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Notation 0.1. Let C be a small category, and let A,B ∈ ObC. In these notes, the
set of morphisms from A to B is denoted C(A,B). The identity morphisms on an
object A will often be denoted A as well.

1. The classical cobar construction

Notation 1.1. Let R denote a fixed commutative ring. Unless stated otherwise, ⊗
denotes (perhaps graded) tensor product over R.

• M, C and A are the categories of graded modules, of coaugmented chain
coalgebras and of augmented chain algebras over R.
• T is the free augmented algebra functor on graded R-modules:

TV := R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · ,

where multiplication is given by concatenation. Simplifying notation some-
what, an element of TV coming from the summand V ⊗n is denoted v1 · · · vn,
where vi ∈ V for all i. Note that for all A ∈ A,

A(TV,A) ∼= M(V,UA),

where U : A→M is the forgetful functor.
• Let C be a chain coalgebra with coaugmentation η : R → C. The coaug-

mentation coideal of C is then

C = coker(η : R→ C).

• Given a graded R-module V , its desuspension s−1V is the graded R-module
defined by (s−1V )n = Vn+1 for all n. The element of s−1V corresponding
to v ∈ V is denoted s−1v.
• Given a coaugmented chain coalgebra C with comultiplication ∆, its reduced

comultiplication ∆ is the composite

C
∆−→ C ⊗ C q⊗q−−→ C ⊗ C,

where q is the quotient map.

1.1. Definition of the classical cobar construction.

Definition 1.2. The cobar construction functor Ω : C→ A is defined as follows.

• ΩC :=
(
T (s−1C), dΩ

)
for all C ∈ ObC, where dΩ is the derivation specified

by

dΩs
−1 = −s−1d+ (s−1 ⊗ s−1)∆,

where d and ∆ are the differential and comultiplication on C, i.e.,

dΩ(s−1c) = −s−1(dc) + (−1)deg cis−1cis
−1ci,

where ∆(c) = ci ⊗ ci (using Einstein notation for sums).
• f ∈ C(C,C ′) induces Ωf : ΩC → ΩC ′, specified by Ωf(s−1c) = s−1f(c).

Remark 1.3. Ωf is indeed a differential map, since fd = d′f and (f ⊗ f)∆ = ∆′f .
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1.2. Twisting cochains.

Definition 1.4. Let (C, d) be a chain coalgebra with comultiplication ∆, and let
(A, d) be a chain algebra with product µ. A twisting cochain from (C, d) to (A, d)
is a degree −1 map t : C → A of graded modules such that

dt+ td = µ(t⊗ t)∆.

Example 1.5. The universal example:

tΩ : C → ΩC : c 7→ s−1c.

Example 1.6. In 1961, Szczarba defined a natural twisting cochain

sz : C∗K → C∗GK,

where

• K is a reduced simplicial set;
• GK is the the Kan loop group on K (the simplicial analogue of the based

loop space functor);
• C∗(−) is the normalized chains functor.

Proposition 1.7. Let C be a chain coalgebra, and let A be a chain algebra. There
is a functorial, bijective correspondance

{twisting cochains t : C → A} ←→ A(ΩC,A)

where

• t : C → A gives rise to θt : ΩC → A determined by θt(s−1c) = t(c);

• θ : ΩC → A gives rise to tθ : C → A, given by the composite

C
tΩ−→ ΩC θ−→ A.

Example 1.8. The universal example: Recall tΩ : C → ΩC : c 7→ s−1c.
Observe that

θtΩ = Id : ΩC → ΩC,

i.e.,
tId = tΩ : C → ΩC.

Furthermore, tΩ truly is universal: for all twisting cochains t : C → A,

C
tΩ //

t !!CC
CC

CC
CC

ΩC

θ

��
A

commutes if and only if θ = θt.

Example 1.9. Szczarba’s twisting cochain: Szczarba proved that his twisting cochain
induced a quasi-isomorphism of chain algebras

Sz = θsz : ΩC∗K
'−→ C∗GK.
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Definition 1.10. Let t : C → A be a twisting cochain. Let N be a left C-
comodule, with coaction λ : N → C ⊗ N , and let M be a right A-module, with
action ρ : M ⊗A→M . The twisted extension of M by N is

(M,d) ↪→ (M,d)⊗t (N, d) = (M ⊗N,Dt) � (N, d),

where
Dt = d⊗N +M ⊗ d+ (ρ⊗N)(M ⊗ t⊗N)(M ⊗ λ).

Similarly, given a right coaction ρ : N → N⊗C and a left action λ : A⊗M →M ,
there is a twisted extension

(M,d) ↪→ (N, d)⊗t (M,d) = (N ⊗M,Dt) � (N, d),

where
Dt = d⊗M +N ⊗ d+ (N ⊗ λ)(N ⊗ t⊗M)(ρ⊗N).

Remark 1.11. The twisted tensor product (M,d)⊗t (N, d) is a left A-module if M
is an A-bimodule and is a right C-comodule if N is a C-bicomodule. In particular,
(A, d)⊗t (C, d) is a left A-module and a right C-comodule.

Example 1.12. The universal example again: (ΩC, dΩ)⊗tΩ (C, d) is the usual acyclic
cobar construction. We expand on this example in the next subsection.

1.3. The cobar construction and the cotensor product.

Definition 1.13. Let C ∈ ObC, and let (N, ρ) and (N ′, λ) be a right and a left
differential C-comodule, respectively. The cotensor product of N and N ′ over C,
denoted N�

C
N ′ is the equalizer of

N ⊗N ′
ρ⊗N ′

⇒
N⊗λ

N ⊗ C ⊗N ′,

i.e.,
N�
C
N ′ = ker(ρ⊗N ′ −N ⊗ λ).

Exercise 1.14. If the underlying graded R-module of (N, ρ) is a cofree right C-
comodule, i.e., N = X ⊗ C and ρ = X ⊗ ∆, and (N ′, λ) is any left C-comodule,
then N�

C
N ′ ∼= X ⊗N ′, as graded R-modules.

Exercise 1.15. Consider R endowed with the trivial left C-comodule structure.
Then for any right C-comodule (N, ρ),

N�
C
I = {x ∈ N | ρ(x) = x⊗ 1},

i.e., N�
C
I consists of the “fixed points” of the coaction ρ.

Exercise 1.16. The cotensor product is not homotopy invariant. For example, there
are quasi-isomorphisms

R
'−→ ΩC ⊗tΩ C and R

'−→ C ⊗tΩ ΩC

of right and left C-comodules, respectively, but

R�
C
R ∼= R,

while
(ΩC ⊗tΩ C)�

C
(C ⊗tΩ ΩC) ∼= ΩC ⊗tΩ C ⊗tΩ ΩC ' ΩC,

which is usually not acyclic!
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Definition 1.17. Let C ∈ ObC with comultiplication ∆, and let (N, ρ) and (N ′, λ)
be a right and a left differential C-comodule, respectively. The homotopy cotensor
product of N and N ′ over C, denoted N�̂

C
N ′ is the equalizer of

(N⊗tΩΩC⊗tΩC)⊗(C⊗tΩΩC⊗tΩN ′)
ρ̂⊗Id
⇒
Id⊗λ̂

(N⊗tΩΩC⊗tΩC)⊗C⊗(C⊗tΩΩC⊗tΩN ′),

where ρ̂ = N ⊗ ΩC ⊗∆ and λ̂ = ∆⊗ ΩC ⊗N ′.

Exercise 1.18. There is a natural quasi-isomorphism of chain complexes

N�̂
C
N ′ '−→ N ⊗tΩ ΩC ⊗tΩ N ′.

Notation 1.19. CotorC∗ (N,N ′) := H∗(N�̂
C
N ′).

Proposition 1.20. The homotopy cotensor product is homotopy invariant, up to
homotopy, i.e., given quasi-isomorphisms f : N '−→ P and f ′ : N ′ '−→ P ′ of right
and left C-comodules with R-free underlying graded modules, respectively, there is
an induced quasi-isomorphism of chain complexes

f�̂
C
f ′ : N�̂

C
N ′ '−→ P �̂

C
P ′.

In particular, CotorC∗ (N,N ′) ∼= CotorC∗ (P, P ′).

Proof. The quasi-isomorphisms f and f ′ induce a quasi-isomorphism

f ⊗ ΩC ⊗ f ′ : N ⊗tΩ ΩC ⊗tΩ N ′ '−→ P ⊗tΩ ΩC ⊗tΩ P ′.
(Spectral sequence argument.) �

1.4. The Milgram equivalence.

Definition 1.21. Let t : C → A and t′ : C ′ → A′ be twisting cochains. Consider

C
ε−→ R

η−→ A and C ′
ε′−→ R

η′−→ A′.

The convolution of t and t′ is the twisting cochain

t ∗ t′ := t⊗ η′ε′ + ηε⊗ t′ : C ⊗ C ′ → A⊗A′.

Exercise 1.22. t ∗ t′ really is a twisting cochain.

Notation 1.23. If θ : ΩC → A and θ′ : ΩC ′ → A′ are the chain algebra maps
induced by twisting cochains t and t′, then

θ ∗ θ′ : Ω(C ⊗ C ′)→ A⊗A′

is the chain algebra map induced by t ∗ t′.

Definition 1.24. Let C,C ′ ∈ ObC. Consider the convolution

tΩ ∗ tΩ : C ⊗ C ′ → ΩC ⊗ ΩC ′.

The associated chain algebra map

q := Id ∗ Id : Ω(C ⊗ C ′)→ ΩC ⊗ ΩC ′

is the Milgram map, which is the (C,C ′)-component of a natural transformation

q : Ω(−⊗−)→ Ω(−)⊗ Ω(−)

of functors from C×C to A.
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Milgram’s classical result...

Theorem 1.25 (Milgram). If C and C ′ are connected (C0 = R = C ′0) chain coal-
gebras, then the Milgram map q : Ω(C ⊗C ′)→ ΩC ⊗ΩC ′ is a quasi-isomorphism.

An even stronger and more general result can be be proved in terms of strong
deformation retracts, important because of their role in homological perturbation
theory.

Definition 1.26. Suppose that ∇ : (X, ∂) → (Y, d) and f : (Y, d) → (X, ∂) are
morphisms of chain complexes. If f∇ = 1X and there exists a chain homotopy
ϕ : (Y, d)→ (Y, d) such that

(1) dϕ+ ϕd = ∇f − 1Y ,
(2) ϕ∇ = 0,
(3) fϕ = 0, and
(4) ϕ2 = 0,

then (X, d)
∇


f

(Y, d) 	 ϕ is a strong deformation retract (SDR) of chain complexes.

It is easy to show that given a chain homotopy ϕ′ satisfying condition (1), there
exists a chain homotopy ϕ satisfying all four conditions:

ϕ = (∇f − Y )ϕ′(∇f − Y )d(∇f − Y )ϕ′(∇f − Y ).

Theorem 1.27 (H.-Parent-Scott). If C and C ′ are coaugmented, then there is a
strong deformation retract of chain complexes

ΩC ⊗ ΩC ′
σ


q

Ω(C ⊗ C ′) 	 ϕ.

In particular, if C and C ′ are coaugmented, then q is a quasi-isomorphism.

1.5. The category DCSH.

Question 1.28. As seen above, f ∈ C(C,C ′) always induces Ωf ∈ A(ΩC,ΩC ′).
There are, however, many morphisms ϕ ∈ A(ΩC,ΩC ′) such that ϕ 6= Ωf for all
f ∈ C(C,C ′). What is the significance of these maps?

Definition 1.29. Let DCSH denote the category with
• ObDCSH = ObC, and

• DCSH(C,C ′) := A(ΩC,ΩC ′).
Morphisms in DCSH are strongly homotopy-comultiplicative maps.

(First introduced by Gugenheim and Munkholm, when they were studying ex-
tended naturality of Cotor.)

Remark 1.30. Unraveling the definition of the cobar construction, we see that

ϕ ∈ DCSH(C,C ′)⇐⇒ F(ϕ) := {ϕk : C → (C ′)⊗k}k≥1,

where ϕk is homogeneous of degree k − 1 and (up to signs)

d(C′)⊗kϕk±ϕkdC =
∑
i+j=k

±(ϕi⊗ϕj)∆C +
∑

i+j=k−2

±
(
(C ′)⊗i⊗∆C′ ⊗ (C ′)⊗j

)
ϕk−1.

