidimensional Systems and Signal Processing,
26(3):677–692, 2013.

[10] Michael Griebel and Helmut Harbrecht. Approximation of bi-variate functions:
singular value decomposition versus sparse grids. IMA J. Numer. Anal., 34(1):28–
54, 2014.

27

[11] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer, Heidel-
berg, 2012.

[12] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. J. Fourier
Anal. Appl., 15(5):706–722, 2009.

[13] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions. SIAM
Rev., 53(2):217–288, 2011.

[14] B. Hashemi and N. Trefethen. Chebfun in three dimensions. Technical report, 2016.

[15] Mariya Ishteva, P.-A. Absil, and Paul Van Dooren. Jacobi algorithm for the best
low multilinear rank approximation of symmetric tensors. SIAM J. Matrix Anal.
Appl., 34(2):651–672, 2013.

[16] O. Koch and Ch. Lubich. Dynamical tensor approximation. SIAM J. Matrix Anal.
Appl., 31(5):2360–2375, 2010.

[17] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[18] D. Kressner and C. Tobler. Algorithm 941: htucker—a Matlab toolbox for tensors
in hierarchical tucker format. ACM Trans. Math. Softw., 40(3):22:1–22:22, 2014.

[19] N. Lee and A. Cichocki. Fundamental tensor operations for large-scale data analysis
in tensor train formats. arXiv preprint arXiv:1405.7786v2, 2016.

[20] C. Musco and C. Musco. Randomized block Krylov methods for stronger and faster
approximate singular value decomposition. In Conference on Neural Information
Processing Systems (NIPS), 2015.

[21] A. Nonnenmacher and Ch. Lubich. Dynamical low-rank approximation: appli-
cations and numerical experiments. Mathematics and Computers in Simulation,
79(4):1346–1357, 2008.

[22] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–
2317, 2011.

[23] S. Ragnarsson. Structured tensor computations: Blocking, symmetries and Kro-
necker factorizations. PhD thesis, Cornell University, 2012.

[24] S. Ragnarsson and C. F. Van Loan. Block tensor unfoldings. SIAM J. Matrix Anal.
Appl., 33(1):149–169, 2012.

[25] M. V. Rakhuba and I. V. Oseledets. Fast multidimensional convolution in low-rank
tensor formats via cross approximation. SIAM J. Sci. Comput., 37(2):A565–A582,
2015.

28

[26] R. Schneider and A. Uschmajew. Approximation rates for the hierarchical tensor
format in periodic Sobolev spaces. J. Complexity, 30(2):56–71, 2014.

[27] B. N. Sheehan and Y. Saad. Higher order orthogonal iteration of tensors (HOOI) and
its relation to PCA and GLRAM. In Proceedings of the 2007 SIAM International
Conference on Data Mining, pages 355–365, 2007.

[28] H. D. Simon and H. Zha. Low-rank matrix approximation using the Lanczos bidi-
agonalization process with applications. SIAM J. Sci. Comput., 21(6):2257–2274,
2000.

[29] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen. A new truncation strat-
egy for the higher-order singular value decomposition. SIAM J. Sci. Comput.,
34(2):A1027–A1052, 2012.

29

	Introduction
	Preliminaries
	Matrix products
	Norm and matricizations
	Tensors in Tucker format and multilinear rank
	Matricization of Kronecker products

	Recompression of Hadamard products by HOSVD
	Higher order singular value decomposition (HOSVD)
	Recompression by HOSVD

	Algorithms for low-rank approximation
	Lanczos algorithm for low-rank approximation
	Randomized algorithm for low-rank approximation
	Lanczos algorithm versus randomized algorithm
	HOSVD based on approximate ranges

	Exploiting structure in the recompression of Hadamard products
	Fast matrix-vector multiplication with Z(n)Z(n)T
	Fast multiplication of Z(n) with a rank-1 vector
	Calculating core tensor of Hadamard product

	Algorithms
	Numerical Experiments
	Computational environment
	Execution times for function-related tensors
	Accuracy of HOSVD3 vs. HOSVD4
	Execution times for random tensors
	Testing complexities

	Conclusions
	Julia package

