
The ellipsoid method

We have learned that the Markowitz mean-variance optimization problem
is a convex programming problem. The good news is that there are effi-
cient methods to solve such convex programming problems and in particu-
lar quadratic programming problems in practice. In this lecture we briefly
sketch a theoretical result, which yields an approximate polynomial time
algorithm for convex programming problems.

Our goal is to solve a convex optimization problem

min f0(x)
fi(x) 6 bi, i = 1, . . . ,m.

We reduce the optimization problem to the decision problem as follows. We
are trying to find a β∗ ∈ R such that f0(x) 6 β∗, f1(x) 6 b1, . . . , fm(x) 6 bm

is feasible, while f0(x) 6 β∗ − ε, f1(x) 6 b1, . . . , fm(x) 6 bm is infeasible.
Suppose we know numbers L 6 β∗ − ε and U > β∗. We now test whether
f0(x) 6 (L + U)/2, f1(x) 6 b1, . . . , fm(x) 6 bm is feasible. If yes, we set
U = (L+U)/2 and if no, we set L = (L+U)/2. After O(log(U −L)− log(ε))
many steps, this procedure terminates. This approximates the optimum
value of the convex program.

This leaves us with the problem to decide whether a convex body is
nonempty or not. Let K ⊆ R

n be a compact convex set with volume vol(K).
Initially, the ellipsoid method can be used to determine a point x∗ ∈ K or to
assert that the volume of K is less than a certain lower bound L.

The unit ball is the set B = {x ∈ R
n | ‖x‖ 6 1} and an ellipsoid E(A, b) is

the image of the unit ball under a linear map t : R
n → R

n with t(x) = Ax+b,
where A ∈ R

n×n is an invertible matrix and b ∈ R
n is a vector. Clearly

E(A, b) = {x ∈ R
n | ‖A−1x − A−1b‖ 6 1}. (1.1)

Exercise 1. Consider the mapping t(x) =
(

1 3
2 5

)( x(1)
x(2)

)
. Draw the ellipsoid

which is defined by t. What are the axes of the ellipsoid?

The volume of the unit ball is denoted by Vn, where Vn ∼ 1
π n

(
2 e π

n

)n/2
.

It follows that the volume of the ellipsoid E(A, b) is equal to |det(A)| · Vn.
The next lemma is the key to the development of the ellipsoid method.
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Lemma 1 (Half-Ball Lemma). The half-ball H = {x ∈ R
n | ‖x‖ 6 1, x(1) >

0} is contained in the ellipsoid

E =

{
x ∈ R

n |
(

n + 1

n

)2 (
x(1) − 1

n + 1

)2

+
n2 − 1

n2

n∑

i=2

x(i)2 6 1

}
(1.2)

x(1) > 0

Figure 1.1: Half-ball lemma.

Proof. Let x be contained in the unit ball, i.e., ‖x‖ 6 1 and suppose further
that 0 6 x(1) holds. We need to show that

(
n + 1

n

)2 (
x(1) − 1

n + 1

)2

+
n2 − 1

n2

n∑

i=2

x(i)2 6 1 (1.3)

holds. Since
∑n

i=2 x(i)2 6 1 − x(1)2 holds we have

(
n + 1

n

)2 (
x(1) − 1

n + 1

)2

+
n2 − 1

n2

n∑

i=2

x(i)2

6

(
n + 1

n

)2 (
x(1) − 1

n + 1

)2

+
n2 − 1

n2
(1 − x(1)2)

(1.4)

This shows that (1.3) holds if x is contained in the half-ball and x(1) = 0 or
x(1) = 1. Now consider the right-hand-side of (1.4) as a function of x(1),
i.e., consider

f(x(1)) =

(
n + 1

n

)2 (
x(1) − 1

n + 1

)2

+
n2 − 1

n2
(1 − x(1)2). (1.5)
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The first derivative is

f ′(x(1)) = 2 ·
(

n + 1

n

)2 (
x(1) − 1

n + 1

)
− 2 · n2 − 1

n2
x(1). (1.6)

We have f ′(0) < 0 and since both f(0) = 1 and f(1) = 1, we have f(x(1)) 6

1 for all 0 6 x(1) 6 1 and the assertion follows.