In particular, ϕ1 : C → C ′ is a chain map, which is a coalgebra map up to chain
homotopy, given by ϕ2.
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Notation 1.31. Given ϕ ∈ DCSH(C,C ′) with corresponding family F(ϕ), the chain
map ϕ1 : C → C ′ is called a DCSH-map.

The essential topological reason for the importance of DCSH...

Theorem 1.32 (Gugenheim-Munkholm). Let K be a reduced simplicial set. The
natural comultiplication ∆K : C∗K → C∗K ⊗ C∗K is naturally a DCSH-map, i.e.,
there exists

ϕK ∈ A
(
ΩC∗K,Ω

(
C∗K ⊗ C∗K

))
,

natural in K, such that (ϕK)1 = ∆K .

Theorem 1.33. The composite chain algebra map

ΩC∗K
ϕK−−→ Ω(C∗K ⊗ C∗K)

q−→ ΩC∗K ⊗ ΩC∗K,

denoted ψK , endows ΩC∗K with a natural chain Hopf algebra structure.

Proof. Some fairly tough calculations to show that ψK is coassociative. �

Terminology 1.34. We call ψK the Alexander-Whitney diagonal.

Remark 1.35. It turns out that ψK is the same as a comultiplication map defined
purely combinatorially by Baues.

Question 1.36. Topological relevance of the Alexander-Whitney comultiplication?
To be answered in Lecture 3.

Theorem 1.32 follows from a more general result.

Definition 1.37. An SDR (X, d)
∇


f

(Y, d) 	 ϕ is called Eilenberg-Zilber (E-Z)

data if (Y, d,∆Y ) and (X, d,∆X) are chain coalgebras and ∇ is a morphism of
coalgebras.

Theorem 1.38 (Gugenheim-Munkholm). Let (X, d)
∇


f

(Y, d) 	 ϕ be E-Z data

such that Y is simply connected and X is connected. Let F1 = f . Given Fi for all
i < k, let

Fk = −
∑
i+j=k

(Fi ⊗ Fj)∆Y ϕ.

Similarly, let Φ1 = ϕ, and, given Φi for all i < k, let

Φk =
(
Φk−1 ⊗ 1Y +

∑
i+j=k

∇⊗iFi ⊗ Φj
)
∆Y ϕ.

Then

Ω(X, d)
Ω∇

eΩf Ω(Y, d) 	 Ω̃ϕ

is an SDR of chain algebras, where Ω̃f =
∑
k≥1(s

−1)⊗kFks and Ω̃ϕ =
∑
k≥1(s

−1)⊗kΦks.

To prove Theorem 1.32, we apply Theorem 1.38 to the Eilenberg-Zilber SDR,
described in the next example.
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Example 1.39. Let K and L be two simplicial sets. Define morphisms on their
normalized chain complexes

∇K,L : C(K)⊗ C(L)→ C(K × L) and fK,L : C(K × L)→ C(K)⊗ C(L)

by

∇K,L(x⊗ y) =
∑

(µ,ν)∈Sp,q

(−1)sgn(µ)(sνq
...sν1x, sµp

...sµ1y)

where Sp,q denotes the set of (p, q)-shuffles, sgn(µ) is the signature of µ and x ∈ Kp,
y ∈ Lq, and

fK,L((x, y)) =
n∑
i=0

∂i+1 · · · ∂nx⊗ ∂i0y

where (x, y) ∈ (K × L)n. We call ∇K,L the shuffle (or Eilenberg-Zilber) map and
fK,L the Alexander-Whitney map. There is a chain homotopy, ϕK,L, so that

C(K)⊗ C(L)
∇K,L



fK,L

C(K × L) 	 ϕK,L

is an SDR of chain complexes. Furthermore ∇K,L is a map of coalgebras, with re-
spect to the usual coproducts, which are defined in terms of the natural equivalence
fK,L.

2. An operadic approach to the cobar construction

2.1. Operads of chain complexes and their co-rings.

Notation 2.1. Ch is the category of chain complexes concentrated in non-negative
degrees over a commutative ring R, endowed with its usual (i.e., graded) tensor
product.

Definition 2.2. ChΣ is the category of symmetric sequences in Ch. An object X

of ChΣ is a family {X(n) ∈ Ch | n ≥ 0} of objects in Ch such that X(n) admits
a right action of the symmetric group Σn, for all n. The object X(n) is called the
nth level of the symmetric sequence X.

For all X,Y ∈ ChΣ, a morphism of symmetric sequences ϕ : X→ Y consists of a
family

{ϕn ∈ C
(
X(n),Y(n)

)
| ϕn is Σn-equivariant, n ≥ 0}.

More formally, ChΣ is the category of contravariant functors from the symmetric
groupoid Σ to C, where ObΣ = N, the set of natural numbers, and Σ(m,n) is
empty if m 6= n, while Σ(n, n) = Σn.

Definition 2.3. The tensor embedding of Ch into ChΣ

(2.1) T : Ch→ ChΣ

is defined by T(A)(n) = A⊗n for all n. The right action of Σn on T(A)(n) = A⊗n

is given by permutation of the factors, using iterates of the natural symmetry
isomorphism

τ : A⊗A
∼=−→ A⊗A : a⊗ a′ 7→ (−1)deg a deg a′a′ ⊗ a

in Ch.
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Definition 2.4. The level tensor product of two symmetric sequences X and Y is
the symmetric sequence given by

(X⊗ Y)(n) = X(n)⊗ Y(n) (n ≥ 0),

endowed with the diagonal action of Σn.

Proposition 2.5. Let C = {C(n)}n≥0 be the symmetric sequence with C(n) = R

and trivial Σn-action, for all n ≥ 0. Then (ChΣ,⊗,C) is a closed symmetric
monoidal category, called the level monoidal structure on ChΣ.

Terminology 2.6. A (co)monoid in ChΣ with respect to the level monoidal struc-
ture, i.e., a symmetric sequence X endowed with a coassociative comultiplication
X → X ⊗ X that is counital with respect to a morphism X → C, is called a level
(co)monoid.

Remark 2.7. The functor T is strong monoidal, i.e., for all C,C ∈ ObC, there is
a natural isomorphism T(C ⊗ C ′) ∼= T(C) ⊗ T(C ′), again given in each level by
iterated application of the natural symmetry isomorphism in C.

Definition 2.8. The composition tensor product of two symmetric sequences X

and Y is the symmetric sequence X � Y given by

(X � Y)(n) =
∐
k≥1
~n∈Ik,n

X(k) ⊗
Σk

(
Y(n1)⊗ · · · ⊗ Y(nk)

)
⊗
Σ~n

R[Σn],

where Ik,n = {~ı = (n1, ..., nk) ∈ Nk |
∑
j nj = n} and Σ~n = Σn1 × · · · × Σnk

,
seen as a subgroup of Σn. The left action of Σk on

∐
~n∈Ik,n

Y(n1) ⊗ · · · ⊗ Y(nk)
is given by permutation of the factors, using the natural symmetry isomorphism
A⊗B ∼= B ⊗A in Ch.

Proposition 2.9. Let J denote the symmetric sequence with J(1) = R and J(n) =
0 otherwise, with trivial Σn-action. Then (ChΣ, �, J) is a right-closed monoidal
category, called the composition monoidal structure on ChΣ.

Remark 2.10. For any objects X,X′,Y,Y′ in ChΣ, there is an obvious, natural
intertwining map

i : (X⊗ X′) � (Y⊗ Y′) // (X � Y)⊗ (X′ � Y′) .

Definition 2.11. An operad of chain complexes is a monoid in ChΣ with respect
to the composition product, i.e., a triple (P, γ, η), where γ : P�P→ P and η : J→ P

are morphisms in CΣ, and γ is appropriately associative and unital with respect
to η. A morphism of operads is a monoid morphism in the category of symmetric
sequences.

Example 2.12. The most important example of an operad for these lectures is the
associative operad A, given by A(n) = R[Σn] for all n, endowed with the obvious
multiplication map, induced by permutation of blocks.

Definition 2.13. A P-coalgebra is an object A of Ch along with a sequence of
structure morphisms

θn : A⊗ P(n)→ A⊗n, n ≥ 0
that are appropriately associative, equivariant, and unital.
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A morphism of P-coalgebras is a morphism in Ch that commutes with the coal-
gebra structure maps. The category of P-coalgebras and their morphisms is denoted
P-Coalg.

Remark 2.14. A-Coalg is the category of coassociative chain coalgebras. The
category C of coaugmented, coassociative coalgebras of Lecture 1 is then exactly
the undercategory (or coslice category) R ↓ A-Coalg.

Definition 2.15. Let P be an operad of chain complexes. A right (resp. left)
P-module is a symmetric sequence M endowed with an action ρ : M�P→M (resp.
λ : P �M→M). If M is endowed with right and left P-actions that commute with
each other, then it is a P-bimodule.

Notation 2.16. ModP is the category of right P-modules and of morphisms of
symmetric sequences between them, which respect the P-action.

Proposition 2.17. The tensor embedding restricts to

T : P-Coalg //ModP

from the category of P-coalgebras to the category of right P-modules, i.e, P-coalgebra
structure on an object C in Ch induces a right P-action map on T(C) in ChΣ.

Remark 2.18. Given a right P-module M and a left P-module N, define M �
P

N to

be the coequalizer (calculated in ChΣ) of

M � P �N
ρM�N
⇒

M�λN

M �N.

Since − � X admits a right adjoint for all X, it commutes with all colimits. As a
consequence, if N is actually a P-bimodule, then M �

P
N inherits a right P-action

from the right P-action on N.

Definition 2.19. A P-co-ring consists of an P-bimodule M together with mor-
phisms of P-bimodules

ψ : M→M �
P

M and ε : M→ P

such that ψ is coassociative and counital with respect to ε.

Definition 2.20. Let P be an operad of chain complexes, and let M be a P-co-ring,
with comultiplication ψ and counit ε. Let (P,M)-Coalg be category with

• Ob(P,M)-Coalg = ObP-Coalg, and
•

(2.2) (P,M)-Coalg(C,C ′) := ModP

(
T(C) �

P
M,T(C ′)

)
,

for all C,C ′ ∈ Ob(P,M)-Coalg.
Let ϕ : T(C) �

P
M → T(C ′) and ϕ′ : T(C ′) �

P
M → T(C ′′) be morphisms of strict

right P-modules, seen as morphisms in (P,M)-Coalg from C to C ′ and from C ′

to C ′′, respectively. Their composite in (P,M)-Coalg is defined to be equal to the
following composite in ModP.

T(C) �
P

M
T(C)�

P
ψ

−−−−−→ T(C) �
P

M �
P

M
ϕ�

P
M

−−−→ T(C ′) �
P

M
ϕ′−→ T(C ′)
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The identity morphism in (P,M)-Coalg on an object C is the following morphism
in ModP.

T(C) �
P

M
T(C)�

P
ε

−−−−−→ T(C) �
P

P ∼= T(C)

Associativity and unitality of composition follow from coassociativity and counital-
ity of ψ.

Remark 2.21. There is a faithful functor (natural in M)

(2.3) IM : P-Coalg→ (P,M)-Coalg,

which is the identity on objects and which sends a morphism f : C → C ′ of P-
coalgebras to

IM(f) = T(f) �
P
ε : T(C) �

P
M→ T(C ′) �

P
P ∼= T(C ′).

Definition 2.22. Let P be an operad of chain complexes, and let M be a P-co-ring,
endowed with a strict morphism of left P-modules η : P→M. Let C,C ′ ∈ P-Coalg.
A morphism f ∈ Ch(C,C ′) is a morphism of P-coalgebras up to M-parametrization
if there is a strict morphism of right P-modules

ϕ : T(C) �
P

M→ T(C ′)

such that the following diagram in ChΣ commutes.

T(C) �
P

P ∼= T(C)

T(f)

((RRRRRRRRRRRRRRR
IdT(C)�

P
η

��
T(C) �

P
M

ϕ
// T(C ′)

.

Slogan 2.23. Co-rings over operads are, in a strong sense, relative operads. They
parametrize higher, “up to homotopy” structure on morphisms of P-coalgebras and
govern relations among the higher homotopies and the n-ary cooperations on the
source and target.

2.2. An operadic description of DCSH. Let A denote the associative operad
in the category of chain complexes.

Definition 2.24. The Alexander-Whitney co-ring is an A-co-ring F, with compat-
ible level comonoidal structure, which is defined as follows.

• As symmetric sequences of graded modules,

F = A � S �A,

where, for all n ≥ 1, S(n) = R[Σn] · zn−1, the free R[Σn]-module on a
generator of degree n− 1, and S(0) = 0.

