A Generalized Canonical Bundle Formula

Stefano Filipazzi

Background: The canonical bundle formula

Given a relatively minimal elliptic surface $f: S \to C$, one can write $K_S \sim_{\mathbb{Q}} f^*(K_C + B_C + M_C)$, where:

- B_C measures the singularities of the fibers, and is supported on the image of the singular fibers;
- $M_C = \frac{1}{12} j^* \mathcal{O}_{\mathbb{P}^1}(1)$, where $j : C \to \mathbb{P}^1$ measures the variation of the *j*-invariant of the smooth fibers.

Consider a log canonical pair (X, Δ) and a fibration $f : X \to Z$ with $f_*\mathcal{O}_X = \mathcal{O}_Z$ and $K_X + \Delta \sim_{\mathbb{O},f} 0$. Conjecturally, we have

(1) $K_{X'} + \Delta' = \phi^*(K_X + \Delta)$, and g is birationally equivalent to f; (2) $K_X + \Delta \sim_{\mathbb{Q}} f^*(K_Z + B_Z + M_Z), K_{X'} + \Delta' \sim_{\mathbb{Q}} g^*(K_{Z'} + B_{Z'} + M_{Z'}),$ where $B_Z = \psi_* B_{Z'}$ and $B_{Z'}$ measure the singularities of the fibers; (3) β resolves α , $M_Z = \psi_* M_{Z'}$, and $M_{Z'} = \beta^*$ (ample Q-divisor).

Properties (1) and (2) are known. In general, we do not know how to construct the moduli space \mathcal{M} . Using Hodge theory, we get an

(3') if Z' is "nice", $M_{Z'}$ is nef, and $M_Z = \psi_* M_{Z'}$.

Prokhorov and Shokurov formulated the following conjecture, which is known just if dim $X - \dim Z = 1$ [PS09].

Conjecture 1. Fix the above setup and notation. Then:

• $M_{Z'}$ is semi-ample;

approximation of (3):

- there exists an integer C_1 depending only on dim X and coeff (Δ^h) such that $C_1 M_{Z'}$ is basepoint-free; and
- there exist an integer C_2 depending only on dim X_n and coeff (Δ^h) such that $C_2(K_{X_n} + \Delta_\eta) \sim 0$.

The essence of the outcome of the **canonical bundle formula** is captured by the notion of **generalized pairs** [BZ16]. These are **key** tools in recent advances in birational geometry.

Definition. A generalized pair is the datum of a normal variety Z, a birational morphism $Z' \xrightarrow{\psi} Z$, where Z' is normal, a Q-boundary B_Z , and a Q-Cartier divisor $M_{Z'}$ on Z' which is nef and such that $K_Z + B_Z + M_Z$ is Q-Cartier, where $M_Z \coloneqq \psi_* M_{Z'}$. We call B_Z the boundary part and M_Z the nef part.

Consider a generalized log canonical pair (X, B + M) and a fibration with connected fibers $f: X \to Z$. Assume that we have $K_X + B + M \sim_{\mathbb{Q},f} 0$. For $\psi: Z' \to Z$ birational, we consider

- (1) we can assume that X' is a model where the nef divisor $M_{X'}$ descends, and f and g are birationally equivalent;
- (2) $K_X + B + M \sim_{\mathbb{O}} f^*(K_Z + B_Z + M_Z)$, where B_Z measures the singularities of the fibers of f;
- (3) $K_{X'} + B' + M' \sim_{\mathbb{Q}} g^*(K_{Z'} + B_{Z'} + M_{Z'}), B_{Z'}$ measures the singularities of the fibers of q, $M_Z = \psi_* M_{Z'}$ and $B_Z = \psi_* B_{Z'}$.

Theorem 2 ([Fil18, Theorem 1.4]). In the above setup, if Z' is high enough, we have:

- $M_{Z'}$ is nef;
- if $\rho: Z'' \to Z'$ is birational, then $M_{Z''} = \rho^* M_{Z'}$.

In particular, $(Z, B_Z + M_Z)$ is a generalized pair with the same class of singularities of (X, B + M).

The main tools in the proof are weak semi-stable reduction and the **MMP**.

Main Result

$$X, B + M)$$
 $\downarrow f$
 $\longrightarrow Z$

We obtain generalized adjunction and inversion of adjunction applying the generalized canonical bundle formula to the extraction of a generalized log canonical place:

Theorem 3 ([Fil18, Theorem 1.5, Theorem 1.6]). Let (X, B+M)be a generalized pair, and W be a generalized log canonical center. Then, the following holds:

- on the normalization W^{ν} of W;

We make progress towards Conjecture 1.

Corollary 4 ([Fil18, cf. Theorem 7.6]). Parts 1 and 2 of Conjecture 1 can be reduced to the following cases:

• $f: X \to Z$ is a K_X -Mori fiber space; or • $K_{X_n} \sim_{\mathbb{Q}} 0$ and $\Delta^h = 0$.

If dim $X - \dim Z = 2$, combining Corollary 4 together with results of Fujino [Fuj03], we have the following:

Corollary 5 ([Fil18, cf. Theorem 1.7]). Part 1 of Conjecture 1 holds true if dim $X - \dim Z = 2$ and $X_{\overline{\eta}}$ is not \mathbb{P}^2 . Furthermore, if $X_{\overline{\eta}}$ is smooth, minimal (in the sense of smooth surfaces) and not rational, all of Conjecture 1 holds true.

- *de l'IHÉS* 123.2 (2016), pp. 283–331.
- 171
- pp. 151–199.

THE UNIVERSITY OF UTAH®

Applications

• there is a naturally induced generalized pair $(W^{\nu}, B_{W^{\nu}} + M_{W^{\nu}})$

• (X, B + M) is generalized log canonical in a neighborhood of W if and only if $(W^{\nu}, B_{W^{\nu}} + M_{W^{\nu}})$ is generalized log canonical.

References

[BZ16] C. Birkar and D-Q. Zhang. "Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs". In: Publications mathématiques

[Fil18] S. Filipazzi. "On a generalized canonical bundle formula and generalized adjunction". In: (2018). arXiv: 1807.04847v1 [math.AG].

[Fuj03] O. Fujino. "A canonical bundle formula for certain algebraic fiber spaces and its applications". In: Nagoya Mathematical Journal 172 (2003), pp. 129–

[PS09] Yu. G. Prokhorov and V. V. Shokurov. "Towards the second main theorem of complements". In: Journal of Algebraic Geometry 18.1 (2009),