In terms of a matrix A and a vector b, the ellipsoid E is described as
E = {x ∈ R

n | ‖A−1x − A−1b‖ 6 1}, where A is the diagonal matrix with
diagonal entries

n

n + 1
,

√
n2

n2 − 1
, . . . ,

√
n2

n2 − 1

and b is the vector b = (1/(n + 1), 0, . . . , 0). Our ellipsoid E is thus the
image of the unit sphere under the linear transformation t(x) = Ax+b. The

determinant of A is thus n
n+1

(
n2

n2
−1

)(n−1)/2
. Using the inequality 1+x 6 ex

we see that this is bounded by

e−1/(n+1)e(n−1)/(2·(n2
−1)) = e

−
1

2(n+1) . (1.7)

We can conclude the following theorem.

Theorem 2. The half-ball {x ∈ R
n | x(1) > 0, ‖x‖ 6 1} is contained in an

ellipsoid E, whose volume is bounded by e
−

1
2(n+1) · Vn.

Recall the following notion from linear algebra. A symmetric matrix
A ∈ R

n×n is called positive definite if all its eigenvalues are positive. Recall
the following theorem.

Theorem 3. Let A ∈ R
n×n be a symmetric matrix. The following are equivalent.

i) A is positive definite.

ii) A = LT L, where L ∈ R
n×n is a uniquely determined upper triangular ma-

trix.

iii) xT Ax > 0 for each x ∈ R
n \ {0}.

iv) A = QT diag(λ1, . . . , λn)Q, where Q ∈ R
n×n is an orthogonal matrix and

λi ∈ R>0 for i = 1, . . . , n.

It is now convenient to switch to a different representation of an ellip-
soid. An ellipsoid E (A, a) is the set E (A, a) = {x ∈ R

n | (x − a)T A−1(x −
a) 6 1}, where A ∈ R

n×n is a symmetric positive definite matrix and a ∈ R
n

is a vector. Consider the half-ellipsoid E (A, a) ∩ (cT x 6 cT a).
Our goal is a similar lemma as the half-ball-lemma for ellipsoids. Geo-

metrically it is clear that each half-ellipsoid E (A, a) ∩ (cT x 6 cT a) must be
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contained in another ellipsoid E (A′, b′) with vol(E (A′, a′))/vol(E (A, a)) 6

e−1/(2n). More precisely this follows from the fact that the half-ellipsoid
is the image of the half-ball under a linear transformation. Therefore the
image of the ellipsoid E under the same transformation contains the half-
ellipsoid. Also, the volume-ratio of the two ellipsoids is invariant under a
linear transformation.

We now record the formula for the ellipsoid E
′(A′, a′). It is defined by

a′ = a − 1

n + 1
b (1.8)

A′ =
n2

n2 − 1

(
A − 2

n + 1
b bT

)
, (1.9)

where b is the vector b = Ac/
√

cT Ac. The proof of the correctness of this
formula can be found in [1].

Lemma 4 (Half-Ellipsoid-Theorem). The half-ellipsoid E (A, b)∩ (cT x 6 cT a)
is contained in the ellipsoid E

′(A′, a′) and one has vol(E ′)/vol(E ) 6 e−1/(2n).

The method

Suppose we know an ellipsoid Einit which contains K . The ellipsoid method
is described as follows. The input to the ellipsoid method is Einit and a pos-
itive number L. The mothod either

i) asserts that vol(K) < L or

ii) finds a point x∗ ∈ K .

Algorithm (Ellipsoid method exact version).

a) (Initialize): Set E (A, a) := Einit

b) If a ∈ K , then assert K 6= ∅ and stop

c) If vol(E ) < L, then assert that vol(K) < L.

d) Otherwise, compute an inequality cT x 6 β which is valid for K and
satisfies cT a > β and replace E (A, a) by E (A′, a) computed with for-
mula (1.8) and goto step b).

Theorem 5. The ellipsoid method computes a point in K or asserts that vol(K) <
L. The number of iterations is bounded by 2 · n ln(vol(Einit)/L).

Proof. After i iterations one has

vol(E )/vol(Einit) 6 e−
i

2n . (1.10)

Since we stop when vol(E ) < L, we stop at least after 2 · n ln(vol(Einit)/L)
iterations. This shows the claim.
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1.1 Linear programming

In this section we discuss how the ellipsoid method can solve a linear pro-
gram in polynomial time. This result was shown by Khachiyan [2] in 1979
and solved a longstanding open problem at that time.

Feasibility versus optimization

We first show that it is enough to have an algorithm for the feasibility problem
of linear inequalities.

Given A ∈ Z
m×n and b ∈ Z

m defining a polyhedron P = {x ∈
R

n : Ax 6 b}, compute a point x∗ ∈ P or assert that P is empty.