• Let 1 denote the generator of A(1) = R[Σ1]. The differential ∂F on F is
specified by

∂F(1⊗ zn ⊗ 1⊗n+1) =
∑

0≤i≤n−1

δ ⊗ (zi ⊗ zn−i−1)⊗ 1⊗n+1

+
∑

0≤i≤n−1

1⊗ zn−1 ⊗ (1⊗i ⊗ δ ⊗ 1⊗n−i−1),
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where δ ∈ A(2) = R[Σ2] is a generator.

• The composition comultiplication

ψF : F → F �
A

F ∼= A � S �A � S �A

is specified by

ψF(1⊗ zn ⊗ 1⊗n+1) =
∑

1≤k≤n+1
~ı∈Ik,n+1

1⊗ zk−1 ⊗ 1⊗k ⊗ (zi1−1 ⊗ · · · ⊗ zik−1)⊗ 1⊗n+1

for all n ≥ 0, where Ik,n = {~ı = (i1, ..., ik) |
∑
j ij = n}.

• The level comultiplication

∆F : F //F ⊗ F ,

is a morphism of A-co-rings specified by

(2.4) ∆F(1⊗ zn ⊗ 1⊗n+1) =∑
1≤k≤n+1
~ı∈Ik,n+1

(
1⊗ zk−1⊗ (δ(i1)⊗ · · · ⊗ δ(ik))

)
⊗

(
δ(k)⊗ (zi1−1⊗ · · · ⊗ zik−1)⊗ 1⊗n+1

)
.

Here, δ(i) ∈ A(i) denotes the appropriate iterated composition product of
δ(2) = δ.

Remark 2.25. The obvious augmentation εF : F → A is a levelwise quasi-isomorphism
of A-bimodules.

Remark 2.26. F admits an obvious, increasing differential filtration, which both
the composition comultiplication and the level comultiplication respect, i.e.,

F is a filtered co-ring with compatible level comultiplication.

Recall that A denotes the category of augmented, associative chain algebras.

Theorem 2.27. There is a full and faithful functor, called the induction functor,

Ind : (A,F)-Coalg→ A

defined on objects by Ind(C) = ΩC for all C ∈ Ob(A,F)-Coalg and on morphisms
by

Ind(θ) : ΩC → ΩC ′ : s−1c 7→
∑
k≥1

(s−1)⊗kθ(c⊗ zk−1)

for all θ ∈ (A,F)-Coalg(C,C ′).

Proof. Straightforward calculations using the definition of F. �

Corollary 2.28. There is an isomorphism of categories

(A,F)-Coalg
∼=−→ DCSH

defined to be the identity on objects and to be Ind on morphisms.

Remark 2.29. Thanks to this operadic description of DCSH, we see that
a DCSH map is exactly a morphism of coassociative coalgebras up
to F-parametrization.
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Definition 2.30. Let D be a category, and let M be a set of objects in D. A functor
X : D → Ch is free with respect to M if there is a set {eM ∈ X(M) | M ∈ M}
such that {X(f)(eM ) | f ∈ D(M,D),M ∈M} is an R-basis of X(D) for all objects
D in D.
If X : D→ E, where E admits a forgetful functor U : E→ Ch, then X is free with
respect to M if UX : D→M is free.

Recall that C denotes the category of coaugmented, coassociative chain coalge-
bras.

The importance of the operadic description of DCSH is due in large part to the
existence theorems it enables us to prove. For example...

Theorem 2.31. Let X,Y : D→ C be functors, where D is a category admitting a
set of models M with respect to which X is free and Y is acyclic. Let θ : UX → UY
be any natural transformation of functors into Ch, where U : C → Ch denotes
the forgetful functor. Then there exists a natural transformation θ̂ : ΩX → ΩY
extending the desuspension of θ, i.e., for all objects D in D,

θ̂D = s−1θDs+ higher-order terms.

In other words,

any natural chain map θD : UX(D) → UY (D) is naturally a
DCSH-map.

Proof. Argument by induction on degrees of the eM and on filtration degree in F,
using the operadic characterization of DCSH. �

2.3. Monoidal structure of DCSH. What we need to describe DCSH structure
of maps between chain Hopf algebras... The level comonoidal structure ∆ : F →
F ⊗ F is the key!

Recall (Remark 2.10) the natural intertwining map

i : (X⊗ X′) � (Y⊗ Y′) // (X � Y)⊗ (X′ � Y′) .

Definition 2.32. Let ∧ : (A,F)-Coalg × (A,F)-Coalg → (A,F)-Coalg denote
the bifunctor defined as follows.

• C ∧ C ′ is the usual tensor product of chain coalgebras, for all C,C ′ ∈
Ob(A,F)-Coalg.
• Given morphisms of right A-modules θ : T(B) �

A
F → T(B′) and ϕ : T(C) �

A

F → T(C ′) (i.e., morphisms in (A,F)-Coalg from B to B′ and from C to
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C ′), θ ∧ ϕ denotes the following composite.

T(B ∧ C) �
A

F
∼= //

θ∧ϕ

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

(
T(B)⊗ T(C)

)
�
A

F
Id�

A
∆F

//
(
T(b)⊗ T(C)

)
�
A

(F ⊗ F)

i

��(
T(B) �

A
F

)
⊗

(
T(C) �

A
F

)
θ⊗ϕ

��
T(B′)⊗ T(C ′)

∼=
��

T(B′ ∧ C ′)

Proposition 2.33. The bifunctor ∧ endows (A,F)-Coalg with the structure of a
symmetric monoidal category, extending the usual symmetric monoidal structure
on A-Coalg.

Remark 2.34. It is rather messy to define this monoidal structure without recourse
to F.

Definition 2.35. A pseudo Hopf algebra is a monoid (H,µ, η) in ((A,F)-Coalg,∧),
i.e.,

µ : T(H ∧H) �
A

F → T(H)

is a morphism of right A-modules that is associative and unital with respect to

η : T(R) �
A

F → T(H).

The category of pseudo Hopf algebras and of morphism in ((A,F)-Coalg,∧) re-
specting their multiplicative structure is denoted PsHopf .

Remark 2.36. In particular, if (H,µ, η) is a pseudo Hopf algebra, then H is, of
course, a chain coalgebra and µ0 := µ(− ⊗ z0) : H ⊗ H → H endows H with an
associative multiplication that is a DCSH-map.

Remark 2.37. The embedding A-Coalg ↪→ (A,F)-Coalg induces an embedding of
the category H of chain Hopf algebras into the category of pseudo Hopf algebras,
i.e., any chain Hopf algebra can be seen as a pseudo Hopf algebra, where the
multiplication is a strict coalgebra map.

Definition 2.38. Let H and H ′ be chain Hopf algebras. A chain map f : H → H ′

is a multiplicative DCSH-map if there is a morphism ϕ : T(H) �
A

F → T(H ′) of

pseudo Hopf algebras such that f = ϕ(−⊗ z0).
Exercise 2.39. A DCSH-map f : H → H ′ with corresponding morphism ϕ : T(H) �

A

F → T(H ′) of right A-modules is multiplicative if

ϕn+1(xy) =
∑

1≤k≤n+1
~ı∈Ik,n+1

(
δ
(i1)
H′ ⊗ · · · ⊗ δ(ik)

H′

)
ϕk(x) ∗ (ϕi1 ⊗ · · · ⊗ ϕik) δ(k)H (y)

for all n ≥ 0 and all x, y ∈ H, where ∗ denotes multiplication in (H ′)⊗n+1 and
ϕk = ϕ(−⊗ zk).
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Definition 2.40. Let H be a chain Hopf algebra. A right H-module coalgebra is a
chain complex M that is both an H-module and a coalgebra, where the H-action
map M ⊗H →M is a map of coalgebras.

Generalize to modules over pseudo Hopf algebras...

Remark 2.41. Given a pseudo Hopf algebra (H,µ, η) in ((A,F)-Coalg,∧), a right
H-module in (A,F)-Coalg consists of a chain coalgebra M , together with a mor-
phism of right A-modules

ρ : T(M ∧H) �
A

F → T(M)

so that ρ(ρ ∧H) = ρ(M ∧ µ) and ρ(M ∧ η) = M .

Remark 2.42. In particular, if (M,ρ) is a right H-module in (A,F)-Coalg, then
ρ0 := ρ(−⊗ z0) : M ⊗H → H endows M with a right H-action (in Ch) that is a
DCSH-map.

Remark 2.43. As a consequence of the existence of the embedding A-Coalg ↪→
(A,F)-Coalg, anyH-module coalgebra can be seen as a module over a strict pseudo
Hopf algebra, where the action map is a strict coalgebra map.

Definition 2.44. Let f : H → H ′ be a multiplicative DCSH-map, with corre-
sponding morphism ϕ : T(H) �

A
F → T(H ′) of right A-modules. Let M be a right

H-module coalgebra, and let M ′ be a right H ′-comodule algebra. A chain map
g : M →M ′ is a DCSH-module map if there is a morphism ω : T(M) �

A
F → T(M ′)

of modules over pseudo Hopf algebras such that g = ω(−⊗ z0).

Exercise 2.45. Let f : H → H ′ be a multiplicative DCSH-map, with corresponding
morphism ϕ : T(H) �

A
F → T(H ′) of right A-modules. Let M be a right H-module

coalgebra, and let M ′ be a right H ′-comodule algebra. A DCSH map g : M →M ′

with corresponding morphism ω : T(M) �
A

F → T(M ′) of right A-modules is a

DCSH-module map with respect to ϕ if

ωn+1(x • y) =
∑

1≤k≤n+1
~ı∈Ik,n+1

(
δ
(i1)
M ′ ⊗ · · · ⊗ δ(ik)

M ′

)
ωk(x) • (ϕi1 ⊗ · · · ⊗ ϕik) δ(k)H (y)

for all n ≥ 0 and all x ∈M and y ∈ H, where • denotes the action of H on M and
the action of (H ′)⊗n+1 on (M ′)⊗n+1.

The following theorem (stated slightly imprecisely here, to avoid technical un-
pleasantness that obscurs the point) is important for enabling inductive construc-
tion of pseudo Hopf morphisms between Hopf algebras.

Theorem 2.46. If H and H ′ are chain Hopf algebras such that H is free as
an algebra on a free graded R-module V with basis B, then any morphism θ ∈
PsHopf(H,H ′) is completely determined by the set

{θ(v ⊗ zk) ∈ (H ′)⊗k+1 | v ∈ B, k ≥ 0}.
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2.4. Alexander-Whitney coalgebras.

Lemma 2.47. The induction functor Ind : (A,F)-Coalg→ A-Alg is comonoidal,
i.e., there is a natural transformation of functors into associative chain algebras

q : Ind(− ∧−)→ Ind(−)⊗ Ind(−),

which is given by the Milgram equivalence (Definition 1.24) on objects.

Recall that zk is the generator of F in level k + 1, which is of degree k.

Definition 2.48. The objects of the weak Alexander-Whitney category wF are
pairs (C,Ψ), where C is a object in A-Coalg and Ψ ∈ (A,F)-Coalg(C,C ⊗ C)
such that

Ψ(−⊗ z0) : C → C ⊗ C

is exactly the comultiplication on C, while

wF
(
(C,Ψ), (C ′,Ψ′)

)
= {θ ∈ (A,F)-Coalg(C,C ′) | Ψ′θ = (θ ∧ θ)Ψ}.

The objects of wF are called weak Alexander-Whitney coalgebras.

Remark 2.49. Loosely speaking, Alexander-Whitney coalgebras are chain coalge-
bras such that the comultiplication is a DCSH-map.

Definition 2.50. The objects of the weak Hopf algebra category wH are pairs
(A,ψ), where A is a chain algebra over R and ψ : A → A ⊗ A is a map of chain
algebras, while

wH
(
(A,ψ), (A′, ψ′)

)
= {f ∈ A-Alg(A,A′) | ψ′f = (f ⊗ f)ψ}.

Lemma 2.51. The cobar construction extends to a functor

Ω̃ : wF→ wH,

given by Ω̃(C,Ψ) =
(
ΩC, q Ind(Ψ)

)
, where

• Ind(Ψ) : ΩC → Ω(C ⊗ C), as in Theorem 2.27,
• q : Ω(C ⊗ C)→ ΩC ⊗ ΩC is Milgram’s equivalence and
• Ω̃θ = Ind(θ) : ΩC → ΩC ′ for all θ ∈ wF

(
(C,Ψ), (C ′,Ψ′)

)
.

