next up previous
Next: About this document ...

C.R. Acad. Sci. Paris

Problèmes mathématiques de la mécanique/Mathematical problems in Mechanics

(Analyse mathématique/Mathematical analysis)



Dual free boundaries for Stokes waves

Boris BUFFONIa, John Francis TOLANDb

a Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne

b Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

Courriel: Boris.Buffoni@epfl.ch, jft@maths.bath.ac.uk

   

Abstract. Classically, gravity waves on the surface of a two-dimensional layer of perfect fluid are described in potential theory by a free-boundary problem for the (harmonic) stream function $\psi$on an unknown domain $\Omega\subset {
\mathbb 
R}^2$.Many authors independently have transformed this problem by a conformal mapping into a quasi-linear equation (W) for a function w of a single variable. Equation (W) is non-local, as it involves the Hilbert transform, and it has variational structure, being an Euler-Lagrange equation. Here we deal with periodic waves in which case w is periodic. Our aim is to introduce a new non-local variational equation (V) to be satisfied by another periodic function v. The connection between (V) and (W) is one of duality, in three related senses. First, there is a system of partial differential equations with variational structure for a vector-function $(\widetilde{v}, \widetilde{w})$ on the unit disc. Solving this system partially yields either $w(t):=\widetilde{w}(\exp(it))$, a solution of (W), or $v(t):=\widetilde{v}(\exp(it))$, a solution of (V). Second, the duality can be defined in terms of a Riemann-Hilbert problem on the unit circle (RH). Third, there is a direct relation between the variational principles for (V) and (W). Most significantly, there is a potential-theoretic problem corresponding to v. It is also a free-boundary problem for a (different) harmonic function $\widehat \psi$, and the free streamline does not coincide with the free streamline of $\psi$. The problems for $\psi$ and $\widehat \psi$ correspond only via duality. However v is a function of w, and vice versa.


  Une formulation duale des ondes de Stokes


Résumé. Le problème des ondes gravitationnelles à la surface d'un liquide bidimensionnel de profondeur infinie se ramène à une équation pour une fonction inconnue $w:{
\mathbb 
R}\rightarrow {
\mathbb 
R}$,qui est non locale, de type quasi-linéaire et qui admet une structure gradient. Dans ce travail, nous ne traiterons que des solutions périodiques. Nous introduisons une équation non locale pour une fonction périodique inconnue $v:{
\mathbb 
R}\rightarrow {
\mathbb 
R}$, qui est duale dans le sens suivant. On considère un certain système d'équations différentielles du second ordre pour deux fonctions inconnues $\widetilde{w}$ et $\widetilde{v}$ définies sur le disque unitaire. En le résolvant partiellement, on le réduit soit en une équation non locale pour $w(t):=\widetilde{w}(\exp(it))$,soit en une équation non locale pour $v(t):=\widetilde{v}(\exp(it))$.



 
next up previous
Next: About this document ...
Boris Buffoni
11/14/2000