That this is enough is easily seen by linear programming duality. A
point x∗ ∈ R

n is an optimal solution of the linear program max{cT x : x ∈
R

n, Ax 6 b} if and only if there exists a y∗ ∈ R
m such that

(
x∗
y∗

)
is contained

in the polyhedron {
( x

y

)
∈ R

n+m : cT x = bT y, Ax 6 b, AT y = c, y > 0}.
Our goal is therefore to show that the ellipsoid method can solve the

feasibility problem in a polynomial number of iterations. More precisely,
we are showing the following theorem.

Theorem 6. Let Ax 6 b be an inequality system with A ∈ Z
m×n and b ∈ Z

m

and let U ∈ N be the largest absolute value of a coefficient of A and b. There exist
constants k1, k2 ∈ N such that the ellipsoid method requires O(nk1(log B)k2)
iterations to solve the feasibility problem for A and b.

Notice that this polynomial nk1(log B)k2 does not only depend on the
dimension n but also on the binary encoding length of the numbers describ-
ing A and b. But since the input length is lower bounded by Ω(n + log B)
this is polynomial in the input length and shows that the Ellipsoid method
is efficient in theory.

Bounded and full-dimensional polyhedra

We first analyze the Ellipsoid method under the assumption that P is full-
dimensional and bounded. Later we will see that this assumtion can be
made without loss of generality.

Lemma 7. Suppose that P = {x ∈ R
n | Ax 6 b} is full-dimensional and

bounded with A ∈ Z
m×n and b ∈ Z

m. Let B be the largest absolute value of a
component of A and b.

i) The vertices of P are in the box {x ∈ R
n | −nn/2Bn 6 x 6 nn/2Bn}. Thus

P is contained in the ball around 0 with radius nnBn .

ii) The volume of P is bounded from below by 1/(n · B)3n2
.
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Before we prove this theorem, we understand its consequences in terms
of number of iterations of the ellipsoid method. If we plug these values into
our analysis in Theorem 5. Our initial volume vol(Einit) is bounded by the
volume of the box with side-lengths 2(n · B)n. Thus

vol(Einit) 6 (2 · n · B)n
2
. (1.11)

We can set L to
L = 1/(n · B)3n2

. (1.12)

Clearly

vol(Einit)/L 6 (2 · n · B)4·n
2
. (1.13)

By Theorem 5 the ellipsoid method thus performs

O
(
2 · n · ln

(
(n · B)4·n

2
))

(1.14)

iterations. This is bounded by

O(n3 · ln(n · B)). (1.15)

Theorem 8. The ellipsoid method requires O(n3 · ln(n · B)) iterations to find a
feasible point in a bounded and full-dimensioinal polyhedron P = {x ∈ R

n : Ax 6

b}, where A ∈ Z
m×n, b ∈ Z

m and B is an upper bound on the coefficients of A
and b.

To prove lemma 7, we recall the following lemma that is proved in every
linear algebra course.

Lemma 9 (Inverse formula and Cramer’s rule). Let C ∈ R
n×n be a nonsin-

gular matrix. Then

C−1(j, i) = (−1)i+j det(Cij)/det(C),

where Cij is the matrix arising from C by the deletion of the i-th row and j-th
column. If d ∈ R

n is a vector then the j-th component of C−1d is given by

det(C̃)/det(C), where C̃ arises from C be replacing the j-th column with d.

We recall the Hadamard inequality which states that for A ∈ R
n×n one

has

|det(A)| 6

n∏

i=1

‖ai‖, (1.16)

where ai denotes the i-th column of A. In particular, if B is the largest
absolute value of an entry in A, then

|det(A)| 6 nn/2Bn. (1.17)
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Now let us inspect the vertices of a polyhedron P = {x ∈ R
n : Ax 6 b},

where A and b are integral and the largest absolute value of any entry in A
and b is bounded by B. A vertex is determined as the unique solution of
a linear system A′x = b′, where A′x 6 b′ is a subsystem of Ax 6 b and A′

is invertible. Using Cramer’s rule and our observation (1.17) we see that
the vertices of P lie in the box {x ∈ Rn | −nn/2Bn 6 x 6 nn/2Bn}. This
shows i).