Motivated by topology, we are particularly interested in those objects (C,Ψ) of
wF for which Ω̃(C,Ψ) is actually a strict Hopf algebra, i.e., such that q Ind(Ψ) is
coassociative.

Definition 2.52. The Alexander-Whitney category F is the full subcategory of wF
such that (C,Ψ) is an object of F if and only if q Ind(Ψ) is coassociative. We call
the objects of F Alexander-Whitney coalgebras.

Remark 2.53. It is clear that Ω̃ restricts to a functor

(2.5) Ω̃ : F→ H

where H is the usual category of chain Hopf algebras.
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3. Applications of the operadic description of DCSH

3.1. The canonical Adams-Hilton model and chain-level Bott-Samelson.
Theorem 1.33 and Remark 2.53 together imply that there is a sequence of functors

sSet0

eC−→ F
eΩ−→ H,

with Ω̃C̃(K) = (ΩC∗K,ψK), where ψK is the Alexander-Whitney diagonal.

Theorem 3.1. The Szczarba equivalence of chain algebras SzK : ΩC∗K → C∗GK
is a multiplicative DCSH map, with respect to the Alexander-Whitney diagonal on
ΩC(K) and the usual comultiplication on C∗GK.

Proof. Applying Theorem 2.46, we see that it is enough to construct a family

{θ(x⊗ zk) | k ≥ 0, x ∈ K}
satisfying appropriate relations with the differentials and comultiplications. We can
obtain such a family by an inductive acyclic models argument, using the models
described below.

Let ∆[n] denote the quotient of the standard simplicial n-simplex ∆[n] by its
0-skeleton. Morace and Prouté showed that there is a contracting chain homotopy
h̄ : C(G∆[n])→ C(G∆[n]) in positive degrees. The functor C

(
G(−)

)
from reduced

simplicial sets to connected chain algebras is therefore acyclic in positive degrees
on the set of models M = {∆[n] | n ≥ 0}.

On the other hand, the functor C∗ from reduced simplicial sets to connected
chain coalgebras is (a retract of something) free on M. In particular, the set
{ιn ∈ C(∆[n]) | n ≥ 0} gives rise to basis of C∗(K) for all K, where ιn denotes the
unique nondegenerate n-simplex of ∆[n]. �

Restricting to suspensions, we can tighten up this result considerably...

Notation 3.2. The simplicial suspension of a simplicial set K is denoted EK and
is itself a reduced simplicial set.

Proposition 3.3. There is a map of chain coalgebras α : C∗K → ΩC∗EK,
where C∗K is endowed with its usual comultiplication ∆K and ΩC∗EK with the
Alexander-Whitney diagonal.

Proof. Some unpleasant simplicial computations. �

Terminology 3.4. α is the chain-level James map.

Theorem 3.5. Let C+K denote the kernel of the augmentation map C∗K → R.
The chain-level James map induces a natural isomorphism of chain Hopf algebras

α̂ :
(
TC+K, d̂, ∆̂K

) ∼=−→
(
ΩC∗EK,ψK

)
,

where d̂ and ∆̂K denote, respectively, the derivation determined by the differential
d and the algebra map determined by ∆K .

Proof. Essentially a consequence of the preceeding Proposition. �

Theorem 3.6. The Szczarba map SzEK :
(
ΩC∗EK,ψK

)
→

(
C∗GEK,∆GEK

)
is

a strict map of chain Hopf algebras for all K.

Proof. Yet more unpleasant simplicial computations. �
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Remark 3.7. These two theorems together imply a chain-level Bott-Samelson the-
orem, i.e., that there is a natural quasi-isomorphism of chain Hopf algebras(

TC∗K, d̂, ∆̂K

) '−→ C∗GEK

for all K.

3.2. Free loop spaces and (co)Hochschild complexes. Recall the bar con-
struction and the Hochschild complex on a chain algebra.

Definition 3.8. Let B denote the bar construction functor defined by

B(A, d) =
(
T (sA), dB

)
where

dB(sa1| · · · |san) =
∑

1≤j≤n

±sa1| · · · |s(daj)| · · · |san

+
∑

1≤j<n

±sa1|...|s(ajaj+1)| · · · |san.

Remark 3.9. The graded R-module underlying B(A, d) is naturally a cofree coasso-
ciative coalgebra, with comultiplication given by splitting of words. The differential
dB is a coderivation with respect to this splitting comultiplication, so that B(A, d)
is itself a chain coalgebra. Any chain coalgebra map γ : C → B(A, d) is determined
by its projection to the coalgebra cogenerators sA, denoted γ1, which is equivalent
to specifying a twisting cochain t : C → A.

Definition 3.10. Let (A, d) be an augmented, associative chain algebra. Let H
denote the Hochschild complex functor defined by

H (A, d) =
(
T (sA)⊗A, dH

)
where

dH (sa1| · · · |san ⊗ b) =dB(sa1| · · · |san)⊗ b ± sa1| · · · |san ⊗ db
+ sa1| · · · |san−1 ⊗ anb ± sa2| · · · |san ⊗ ba1.

Remark 3.11. Note that B(A, d) is a quotient complex of H (A, d).

There is an interesting and useful dual to the Hochschild complex for a chain
coalgebra, extending the cobar construction.

Definition 3.12. Let Ĥ denote the coHochschild complex functor defined by

Ĥ (C, d) =
(
C ⊗ T (s−1C), d cH

)
where

d cH
(e⊗ s−1c1| · · · |s−1cn) =de⊗ s−1c1| · · · |s−1cn ± e⊗ dΩ(s−1c1| · · · |s−1cn)

± ei ⊗ s−1ei|s−1c1| · · · |s−1cn

± ei ⊗ s−1c1| · · · |s−1cn|s−1ei,

where the comultiplication applied to e is ei⊗ei (with the convention that applying
s−1 to an element of degree 0 gives 0).

Remark 3.13. Note that Ω(C, d) is a subcomplex of Ĥ (C, d).
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Recall that θt : ΩC → A denotes the chain algebra map induced by a twisting
cochain t : C → A. Let ωt : C → BA denote the chain coalgebra map induced by
t.

Proposition 3.14. A twisting cochain t : C → A induces a chain map

ωt ⊗ θt : Ĥ (C, d)→H (A, d),

which is a quasi-isomorphism if ωt and θt are quasi-isomorphisms.

Proof. Follow your nose through the calculations. �

Application of coHochschild complex to calculations of free loop space homol-
ogy...

Recall that a simplicial set K is n-reduced if K0 consists of a unique 0-simplex,
while Kk contains no nondegenerate simplex for all 1 ≤ k ≤ n.

Definition 3.15. Let K be a reduced simplicial set, and let F denote the free
group functor. The Kan loop group GK on K is the simplicial group such that
(GK)n = F(Kn+1 r Im s0), with faces and degeneracies specified by

∂0x̄ = ( ∂0x )−1∂1x,

∂ix̄ = ∂i+1x for all i > 0,
six̄ = si+1x for all i ≥ 0,

where x̄ denotes the class in (GK)n of x ∈ Kn+1.

Definition 3.16. Let K be a simplicial set and G a simplicial group, where the
neutral element in any dimension is noted e. A degree −1 map of graded sets
τ : K → G is a twisting function if

∂0τ(x) =
(
τ(∂0x)

)−1
τ(∂1x)

∂iτ(x) = τ(∂i+1x) i > 0

siτ(x) = τ(si+1x) i ≥ 0

τ(s0x) = e

for all x ∈ K.

Remark 3.17. Let K be a reduced simplicial set.
(1) There is a universal, canonical twisting function τK : K → GK, defined by

τK(x) = x̄ for all simplices x of K.
(2) Let G be a simplicial group. The set of twisting functions K → G is in

bijective correspondence with the set of morphisms of simplicial groups
GK → G. Given a morphism of simplicial groups h : GK → G, the
corresponding twisting function is hτK .

Definition 3.18. Let τ : K → G be a twisting functions. If G operates on the left
on a simplicial set L, then the twisted cartesian product of K and L, denoted K×τL
is the simplicial set such that (K ×τ L)n = Kn × Ln, with faces and degeneracies
given by

∂0(x, y) = (∂0x, τ(x) · ∂0y)

∂i(x, y) = (∂ix, ∂iy) i > 0

si(x, y) = (six, siy) i ≥ 0.
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Remark 3.19. If L is a Kan complex, then the projection K ×τ L → K is a Kan
fibration.

Definition 3.20. The canonical free loop construction on K, denoted LK, is the
twisted cartesian product K ×

τ
GK, where τ = (τK , τK) : K → GK × GK, and

GK ×GK acts on GK by (v, w) · u = uvw−1.

Theorem 3.21. There is a commutative diagram of simplicial sets

GK

'
��

j // LK

'
��

q // K

'
��

S•|GK| ' S•Ω|K|
S•i // S•Λ|K|

S•e // S•|K|,

where j and q are the obvious inclusion and projection and

Ω|K| i−→ Λ|K| e−→ |K|

is the usual free loop fibration sequence.

The classical theorem of E. Brown, R. Brown and Gugenheim clarifying the
relation between twisting functions and twisting cochains...

Theorem 3.22. For each twisting function τ : K → G and every simplicial set L
admitting a left action by G, there exists a twisting cochain t(τ) : C∗K → C∗G and
an SDR

C∗K ⊗t(τ) C∗L
∇τ



fτ

C∗(K ×τ L) 	 ϕτ ,

where t(τ), ∇τ , fτ and ϕτ can be chosen naturally.

Applying Theorem 3.22 to the twisting function τ = (τK , τK) : K → GK ×GK
and to the conjugation action of GK ×GK on GK, we obtain an SDR

C∗K ⊗t(τ) C∗GK
∇τ



fτ

C∗(LK) 	 ϕτ .

Theorem 3.23. For any reduced simplicial set K, there is a commutative diagram
of chain complexes

(3.1) ΩC∗K

SzK '
��

// Ĥ (C∗K)

fSzK '
��

// // C∗K

C∗GK //

C∗j ''PPPPPPPPPPPP
C∗K ⊗t(τ) C∗GK // //

∇τ '
��

C∗K

C∗LK

C∗q

77oooooooooooo

,

where S̃zK is a morphism of ΩC∗K-modules, with respect to SzK .

Proof. Acyclic models, using {∆[n] | n ≥ 0} again. �

3.3. Multiplicative structures in equivariant cohomology.
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3.3.1. Linear structure of equivariant homology. In this section, let C∗X denote
singular or cubical chains on a topological spaces X. Let E be the total space of
a principal G-bundle, where G is a connected topological group. Let Y be any
G-space. The multiplication map µ : G ×G → G induces the structure of a chain
algebra on C∗G, with multiplication map given by the composite

C∗G⊗ C∗G
EZ−−→ C∗(G×G)

C∗µ−−−→ C∗G,

where EZ is the natural Eilenberg-Zilber equivalence. The action maps E×G→ E
and G× Y → Y similarly induce C∗G-module structures on C∗E and on C∗Y .

Theorem 3.24 (Moore). There is an isomorphism of graded Z-modules

H∗(E ×
G
Y ) ∼= TorC∗G∗ (C∗E,C∗Y ).

The goal of this lecture is to explain how to enrich Moore’s theorem, obtaining
a comultiplicative isomorphism, by taking into account in a coherent manner the
comultiplicative structure on C∗G, C∗E and C∗Y , then to analyze in more detail
the special case G = S1 and E = ES1.

3.3.2. A comultiplicative enrichment of Moore’s theorem. Recall the notions of
multiplicative DCSH-map (Definition 2.38) and of DCSH-module map (Definition
2.44).

Remark 3.25. Let H be a chain Hopf algebra. Suppose that M and M ′ are right
and left H-module coalgebras, with structure maps ρ and λ, respectively. Consider
the following coequalizer of chain complexes.

M ⊗H ⊗M ′
ρ⊗M ′

⇒
M⊗λ

M ⊗M ′ π−→M ⊗H M ′

Since ρ⊗M ′ and M ⊗ λ are both maps of coalgebras, M ⊗
H
M ′ admits a coalgebra

structure such that the quotient map π is a coalgebra map.

