A Generalized Canonical Bundle Formula

Stefano Filipazzi

Background: The canonical bundle formula

Main Result

The essence of the outcome of the canonical bundle formula is captured by the notion of generalized pairs [BZ16]. These are key tools in recent advances in birational geometry.

Definition. A generalized pair is the datum of a normal variety Z, a birational morphism $Z^{\prime} \xrightarrow{\psi} Z$, where Z^{\prime} is normal, a \mathbb{Q}-boundary B_{Z}, and a \mathbb{Q}-Cartier divisor $M_{Z^{\prime}}$ on Z^{\prime} which is nef and such that $K_{Z}+B_{Z}+M_{Z}$ is \mathbb{Q}-Cartier, where $M_{Z}:=\psi_{*} M_{Z^{\prime}}$. We call B_{Z} the boundary part and M_{Z} the nef part.

Consider a generalized log canonical pair $(X, B+M)$ and a fibration with connected fibers $f: X \rightarrow Z$. Assume that we have $K_{X}+B+M \sim_{\mathbb{Q}, f} 0$. For $\psi: Z^{\prime} \rightarrow Z$ birational, we consider

| $\left(X^{\prime}, B^{\prime}+M^{\prime}\right)$ | ϕ |
| ---: | :--- | ---: |
| $\left.\left\lvert\, \begin{array}{lll} \\ g & & \\ Z^{\prime} & \psi & \\ & & Z\end{array}\right.\right)$ | |

(1) we can assume that X^{\prime} is a model where the nef divisor $M_{X^{\prime}}$ descends, and f and g are birationally equivalent;
(2) $K_{X}+B+M \sim_{\mathbb{Q}} f^{*}\left(K_{Z}+B_{Z}+M_{Z}\right)$, where B_{Z} measures the singularities of the fibers of f;
(3) $K_{X^{\prime}}+B^{\prime}+M^{\prime} \sim_{\mathbb{Q}} g^{*}\left(K_{Z^{\prime}}+B_{Z^{\prime}}+M_{Z^{\prime}}\right), B_{Z^{\prime}}$ measures the singularities of the fibers of $g, M_{Z}=\psi_{*} M_{Z^{\prime}}$ and $B_{Z}=\psi_{*} B_{Z^{\prime}}$.

Theorem 2 ([Fil18, Theorem 1.4]). In the above setup, if Z^{\prime} is high enough, we have:

- $M_{Z^{\prime}}$ is nef;
\bullet if $\rho: Z^{\prime \prime} \rightarrow Z^{\prime}$ is birational, then $M_{Z^{\prime \prime}}=\rho^{*} M_{Z^{\prime}}$
In particular, $\left(Z, B_{Z}+M_{Z}\right)$ is a generalized pair with the same class of singularities of $(X, B+M)$.

The main tools in the proof are weak semi-stable reduction and the MMP.

We obtain generalized adjunction and inversion of adjunction applying the generalized canonical bundle formula to the extraction of a generalized log canonical place:

Theorem 3 ([Fil18, Theorem 1.5, Theorem 1.6]). Let $(X, B+M)$ be a generalized pair, and W be a generalized \log canonical center. Then, the following holds:

- there is a naturally induced generalized pair $\left(W^{\nu}, B_{W^{\nu}}+M_{W^{\nu}}\right.$ on the normalization W^{ν} of W;
- $(X, B+M)$ is generalized \log canonical in a neighborhood of W if and only if $\left(W^{\nu}, B_{W^{\nu}}+M_{W^{\nu}}\right)$ is generalized \log canonical.

We make progress towards Conjecture 1.
Corollary 4 ([Fil18, cf. Theorem 7.6]). Parts 1 and 2 of Conjec-
ture 1 can be reduced to the following cases:

- $f: X \rightarrow Z$ is a K_{X}-Mori fiber space; or
- $K_{X_{\eta}} \sim_{\mathbb{Q}} 0$ and $\Delta^{h}=0$.

If $\operatorname{dim} X-\operatorname{dim} Z=2$, combining Corollary 4 together with results of Fujino [Fuj03], we have the following:

Corollary 5 ([Fil18, cf. Theorem 1.7]). Part 1 of Conjecture 1 holds true if $\operatorname{dim} X-\operatorname{dim} Z=2$ and $X_{\bar{\eta}}$ is not \mathbb{P}^{2}. Furthermore, if $X_{\bar{\eta}}$ is smooth, minimal (in the sense of smooth surfaces) and not rational, all of Conjecture 1 holds true.

References

BZ16] C. Birkar and D-Q. Zhang. "Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs". In: Publications mathématiques de l'IHÉS 123.2 (2016), pp. 283-331
[Fi118] S. Filipazzi. "On a generalized canonical bundle formula and generalized adjunction". In: (2018). arXiv: 1807.04847 v 1 [math. AG]
[Fuj03] O. Fujino. "A canonical bundle formula for certain algebraic fiber spaces and its applications". In: Nagoya Mathematical Journal 172 (2003), pp. 129 171.
[PS09] Yu. G. Prokhorov and V. V. Shokurov. "Towards the second main theorem of complements". In: Journal of Algebraic Geometry 18.1 (2009), pp. 151-199.