Now let us consider a lower bound on the volume of P . Since P is full-
dimensional, there exist n + 1 affinely independent vertices v0, . . . , vn of P
which span a simplex in R

n. The volume of this simplex is determined by
the formula

1

n!
·
∣∣∣∣det

(
1 · · · 1
v0 . . . vn

)∣∣∣∣ . (1.18)

By Cramer’s rule and the Hadamard inequality, the common denominator
of each component of vi can be bounded by nn/2Bn. Thus (1.18) is bounded
by

1/
(
nn(n

n

2 · Bn)n+1
)

> 1/
(
n3n2

B2n2
)

> 1/(n · B)3·n
2
, (1.19)

which shows ii).

The boundedness and full-dimensionality condition

In this section we want to show how the ellipsoid method can be used to
solve the following problem.

Given a matrix A ∈ Z
m×n and a vector b ∈ Z

m, determine a
feasible point x∗ in the polyhedron P = {x ∈ R

n | Ax 6 b} or
assert that P = ∅.

Boundedness

Consider the polyhedron P = {x ∈ R
n : Ax 6 b}, and suppose that A′

is a maximal sub-matrix of A consisting of linearly independent columns.
Clearly P = {x ∈ R

n : Ax 6 b} is nonempty, if and only if P ′ = {x ∈
R

n : A′x 6 b} is nonempty and for each x∗ ∈ P ′ one has that (x∗, 0) ∈ P .
Therefore, we can assume that the matrix A is of full-column rank.

If P is not empty, then P does have at least one vertex. The vertices
are contained in the box {x ∈ R

n | −nn/2Bn 6 x 6 nn/2Bn}. Therefore,
we can append the inequalities −nn/2Bn 6 x 6 nn/2Bn to Ax 6 b without
changing the status of P 6= ∅ or P = ∅. Notice that the binary encoding length
of the new inequalities is polynomial in the binary encoding length of the
old inequalities.
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Full-dimensionality

Exercise 2. Let P = {x ∈ R
n | Ax 6 b} be a polyhedron and ε > 0 be a real

number. Show that Pε = {x ∈ R
n | Ax 6 b + ε · 1} is full-dimensional if

P 6= ∅.

The above exercise raises the following question. Is there an ε > 0 such
that Pε = ∅ if and only if P = ∅ and furthermore is the binary encoding
length of this ε polynomial in the binary encoding length of A and b ?

Recall Farkas’ Lemma.

Theorem 10. The system Ax 6 b does not have a solution if and only if there
exists a nonnegative vector λ ∈ R

m
>0 such that λT A = 0 and λT b = −1.

Let A ∈ Z
m×n and b ∈ Z

m and let B be the largest absolute value of a
coefficient of A and b. If Ax 6 b is not feasible, then there exists a λ > 0
such that λT (A|b) = (0|1). We want to estimate the largest absolute value
of a coefficient of λ with Cramer’s rule and the Hadamard inequality. We
can choose λ such that the nonzero coefficients of λ are the unique solution
of a system of equations Cx = d, where each coefficient has absolute value
at most B. By Cramer’s rule and the Hadamard inequality we can thus
choose λ such that |λ(i)| 6 (n · B)n. Now let ε = 1/ ((n + 1) · (n · B)n).
Then |λT

1 · ε| < 1 and thus

λT (b + ε · 1) < 0. (1.20)

Consequently the system Ax 6 b + ε1 is infeasible if and only of Ax 6 b is
infeasible. Notice again that the encoding length of ε is polynomial in the
encoding length of Ax 6 b and we conclude with the main theorem of this
section.

Theorem 11. The ellipsoid method can be used to decide whether a system of
inequalities Ax 6 b contains a feasible point, where A ∈ Z

m×n and b ∈ Z
m. The

number of iterations is bounded by a polynomial in n and log B, where B is the
largest absolute value of a coefficient of A and b.

Solving linear programs

It finally follows from linear programming duality that the ellipsoid method
can be used to solve a linear program of the form

max{cT x : Ax 6 b, x ∈ R
n}

by finding a feasible point in the polyhedron

{(x, y) : x ∈ R
n, y ∈ R

m, Ax 6 b, AT y = c, cT x = bT y}
The number of iterations is polynomial.

Theorem 12. A linear program max{cT x : Ax 6 b} can be solved in polynomial
time in its binary encoding length.
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Warning

This short writeup serves only as a rough sketch of the ellipsoid method.
We did not care about an important issue. The representation of the num-
bers in the intermediate steps of the algorithm (notice the square root in
(1.8)) can be very large and need to be rounded to rational numbers with a
polynomial encoding length. The details are not very difficult but tedious.
They are very nicely described in the book [1].
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