Theorem 3.26. Let θ : H //K be a multiplicative DCSH-map. Let M and M ′

be right and left H-module coalgebras, and let N and N ′ be right and left K-module
coalgebras. Let ϕ : M //N and ϕ′ : M ′ //N ′ be DCSH-module maps with
respect to θ. Then the induced chain map

ϕ⊗
θ
ϕ′ : M ⊗

H
M ′ // N ⊗

K
N ′

is a DCSH-map. Furthermore, if in addition M ′ and N ′ are right L-module coalge-
bras, where L is a chain Hopf algebra, and ϕ′ is a DCSH-module map with respect
to IdL, then ϕ⊗

θ
ϕ′ is a DCSH-module map with respect to IdL as well.

Proof. Use that colimits in ChΣ are calculated level-wise and that − �
A

F preserves

colimits. �

Definition 3.27. Let θ : H → K be a multiplicative DCSH map between chain
Hopf algebras. Let ϕ : M → N be a DCSH-module map with respect to θ, where
M is a right H-comodule algebra and N is a right K-comodule algebra. If M
is a semifree extension of H and ϕ is a quasi-isomorphism, then ϕ is a DCSH
H-resolution of N .
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The enriched version of Moore’s theorem can now be stated as follows.

Theorem 3.28. Given a multiplicative DCSH-quasi-isomorphism f : H '−→ C∗G

and a DCSH-H-resolution of C∗E, g : M '−→ C∗E, there is a DCSH quasi-
isomorphism

M ⊗
H
C∗Y

'−→ C∗(E ×
G
Y ).

In particular, there is an isomorphism of graded algebras

H∗
(

(M ⊗
H
C∗Y )]

)
∼= H∗(E ×

G
Y ),

where the superscript ] denotes the R-linear dual.

Proof. Recall that Moore proved that given any CU∗G-semifree resolution of CU∗E,

ψ : N '−→ CU∗E

the composite

N ⊗
CU∗G

CU∗Y
ψ⊗1−−−→ CU∗E ⊗

CU∗G
CU∗Y → CU∗(E ×

G
Y )

is a quasi-isomorphism.
Observe now that according to Theorem 3.26, the induced map

ϕ ∧
θ

1CU∗G : M ⊗
H
CU∗G→ CU∗E ⊗

CU∗G
CU∗G ∼= CU∗E

is a DCSH-module map with respect to 1CU∗G.
Applying some results of Félix-Halperin-Thomas on semifree extensions, we ob-

tain
M ⊗

H
CU∗Y

∼= // (M ⊗
H
CU∗G) ⊗

CU∗G
CU∗Y

(ϕ∧
θ
1CU∗G) ∧

1CU∗G
1CU∗Y

��
CU∗E ⊗

CU∗G
CU∗Y

��
CU∗(E ×

G
Y ),

where the first map is an isomorphism of coalgebras and the last map is the strict
coalgebra map. According to Theorem 3.26, the first vertical map is a DCSH-
map. Finally, by Moore’s theorem, the composite of the two vertical maps is a
quasi-isomorphism, so we can conclude. �

3.3.3. Homotopy orbits of circle actions. Now let C∗ refer exclusively to cubical
chains.

Identification of a special family of primitives in C∗S
1 is the key to applying

Theorem 3.28 to computing S1-equivariant (co)homology.

Proposition 3.29. There is a set {Tk ∈ C2k+1S
1 | k ≥ 0} of primitives such that

T0 represents the generator of H1S
1 and dTk =

∑k−1
i=0 Ti · Tk−i−1 for all k.

Recall that H∗BS
1 ∼= R[u2] as graded R-modules.
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Theorem 3.30. There is a quasi-isomorphism of chain Hopf algebras

f : ΩH∗BS
1 '−→ C∗S

1 : s−1(uk) 7→ Tk−1,

extending to a DCSH-module quasi-isomorphism with respect to f :

g : H∗BS
1 ⊗tΩ ΩH∗BS

1 '−→ C∗ES
1,

where H∗BS
1 ⊗tΩ ΩH∗BS

1 denotes the acyclic cobar construction on H∗BS
1.

Proof. Let H∗BS
1⊗tΩ Ω H∗BS

1 denote the acyclic cobar construction on H∗BS
1.

It is easy to see that the usual tensor coproduct commutes with the differential,
i.e., H∗BS

1 ⊗tΩ Ω H∗BS
1 is a chain coalgebra, with untwisted coproduct.

Let j : S1 //ES1 denote the inclusion of S1 as the base of the construction
of ES1, which is an S1-equivariant map. The composite

C∗j ◦ ζ̂ : ΩH∗BS
1 // C∗ES1

is map of Ω H∗BS
1-module coalgebras. Consider the following commutative dia-

gram of right ΩH∗BS
1-module coalgebras.

Ω H∗BS
1

ι

��

C∗j◦bζ // C∗ES1

'
����

H∗BS
1 ⊗tΩ Ω H∗BS

1 ' // R

Since the inclusion ι is a coalgebra map, and therefore a DCSH-map, and the
composite C∗j ◦ ζ̂ is a Ω H∗BS

1-module coalgebra map, and therefore a DCSH-
module map, the operadic description of DCSH implies that they can be realized
as morphisms of right A-modules, as noted below.

T
(
Ω H∗BS

1
)
�
A

F

T(ι)�
A

1

��

j // T
(
C∗ES

1
)

T
(
H∗BS

1 ⊗tΩ Ω H∗BS
1
)
�
A

F

Since C∗ES1 is acyclic, H∗BS
1 ⊗tΩ Ω H∗BS

1 is semifree, the underlying algebra
of Ω H∗BS

1 is free and F is filtered, we can inductively construct an extension k of
j so that

T
(
Ω H∗BS

1
)
�
A

F

T(ι)�
A

1

��

j // T
(
C∗ES

1
)

T
(
H∗BS

1 ⊗tΩ Ω H∗BS
1
)
�
A

F

k

55lllllllllllllll

commutes. Furthermore, k is necessarily a quasi-isomorphism, since both CU∗ES1

and H∗BS
1 ⊗tΩ Ω H∗BS

1 are acyclic. In other words, restricting to level 1, we
obtain a DCSH Ω H∗BS

1-resolution of CU∗ES1:

(3.2) H∗BS
1 ⊗tΩ Ω H∗BS

1 '−→ C∗ES
1.

�
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Remark 3.31. SinceH∗BS
1⊗tΩΩH∗BS

1 is ΩH∗BS
1-semifree, g is a DCSH ΩH∗BS

1-
resolution of C∗ES1.

Corollary 3.32. Let Y be a left S1-space. There is a DCSH-quasi-isomorphism(
H∗BS

1 ⊗tΩ ΩH∗BS
1
)
⊗

ΩH∗BS1
C∗Y

'−→ C∗(ES1 ×
S1
Y ) = C∗YhS1 ,

which gives rise upon dualization to a strongly homotopy-multiplicative quasi-isomorphism

(R[u]⊗ C∗Y,D) ' // C∗YhS1 .

In particular, H∗(R[u] ⊗ C∗Y,D) ∼= H∗ YhS1 as graded algebras. Here, for all y ∈
C∗Y , D(un ⊗ y) = un ⊗ y +

∑
k≥0 u

n+k+1 ⊗ ωk(y), where ωk : C∗Y → C∗−2k−1Y

is a derivation such that [d, ωk] = −
∑k−1
i=0 ωi ◦ ωk−i−1. In particular, ω0 : C∗Y →

C∗−1Y is a chain map inducing the ∆-operation of the Batalin-Vilkoviskiy structure
on H∗Y .

4. Cobar constructions in monoidal model categories

4.1. Monoidal categories and model categories.

Definition 4.1. A monoidal category (C,⊗, I) consists of a category C, endowed
with a bifunctor

−⊗− : C×C→ C,
called the monoidal product, and a distinguished object I, called the unit object such
that the monoidal product is associative and unital up to natural isomorphism. In
other words, for all A ∈ ObC, there are natural isomorphisms A⊗ I ∼= A ∼= I ⊗A
and for all A,B,C ∈ ObC, there are natural isomorphisms (A ⊗ B) ⊗ C ∼= A ⊗
(B ⊗ C). Furthermore, the natural isomorphisms must be appropriately coherent.
The monoidal category (C,⊗, I) is symmetric if there is a natural isomorphism
A ⊗ B ∼= B ⊗ A for all A,B ∈ ObC, which is coherent with the previous natural
isomorphisms.

Definition 4.2. Let (C,⊗, I) be a monoidal category. A comonoid in C is an
object C in C, together with two morphisms in C: a comultiplication map ∆ :
C → C ⊗C and a counit map ε : C → I such that ∆ is coassociative and counital,
i.e., the diagrams

C

∆

��

∆ // C ⊗ C

∆⊗C
��

C
∆ //

∼=
��

C ⊗ C

C⊗εzzttttttttt

ε⊗C $$JJJJJJJJJ C
∆oo

∼=
��

C ⊗ C
C⊗∆ // C C ⊗ I I ⊗ C

must commute, where the isomorphisms are the natural isomorphisms mentioned
above.

Let (C,∆, ε) and (C ′,∆′, ε′) be comonoids in a monoidal category (C,⊗, I). A
morphism of comonoids from (C,∆, ε) to (C ′,∆′, ε′) is a morphism f ∈ C(C,C ′)
such that the diagrams

C
f //

∆

��

C ′

∆′

��

C
f //

ε
��>

>>
>>

>>
> C ′′

ε′��~~
~~

~~
~~

C ⊗ C
f⊗f // C ′ ⊗ C ′ I
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commute.

There are obvious dual notions of monoid and of morphism of monoids in any
monoidal category.

Notation 4.3. We often abuse terminology slightly and refer to a (co)monoid simply
by its underlying object in the category C, just as we sometimes write only the
underlying category when naming a monoidal category.

Definition 4.4. Let (C,∆, ε) be a comonoid in a monoidal category (C,⊗, I). A
right C-comodule in C is an object M in C together with a morphism ρ : M →
M ⊗ C in C, called the coaction map, such that the diagrams

M

ρ

��

ρ // M ⊗ C

ρ⊗C
��

M
ρ //

∼=
��

M ⊗ C

M⊗εyysssssssss

M ⊗ C
M⊗∆ // M ⊗ C ⊗ C M ⊗ I

commute, where the isomorphism is the natural isomorphism of the monoidal struc-
ture on C.

Let (M,ρ) and (M ′, ρ′) be right C-comodules. A morphism of right C-comodules
from (M,ρ) to (M ′, ρ′) is a morphism g ∈ C(M,M ′) such that the diagram

(4.1) M

ρ

��

g // M ′

ρ′

��
M ⊗ C

g⊗C // M ′ ⊗ C

commutes. The category of right C-comodules and their morphisms is denoted
ComodC .

Remark 4.5. The forgetful functor U : ComodC → C admits a right adjoint
F : C→ ComodC where F (X) = X ⊗ C, with action map given by

X ⊗∆ : X ⊗ C → X ⊗ C ⊗ C.

We call X ⊗ C the cofree left C-comodule generated by X.

Exercise 4.6. If ρ : M →M ⊗ C is a right coaction, then ρ is a morphism of right
C-comodules, with respect to the cofree coaction on M ⊗ C.

The category CComod of left comodules over a comonoid C and their morphisms
is defined analogously, in terms of coaction maps λ : M → C ⊗M . For any object
X of C, the cofree left C-module generated by X is C⊗X, endowed with the action
map ∆⊗X : C ⊗X → C ⊗ C ⊗X.

Definition 4.7. If an object M in C is endowed with compatible left and right
action maps λ : M → C⊗M and ρ : M →M⊗C, then (M,λ, ρ) is an C-bicomodule.
Here, compatibility means that the diagram

M

λ

��

ρ // M ⊗ C

λ⊗C
��

C ⊗M
C⊗ρ// C ⊗M ⊗ C
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commutes. A morphism of C-bicomodules from (M,λ, ρ) to (M ′, λ′, ρ′) is a mor-
phism g ∈ C(M,M ′) that is both a morphism of left C-comodules and a morphism
of right C-comodules. The category of C-bicomodules and their morphisms is de-
noted CComodC . The cofree C-bicomodule generated by an object X of C is
C ⊗X ⊗ C, with the usual left and right C-coaction maps.

Definition 4.8. Let C be a monoidal category admitting equalizers. Let (M,ρ)
and (N,λ) be a right and a left C-comodule, respectively. The cotensor product
M�

C
N of M and N is the equalizer

M�
C
N →M ⊗N

M⊗λ
⇒

ρ⊗IdN

M ⊗ C ⊗N,

which is computed in C. Since this construction is clearly natural in M and in N ,
there is in fact a bifunctor

−�
C
− : ComodC × CComod→ C.

Remark 4.9. If N = I with its usual left C-coaction, then

M�
C
I = equal(M

M⊗η
⇒
ρ

M ⊗ C).

In other words M�
C
I can be seen as the fixed points of the coaction ρ, justifying

the notation MC := M�
C
I that we use henceforth. A similar observation applies

to NC := I�
C
N for all (N,λ) ∈ CComod.

Definition 4.10. A model category consists of a category C, together with classes
of morphisms WE,Fib,Cof ⊂ MorC that are closed under composition and contain
all identities, such that the following axioms are satisfied.

(M1) All finite limits and colimits exist.
(M2) Let f : A //B and g : B //C be morphisms in C. If two of f , g, and

gf are in WE, then so is the third.
(M3) The classes WE, Fib, and Cof are all closed under taking retracts.
(M4) Cof ⊆ LLP (Fib ∩WE) and Fib ⊆ RLP (Cof ∩WE).
(M5) If f ∈ MorC, then there exist

(a) i ∈ Cof and p ∈ Fib ∩WE such that f = pi;
(b) j ∈ Cof ∩WE and q ∈ Fib such that f = qj.

By analogy with the homotopy structure in the category of topological spaces,
the morphisms belonging to the classes WE, Fib and Cof are called weak equiva-
lences, fibrations, and cofibrations and are denoted by decorated arrows ∼ // ,

// // , and // // . The elements of the classes Fib∩WE and Cof ∩WE are called,
respectively, acyclic fibrations and acyclic cofibrations. Since WE, Fib and Cof are
all closed under composition and contain all isomorphisms, we can and sometimes
do view them as subcategories of C, rather than simply as classes of morphisms.

Axiom (M1) implies that any model category has an initial object φ and a
terminal object e. An object A in a model category is cofibrant if the unique
morphism φ //A is a cofibration. Similarly, A is fibrant if the unique morphism
A //e is a fibration.
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We sometimes need in this lecture to impose the following additional condition
on the model categories we consider.

Definition 4.11. A model category is right proper if in every pullback diagram

• f̄ //

p̄
����

•
p

����
• f // •

the morphism f̄ is a weak equivalence if f is a weak equivalence.

When defining a homotopy-invariant replacement for the cotensor product, we
need to understand the homotopy theory of diagrams of the form

A
f

⇒
g
B

in a model category. The following proposition assembles the necessary results on
diagram categories, from Hovey’s book on model categories, applied to the specific
diagram category that interests us.

Theorem 4.12. Let E denote the category with two objects, denoted 0 and 1, and
two nonidentity morphisms s, t : 1→ 0. Let C denote a model category. The functor
category CE admits a model stucture in which weak equivalences and cofibrations
are defined objectwise and in which ϕ : X → Y is a fibration if and only if

(1) ϕ0 : X(0)→ Y (0) is a fibration in C; and
(2) the induced morphism

X(1)→ Y (1) ×
Y (0)×Y (0)

(X(0)×X(0))

is a fibration in C.
In particular, every fibration is an objectwise fibration. Moreover, if ϕ : X → Y is
a fibration (respectively, acyclic fibration) in CE, then limϕ : limX → limY is a
fibration (resp., acyclic fibration) in C.

Corollary 4.13. If X and Y are fibrant objects in CE and ϕ : X → Y is an
objectwise weak equivalence, then limϕ : limX → limY is a weak equivalence.

Proof. Apply Ken Brown’s Lemma to the previous theorem. �

Remark 4.14. By Theorem 4.12, an object X in CE is fibrant if and only if X(0)
is fibrant in C and (

X(s), X(t)
)

: X(1)→ X(0)×X(0)

is a fibration in C. In particular, X(s) : X(1) → X(0) and X(t) : X(1) → X(0)
must be fibrations if X is fibrant.

Remark 4.15. Note that if X : E → C is an object in CE, then limX is exactly
the equalizer of

X(1)
X(s)

⇒
X(t)

X(0),

so that the theorem above and its corollary provide conditions under which a weak
equivalence of equalizer diagrams induces a weak equivalence of the equalizers.
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4.2. Two-sided cobar constructions. The notion necessary to the construction
of a homotopy-invariant version of the cotensor product....

Definition 4.16. Let (C,∆, ε) be a comonoid in C. Let (M,ρ) be a right C-
comodule, and let (N,λ) be a left C-comodule. A two-sided cobar construction on
M is a factorization

M

j

∼

%%KKKKKKKKKK
ρ // M ⊗ C

Ω(M ;C;C)
bρ

88qqqqqqqqqqq

in C, while a two-sided cobar construction on N is a factorization

N

j

∼

$$JJJJJJJJJJ
λ // C ⊗N

Ω(C;C;N)
bλ

88qqqqqqqqqq

in C. A two-sided cobar construction is good if ρ̂, respectively λ̂, is a fibration and
very good if, in addition, j is a cofibration. If j and ρ̂, respectively λ̂, are morphisms
of C-comodules, then the two-sided cobar construction respects coactions.

Exercise 4.17. (Working with field coefficients for the sake of simplicity...) Let
C = Ch(k), the category of chain complexes of k-vector spaces, endowed with the
model category structure in which fibrations are degreewise surjections (in positive
degrees), cofibrations are degreewise injections and weak equivalences are quasi-
isomorphisms. Both (MM1) and (MM2) are clearly satisfied in this structure, with
respect to the usual tensor product of chain complexes. Let (M,ρ) be a right
C-comodule, where C is a coaugmented, coassociative chain coalgebra. Then

M

j

∼

''NNNNNNNNNNNN
ρ // M ⊗ C

M ⊗tΩ ΩC ⊗tΩ C
bρ

66nnnnnnnnnnnn

is a very good two-sided cobar construction that respects coactions, where

j(x) = x⊗ 1⊗ 1 + xi ⊗ 1⊗ ci

for all x ∈M (with ρ(x) = x⊗ 1 + xi ⊗ ci) and

ρ̂ = M ⊗ ε⊗ C.

Proposition 4.18. Two-sided cobar constructions exist for any comonoid C in a
cofibrantly generated monoidal model category C. In particular, there are functors

Ω(−;C;C) : ComodC → C and Ω(C;C;−) : CComod→ C,

together with natural acyclic cofibrations

Id // ∼ // Ω(−;C;C) and Id // ∼ // Ω(C;C;−)

and natural fibrations

Ω(−;C;C) // // −⊗ C and Ω(C;C;−) // // C ⊗− .
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Remark 4.19. Unlike the dual situation for modules, the category of comodules
over a comonoid in a cofibrantly generated, monoidal model category C does not
inherit a model category structure from C, since the cofree comodule functor is
a right adjoint. In general we cannot therefore suppose that the two-sided cobar
constructions of the proposition above respect coactions.

Definition 4.20. Suppose that C is coaugmented, i.e., endowed with a morphism
of comonoids η : I → C, where the comultiplication on I is given by the canonical
isomorphism I ∼= I⊗I. The unit object I is both a left and a right C-comodule, with
coaction maps given by the coaugmentation η : I → C, followed by the appropriate
canonical isomorphism: C ∼= C ⊗ I or C ∼= I ⊗C. An acyclic cobar construction is
then a two-sided cobar construction of the following special form

I

j

∼

##GGGGGGGGG
η // C

Ω(C;C)
bη

;;wwwwwwwww

.

Remark 4.21. Let

M

j

∼

%%KKKKKKKKKK
ρ // M ⊗ C

Ω(M ;C;C)
bρ

88qqqqqqqqqqq

be a two-sided cobar construction on (M,ρ). Since

(M ⊗ ε)ρ̂j = (M ⊗ ε)ρ = M

and j is a weak equivalence, by axiom (M2), the retraction

rρ := (M ⊗ ε)ρ̂ : Ω(M ;C;C)→M

is also a weak equivalence. Similarly, for any two-sided cobar construction

N

j

∼

$$JJJJJJJJJJ
λ // C ⊗N

Ω(C;C;N)
bλ

88qqqqqqqqqq

j admits a retraction rλ : Ω(C;C;N)→ N , which is a weak equivalence since j is.

We now consider homotopy invariance of two-sided cobar constructions.

Lemma 4.22. Let f : (M,ρ) ∼ //(M ′, ρ′) be a weak equivalence of right C-comodules.
For any two-sided cobar constructions

M // j

∼
//Ω(M ;C;C)

bρ // //M ⊗ C

and

M
j′

∼
//Ω(M ′;C;C)

bρ′ // //M ′ ⊗ C ,

there is a weak equivalence

Ωf : Ω(M ;C;C) ∼−→ Ω(M ′;C;C)
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such that
M

ρ //

f ∼

��

j

∼

%%KKKKKKKKKK M ⊗ C

f⊗C

��

Ω(M ;C;C)

Ωf ∼
��

bρ
77ppppppppppp

Ω(M ′;C;C) bρ′
&&NNNNNNNNNNN

M ′ ρ′ //

j′

∼

99ssssssssss
M ′ ⊗ C

commutes.

A similar result holds for left comodules.

Proof. Apply the second part of axiom (M4) to the commutative diagram

M
��
j∼

��

j′f

∼
// Ω(M ′;C;C)

bρ′
����

Ω(M ;C;C)
(f⊗C)bρ // M ′ ⊗ C.

�

Remark 4.23. Under the hypotheses of Lemma 4.22, it follows that rρ′Ωf = frρ,
since (f ⊗ C)ρ̂ = ρ̂′Ωf and (M ′ ⊗ ε)(f ⊗ C) = f(M ⊗ ε).

4.3. The homotopy cotensor product. We now introduce a homotopy-invariant
version of the cotensor product.

Motivation 4.24. There are three primary motivations for the introduction of a
homotopy cotensor product.

(1) To provide a deep explanation of the Eilenberg-Moore theorems relating ho-
mology of topological pullbacks to certain Cotors (see section 4.6), leading
to possible generalizations of these theorems.

(2) To develop a theory of homotopic Hopf-Galois extensions in monoidal model
categories, generalizing Rognes’ (Hopf-)Galois theory for ring spectra, and
then

(3) To develop a deeper understanding of the slogan “principal fibrations are
Galois extensions”.

To explain why homotopy cotensor products are necessary to goal (2) and thus to
goal (3), I outline briefly the notion of a Hopf-Galois extension in a (symmetric)
monoidal model category C. Let ϕ : A → B be a morphism of commutative
monoids in C, so that B can be seen as an A-algebra (i.e., a monoid in the category
of A-bimodules) via ϕ. Let H be a Hopf monoid (i.e., a monoid with compatible
comonoid structure) in C, which we consider as an A-algebra with trivial A-module
structure. Suppose that B is a right H-comonoid in the category of A-bimodules,
i.e., there is a coaction map ρ : B → B ⊗H in the category of A-bimodules.

Generalizing Rognes’ definition, we say that ϕ : A → B is an H-Hopf-Galois
extension if
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• the natural induced map A → BhH is a weak equivalence, where BhH

denotes the homotopy cofixed points of the coaction ρ; and
• the composite

B ⊗A B
B⊗Aρ−−−−→ B ⊗A B ⊗H

µ⊗H−−−→ B ⊗H
is also a weak equivalence.

Thus, to state this definition precisely, we need a meaningful definition of the “ho-
motopy cofixed points” of a coaction in a monoidal model category. By analogy with
the constructions already seen for chain complexes, we define “homotopy cofixed
points” as a special case of the “homotopy cotensor product.”

Notation 4.25. Throughout this section (C,⊗, I) denotes a category admitting
model and monoidal structures such that
(MM1) the set of weak equivalences with cofibrant domain is preserved under ⊗;

and
(MM2) the set of fibrations with cofibrant domain is preserved under ⊗.

Remark 4.26. Many well-known and frequently used model categories satisfy (MM1)
and (MM2). We’ll see examples later.

Definition 4.27. Let

M %%

i

∼

%%KKKKKKKKK
ρ // M ⊗ C

Ω(M ;C;C)
bρ

88 88qqqqqqqqqqq

and

N $$

j

∼

$$JJJJJJJJJ
λ // C ⊗N

Ω(C;C;N)
bλ

88 88qqqqqqqqqq

be very good two-sided cobar constructions, where (M,ρ) ∈ ObComodC and
(N,λ) ∈ ObCComod. If

(4.2) M ⊗ C ⊗N is fibrant

and

(4.3) (rρ ⊗ λ̂, ρ̂⊗ rλ) : Ω(M ;C;C)⊗ Ω(C;C;N)→ (M ⊗ C ⊗N)×2

is a fibration, then

equal
(
Ω(M ;C;C)⊗ Ω(C;C;N)

rρ⊗bλ
⇒bρ⊗rλ

M ⊗ C ⊗N
)
,

which is calculated in C, is a model of the homotopy cotensor product of M and N
over C.

Notation 4.28. We write M�̂
C
N for any model of the homotopy cotensor product

of M and N over C. We see below that this abuse of terminology is justified, as
the homotopy cotensor product construction is invariant up to weak equivalence,
under mild additional conditions on M , N and C.
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Theorem 4.29. Let (C,⊗, I) be a category admitting model and monoidal struc-
tures satisfying conditions (MM1) and (MM2). Let (C,∆, ε) be a cofibrant comonoid
in C such that ε : C → I is a fibration. Let f : M ∼ // M ′ and g : N ∼ // N ′ be
weak equivalences of right and of left C-comodules with cofibrant domains, such that
the pairs (M,N) and (M ′, N ′) admit models of their homotopy cotensor products
over C. Then there is an induced weak equivalence

f�̂
C
g : M�̂

C
N

∼−→M ′�̂
C
N ′,

for any choice of model of the respective homotopy cotensor products.

Proof. By Lemma 4.22 and Remark 4.23, for any choice of very good two-sided
cobar constructions satisfying conditions (4.2) and (4.3) of Definition 4.27, there is
a commutative diagram

Ω(M ;C;C)⊗ Ω(C;C;N)

Ωf⊗Ωg∼
��

rρ⊗bλ // // M ⊗ C ⊗N

f⊗C⊗g∼
��

Ω(M ;C;C)⊗ Ω(C;C;N)

Ωf⊗Ωg∼
��

bρ⊗rλoooo

Ω(M ′;C;C)⊗ Ω(C;C;N ′)
rρ′⊗bλ′

// // M ′ ⊗ C ⊗N ′ Ω(M ′;C;C)⊗ Ω(C;C;N)
bρ′⊗rλ′oooo

The three vertical arrows are weak equivalences, as they are tensor products of
weak equivalences with cofibrant domain. By Corollary 4.13, since conditions (4.2)
and (4.3) hold, the induced map on equalizers

M�̂
C
N →M ′�̂

C
N ′

is also a weak equivalence. �

It follows from Theorem 4.29 that the weak homotopy type of the homotopy
cotensor product is independent of the choice of very good two-sided cobar con-
structions.

Corollary 4.30. Under the hypotheses of Theorem 4.29, for any other choice of
very good two-sided cobar constructions

M %%

i′

∼

%%KKKKKKKKK
ρ // M ⊗ C

Ω′(M ;C;C)
bρ′

88 88ppppppppppp

and

N %%

j′

∼

%%JJJJJJJJJ
λ // C ⊗N

Ω′(C;C;N)
bλ′

88 88qqqqqqqqqq

satisfying conditions (4.2) and (4.3), there is a weak equivalence

M�̂
C
N

∼−→ equal
(
Ω′(M ;C;C)⊗ Ω′(C;C;N)

r′ρ⊗bλ′
⇒bρ′⊗r′λ M ⊗ C ⊗N

)
.
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A proof similar to that of Theorem 4.29 shows that the homotopy cotensor prod-
uct construction is balanced, up to weak homotopy, at least under one additional
condition on C.

Proposition 4.31. Let (C,⊗, I) be a category admitting model and monoidal struc-
tures satisfying conditions (MM1) and (MM2). Suppose furthermore that
(MM3) lim : CE → C sends acyclic cofibrations with fibrant target to weak equiva-

lences.
Let (C,∆, ε) be a cofibrant comonoid in C, and let (M,ρ) and (N,λ) be a right and
a left C-comodule, which are both cofibrant. Then there are weak equivalences

equal
(
Ω(M ;C;C)⊗N

rρ⊗λ
⇒bρ⊗N M ⊗ C ⊗N

)
∼−→M�̂

C
N

and

equal
(
M ⊗ Ω(C;C;N)

M⊗bλ
⇒
ρ⊗rλ

M ⊗ C ⊗N
)

∼−→M�̂
C
N.

Proof. Consider the following diagram

Ω(M ;C;C)⊗N
bρ⊗N //

Id⊗j∼
��

M ⊗ C ⊗N Ω(M ;C;C)⊗N
rρ⊗λoo

Id⊗j
��

Ω(M ;C;C)⊗ Ω(C;C;N)
bρ⊗rλ // M ⊗ C ⊗N Ω(M ;C;C)⊗ Ω(C;C;N),

rρ⊗bλoo

which is an acyclic cofibration of equalizer diagrams, with fibrant target. The
additional hypothesis on C then implies that the induced map on equalizers is a
weak equivalence. �

Definition 4.32. Let (C,⊗, I) be a category admitting model and monoidal struc-
tures satisfying conditions (MM1) and (MM2). Let (C,∆, ε) be a cofibrant comonoid
in C such that ε : C → I is a fibration. Let (M,ρ) be a right C-comodule. An object
MhC is a model of the homotopy cofixed points of the coaction ρ if MhC = M�̂

C
I

for some choice of very good two-sided cobar construction on M and of very good
acyclic cobar construction on I satisfying conditions (4.2) and (4.3) or if

MhC = equal
(
Ω(M ;C;C)

rρ

⇒bρ M ⊗ C ⊗N
)
,

when (MM3) is also satisfied.

Question 4.33. How does the definition of homotopy cotensor product given above
relate to that in Definition 1.17? Can’t say anything when C is arbitrary, since
the comparison involves an objectwise weak equivalence in which only the target
is necessarily fibrant, but the next exercise shows that the two possible definitions
agree in the case C = Ch.

Exercise 4.34. (Working again with field coefficients for the sake of simplicity...)
Let C = Ch(k), the category of chain complexes of k-vector spaces, endowed with
the model category structure of Exercise 4.17. Let (M,ρ) and (N,λ) be a right and
a left C-comodule, where C is a coaugmented, coassociative chain coalgebra. Then
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(1) the two very good two-sided cobar constructions

M

i

∼

''NNNNNNNNNNNN
ρ // M ⊗ C

M ⊗tΩ ΩC ⊗tΩ C
bρ

66nnnnnnnnnnnn

and

N

j

∼

&&NNNNNNNNNNNN
ρ // C ⊗N

C ⊗tΩ ΩC ⊗tΩ N
bλ

77nnnnnnnnnnnn

of Exercise 4.17 satisfy condition (4.3); and
(2) the two definitions of homotopy cotensor product agree up to quasi-isomorphism

in this case.

In Lecture 1, we built the two-sided cobar constructions from the (reduced) cobar
construction and its universal twisting cochain. Here, we derive the reduced cobar
construction from the two-sided cobar construction.

Definition 4.35. Let (C, η) be a coaugmented comonoid in C. Let

I // j
∼

//Ω(C;C)
bη // //C

be an acyclic cobar construction satisfying condition (4.3). A fat reduced cobar
construction on C, denoted ΩC, is the equalizer of the morphisms

Ω(C;C)⊗ Ω(C;C)
bη⊗εbη // //C Ω(C;C)⊗ Ω(C;C)

εbη⊗bηoooo ,

while a thin reduced cobar construction, denoted ΩC, is the equalizer of the mor-
phisms

Ω(C;C)
bη // //C Ω(C;C)

ηεbηoo .

Remark 4.36. The same sort of argument already seen above shows that if C is
cofibrant and ε : C → I is a fibration, then there is a weak equivalence ΩC → ΩC.

4.4. Examples.

4.4.1. Topological spaces. Consider the category Top of topological spaces, which is
monoidal with respect to the cartesian product, with unit object {∗}, endowed with
its Serre model structure (fibrations are Serre fibrations, while weak equivalences
are maps inducing isomorphisms on homotopy groups, for any choice of basepoint).
Note that additional axioms (MM1) and (MM2) clearly hold in Top. Furthermore,
every space is a comonoid, where the comultiplication is the usual diagonal ∆. A
comonoid under {∗} is therefore just a based space.

Any continuous map f : X → Y induces right and left Y -comodule structures
on X, via the composites

X
∆−→ X ×X X×f−−−→ X × Y

and
X

∆−→ X ×X f×X−−−→ Y ×X.
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Inversely, every right (or left) Y -comodule structure on X gives rise to a continuous
map X → Y , given by the composite

X
ρ−→ X × Y pr2−−→ Y.

In other words, right (or left) Y -comodule structures on X are in bijective corre-
spondence with continuous maps from X to Y .

The (unbased) path space PY on a space Y is clearly a very good two-sided cobar
construction on Y seen as a comodule over itself, i.e., we can choose Ω(Y ;Y ;Y ) =
PY , where PY → Y × Y is given by evaluation at the endpoints of the path and
Y → PY sends y to the constant path at y.

More generally, for any continuous map f : X → Y , we can define Ω(X;Y ;Y )
and Ω(Y ;Y ;X) by pullback, as follows.

Ω(X;Y ;Y ) //

��

Ω(Y ;Y ;Y )

(ev0,ev1)

��
X × Y

f×Y // Y × Y

Ω(Y ;Y ;X) //

��

Ω(Y ;Y ;Y )

(ev0,ev1)

��
Y ×X

Y×f // Y × Y
In other words,

Ω(X;Y ;Y ) = {(x, λ) ∈ X × Y I | λ(0) = f(x)}

and similarly for Ω(Y ;Y ;X). In particular, there are the following possible acyclic
cobar constructions:

• Ω(Y ;Y ; ∗), which is the space of paths ending in the basepoint, and
• Ω(∗;Y ;Y ), which is the space of paths starting in the basepoint.

Exercise 4.37. The usual based path space on Y is a thin reduced cobar construction
on Y !

Exercise 4.38. Let f : X → Y and f ′ : X ′ → Y be continuous maps, giving rise
to left and right Y -comodule structures on X and X ′, respectively. The homotopy
cotensor productX�̂

Y
X ′ is just the homotopy pullback of f and f ′. In particular, the

homotopy cofixed point space XhY of the coaction of Y on X is just the homotopy
fiber of f .

4.4.2. Simplicial sets. Let sSet denote the category of simplicial sets, which is
monoidal with respect to the cartesian product, where the unit object is the con-
stant simplicial set ∗. The additional axioms (MM1) and (MM2) hold in sSet,
endowed with its usual model structure. Every simplicial set is a comonoid, where
the comultiplication is again the usual diagonal. As in the topological case, left or
right comodule structures on a simplicial K with respect to a simplicial set L are
in bijective correspondence with the set of simplicial maps from K to L.

We construct our two-sided cobar constructions as two-sided twisted cartesian
products of simplicial sets. As this notion is not entirely standard, we define it
carefully. Recall that the definitions of twisting function and of twisted cartesian
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product (Definitions 3.16 and 3.18). We now introduce a two-sided version of the
twisted cartesian product.

Definition 4.39. Let G be a simplicial group, and let F be a simplicial set on
which there is a two-sided G-action. Given twisting functions τ : K• → G•−1 and
υ : L• → G•−1, let K ×τ F ×υ L be the simplicial set with underlying graded set
K ×F ×L, such that all face and degeneracy maps act componentwise, except the
0-face, where

∂0(x, y, z) := (∂0x, τ(x) · ∂0y · υ(z)−1, ∂0z).

Exercise 4.40. The two-sided twisted cartesian product as defined above is indeed
a simplicial set.

Proposition 4.41. Let f : K → L be a simplicial map, where L is a reduced
simplicial set. Let

Ω(K;L;L) = K ×
τLf

GL ×
τL

L and Ω(L;L;K) = L ×
τL

GL ×
τLf

K,

where GL acts on itself on the right and on the left by multiplication Let j : K →
Ω(K;L;L) and j : K → Ω(L;L;K) be the two natural inclusions, and let ρ̂ :
Ω(K;L;L) → K × L and λ̂ : Ω(L;L;K) → L ×K be the two natural projections.
Then

K
j−→ Ω(K;L;L)

bρ−→ K × L
and

K
j−→ Ω(L;L;K)

bλ−→ L×K
are natural, very good two-sided cobar constructions, for K seen as a right, respec-
tively left, L-comodule via f .

Corollary 4.42. The Kan loop group GL on a reduced simplicial set L is a thin
reduced cobar construction on L.

As in the topological case, homotopy cotensor product corresponds to homo-
topy pullback, so that the homotopy cofixed point set of a coaction correponds to
homotopy fiber.

4.5. Cobar constructions via totalization. (Somewhat more technical, so just
a slightly informal sketch...)

Definition 4.43. A category C is simplicial if
• for allA,B ∈ ObC, there is a simplicial set Map(A,B) such that Map(A,B) ∼=

C(A,B);
• for all A,B,C ∈ ObC, there is a composition rule

c : Map(B,C)×Map(A,B)→ Map(A,C);

and
• for all A, there is a unit map iA : ∆[0]→ Map(A,A) such that the family of

composition rules is associative and unital with respect to the unit maps.
A model category C that is also simplicial is a simplicial model category if the

following two additional axioms are satisfied.
(M6) For all A,B ∈ ObC and for all simplicial sets K, there exist A⊗K,BK ∈

ObC together with natural isomorphisms of simplicial sets

Map(A⊗K,B) ∼= Map
(
K,Map(A,B)

) ∼= Map(A,BK).
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(M7) For all i : A // //B and p : X // //Y , the induced map of simplicial sets

Map(B,X)→ Map(A,X) ×
Map(A,Y )

Map(B, Y )

is a Kan fibration, which is acyclic if either i or p is acyclic.

Example 4.44. The obvious example: C = sSet, with Map(A,B)n = sSet(A ×
∆[n], B), the usual simplicial mapping space, where ∆[n] is the standard n-simplex.
Furthermore, A⊗K = A×K and BK = Map(B,K).

Example 4.45. A slightly more sophisticated example: C = Top, with Map(A,B)n =
Top(A × ∆n, B), where ∆n is the topological n-simplex. We then set A ⊗ K =
A× |K|, while BK = B|K|.

Definition 4.46. Let C be a simplicial model category. Let X• : ∆ → C be a
cosimplicial object in C. The totalization of X• is

TotX• = equal
( ∏
n∈N

(Xn)∆[n] ⇒
∏

f∈∆(n,k)

(Xk)∆[n]
)
,

which is an object in C.

Remark 4.47. This can be generalized to model categories endowed with a “Reedy
framing.”

Notation 4.48. Given A ∈ ObC, let A• denote the constant cosimplicial object on
A, i.e., An = A for all n and all faces and degeneracies are identities.

Remark 4.49. It is relatively easy to see that in a simplicial model category, there
are weak equivalences

TotA• '−→ hocolim A• '−→ lim A• ∼= A.

Let π : TotA• → A denote this composite. In fact, π admits a section s : A →
TotA•, induced by the morphisms A∆[0] → A∆[n], which, in turn, are induced by
the simplicial maps ∆[n]→ ∆[0]. The section s must also be a weak equivalence.

Definition 4.50. Let C be a comonoid in a monoidal category C. Let (M,ρ)
be a right C-comodule. The two-sided cosimplicial cobar construction on M is a
cosimplicial object Ω•(M ;C;C) in C such that

• Ωn(M ;C;C) = M ⊗ C⊗n+1, for all n;
• d0 = ρ⊗ C⊗n+1 : Ωn(M ;C;C)→ Ωn+1(M ;C;C);
• di = M ⊗ C⊗i−1 ⊗∆ ⊗ C⊗n+1−i : Ωn(M ;C;C) → Ωn+1(M ;C;C) for all

1 ≤ i ≤ n+ 1; and
• sj = M ⊗ C⊗j ⊗ ε ⊗ C⊗n−j : Ωn(M ;C;C) → Ωn−1(M ;C;C) for all 0 ≤
j ≤ n.

Exercise 4.51. Let C be a comonoid in a monoidal category C. Let (M,ρ) be a
right C-comodule. Define j• : M• → Ω•(M ;C;C) by

jn = ρ(n+1) : M →M ⊗ C⊗n+1,

obtained by applying the coaction iteratively, n+1 times. Define ρ̂• : Ω(M ;C;C)→
(M ⊗ C)• by

ρ̂n = M ⊗ ε⊗n ⊗ C : M ⊗ C⊗n+1 →M ⊗ C.
Then j• and ρ̂• are both cosimplicial maps, i.e., they commute with cofaces and
codegeneracies.



38 KATHRYN HESS

Proposition 4.52. Using the notation of the exercise above, let j = Tot j• ◦s, and
let ρ̂ = πTot ρ̂•. Then

M
j

'
// TotΩ•(M ;C;C)

bρ // M ⊗ C

is a two-sided cobar construction on M .

Proof. The usual methods show that j• is a cosimplicial homotopy equivalence and
therefore Tot j• is a weak equivalence, by a theorem of Bousfield. �

Remark 4.53. Probably need more precise knowledge of the model category C
and of the morphisms ρ and ε in order to determine when the two-sided cobar
construction above is good or very good or respects coactions.

4.6. Naturality and Eilenberg-Moore theorems.

Question 4.54. When do functors between monoidal model categories preserve ho-
motopy cotensor products, up to weak equivalence?

Inspiration for this question comes from...

Theorem 4.55 (Eilenberg-Moore). For any (Serre) fibration E → B such that
B is connected and simply connected, any continuous map f : X → B of simply
connected spaces and any commutative ring R, there is an R-linear isomorphism

(4.4) H∗(E ×
B
X;R) ∼= CotorC∗(B;R)

(
C∗(E;R), C∗(X;R)

)
.

It’s an easy exercise to prove the following lemma.

Lemma 4.56. Let (C,⊗, I) and (D,⊗, J) be model categories endowed with monoidal
structure and satisfying axioms (MM1) and (MM2). Let F : C → D be a functor
such that
(EM1) F preserves fibrant objects, as well as fibrations and acyclic cofibrations;
(EM2) F is comonoidal, i.e., there is an appropriately coassociative and counital

natural transformation

δ : F (−⊗−)→ F (−)⊗ F (−);

and
(EM3) every component of δ is a fibration in D, i.e.,

δA,B : F (A⊗B) // //F (A)⊗ F (B)

for all A,B ∈ ObC.
Then F preserves comonoids and very good two-sided cobar constructions.

To prove an Eilenberg-Moore-type theorem, we need further conditions on our
functor F .

Definition 4.57. Let (C,⊗, I) and (D,⊗, J) be model categories endowed with
monoidal structure and satisfying axioms (MM1) and (MM2). A functor F : C→
D is an Eilenberg-Moore functor if it satisfies conditions (EM1) and (EM2) of
Lemma 4.56, as well as
(EM3′) every component of δ is an acyclic fibration in D, i.e.,

δA,B : F (A⊗B) ∼ // //F (A)⊗ F (B)

for all A,B ∈ ObC;
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(EM4) the natural transformation δ admits a section

σ : F (−)⊗ F (−)→ F (−⊗−),

i.e., σ is a natural transformation such that the composite

F (A)⊗ F (B)
σA,B−−−→ F (A⊗B)

δA,B−−−→ F (A)⊗ F (B)

is the identity morphism for all A,B ∈ ObC;
(EM5) the obvious natural transformation

π : F (−×−)→ F (−)× F (−)

is a fibration in every component, i.e.,

πA,B =
(
F (pr1), F (pr2)

)
: F (A×B) // //F (A)× F (B)

for all A,B ∈ ObC; and

(EM6) for every diagram A
f

⇒
g
B in C where (f, g) : A→ B×B is a fibration and

B is fibrant (i.e., A
f

⇒
g
B is fibrant in CE) the induced map

F
(
equal(A

f

⇒
g
B)

)
→ equal

(
F (A)

F (f)

⇒
F (g)

F (B)
)

is a weak equivalence in D.

Remark 4.58. There are certainly other and probably better choices of conditions
to impose on a functor to insure that an Eilenberg-Moore-type theorem holds, but
this choice works and seems to me to be fairly natural and reasonable.

Theorem 4.59. Let (C,⊗, I) and (D,⊗, J) be model categories endowed with
monoidal structure and satisfying axioms (MM1) and (MM2). Let F : C → D
be an Eilenberg-Moore functor. Let C be a comonoid and M and N a right and
a left C-comodule in C, which are all fibrant and cofibrant as objects in C. Then
there is a weak equivalence in D

F (M�̂
C
N) ∼−→ F (M) �̂

F (C)
F (N).

Proof. Let

M %%

i

∼

%%KKKKKKKKK
ρ // M ⊗ C

Ω(M ;C;C)
bρ

88 88qqqqqqqqqqq

and

N $$

j

∼

$$JJJJJJJJJ
λ // C ⊗N

Ω(C;C;N)
bλ

88 88qqqqqqqqqq
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be very good two-sided cobar constructions on M and N satisfying conditions (4.2)
and (4.3), inducing very good two-sided cobar constructions on F (M) and F (N):

F (M)
&&

F (i)

∼

&&NNNNNNNNNN

δM,CF (ρ) // F (M)⊗ F (C)

F
(
Ω(M ;C;C)

) δM,CF (bρ)
66 66mmmmmmmmmmmmm

and

F (N)
&&

F (j)

∼

&&NNNNNNNNNN

δC,NF (λ) // F (C)⊗ F (N)

F
(
Ω(C;C;N)

) δC,NF (bλ)

66 66mmmmmmmmmmmm

.

By condition (EM6), the natural, induced map

F (M�̂
C
N) = F

(
equal(Ω(M ;C;C)⊗ Ω(C;C;N)

bρ⊗rλ

⇒
rρ⊗bλM ⊗ C ⊗N)

)

��

equal
(
F (Ω(M ;C;C)⊗ Ω(C;C;N))

F (bρ⊗rλ)

⇒
F (rρ⊗bλ)

F (M ⊗ C ⊗N)
)

is a weak equivalence. Furthermore, (EM1) and (EM5) together imply that the
composite

F (Ω(M ;C;C)⊗ Ω(C;C;N))

(
F (bρ⊗rλ),F (rρ⊗bλ)

)
,,XXXXXXXXXXXXXXXXXXXXXXXXX

F (bρ⊗rλ,rρ⊗bλ) // F
(
(M ⊗ C ⊗N)×2)

)
π

��
F (M ⊗ C ⊗N)×2

is a fibration, since the pair of two-sided cobar constructions on M and N satisfies
condition (4.3). Condition (EM1) also implies that F (M ⊗ C ⊗N) is fibrant, and
therefore that the equalizer diagram

(4.5) F (Ω(M ;C;C)⊗ Ω(C;C;N))
F (bρ⊗rλ)

⇒
F (rρ⊗bλ)

F (M ⊗ C ⊗N)

is fibrant.
Condition (EM4) now implies that F (M)⊗F (C)⊗F (N) is fibrant, since it is a

retract of a fibrant object, and that(
δF (ρ̂)⊗F (rλ), F (rρ)⊗δF (λ̂)

)
: F (Ω(M ;C;C))⊗F (Ω(C;C;N))→ (M⊗C⊗N)×2

is a fibration, since δ is a fibration in every component and
(
F (ρ̂)⊗F (rλ), F (rρ)⊗

F (λ̂)
)

is a retract of
(
F (ρ̂⊗ rλ), F (rρ ⊗ λ̂)

)
. The equalizer diagram

(4.6) F (Ω(M ;C;C))⊗ F (Ω(C;C;N))
δF (bρ)⊗F (rλ)

⇒
F (rρ)⊗δF (bλ)

F (M)⊗ F (C)⊗ F (N)
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is therefore fibrant.
To conclude, observe that the natural transformation δ gives rise to an objectwise

weak equivalence from fibrant diagram (4.5) to fibrant diagram (4.6) and therefore
induces a weak equivalence on their limits. �

Example 4.60. (Working with the model structure on Ch(k) of Exercise 4.17) The
normalized chains functor C∗ : sSet → Ch(k) is an Eilenberg-Moore functor. It
clearly satisfies (EM1) and (EM5). The natural Alexander-Whitney transformation

fK,L : C∗(K × L)→ C∗(K)⊗ C∗(L)

gives the comonoidal structure of C∗(−) and is an acyclic fibration in each compo-
nent, so that (EM2) and (EM3′) hold. The section of f required for (EM4) is just
the Eilenberg-Zilber natural equivalence, ∇. A relatively simple argument shows

that if K
f

⇒
g
L is a fibrant equalizer diagram in sSet, then the natural, induced

map

C∗
(
equal(K

f

⇒
g
L)

) ∼−→ equal
(
C∗K

C∗f

⇒
C∗g

C∗L
)

is a quasi-isomorphism, i.e., (EM6) holds as well. In fact, it probably suffices to
suppose that f is a fibration in order to conclude that the induced map is a quasi-
isomorphism.
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