Algèbre linéaire, corrigé de la série 8

Jonathan Scott

12 décembre 2005

1. (a) Tout d'abord, on calcule dim ker T. Un vecteur $(x_1, x_2, x_3, x_4) \in \ker T$ si et seulement si $2x_1 = 3x_3$ et $x_2 = -x_4$ si et seulement si

$$(x_1, x_2, x_3, x_4) = ((3/2)x_3, -x_4, x_3, x_4) = x_3(3/2, 0, 1, 0) + x_4(0, -1, 0, 1).$$

Alors $\ker T = \operatorname{span}((3/2,0,1,0),(0,-1,0,1))$. C'est facile à voir que ((3/2,0,1,0),(0,-1,0,1)) est linéairement indépendante, donc une base de $\ker T$. Alors dim $\ker T = 2$. Selon la formule de dimension,

$$\dim \mathbb{F}^4 = \dim \ker T + \dim \operatorname{Im} T$$

$$4 = 2 + \dim \operatorname{Im} T$$

alors dim $\text{Im}\,T=2=\dim\mathbb{F}^2$. Par l'exercice 4 de la série 6, $\text{Im}\,T=\mathbb{F}^2$, c-à-d que T est surjective.

(b) On trouve que ((1,1,0,0,0),(0,0,1,1/2,1/3)) est une base de U alors dim U=2. S'il existe $T\in\mathcal{L}(\mathbb{F}^4,\mathbb{F}^2)$ telle que ker T=U, alors

$$\dim \mathbb{F}^5 = \dim \ker T + \dim \operatorname{Im} T$$

$$5 = 2 + \dim \operatorname{Im} T$$

alors dim $\operatorname{Im} T = 3$. Mais $\operatorname{Im} T$ est un sous-espace de \mathbb{F}^2 , donc dim $\operatorname{Im} T \leq 2$, contradiction.

2. Si $u \in \ker(T \circ S)$, alors $Su \in \ker T$. Alors on obtient, par restriction, une application linéaire $S' : \ker(T \circ S) \to \ker T$, et $\operatorname{Im} S' \subset \ker T$. Par la formule de dimension, on a

$$\dim \ker(T \circ S) = \dim \ker S' + \dim \operatorname{Im} S'.$$

Mais $\ker S' = \ker S$ (car $\ker S \subset \ker(T \circ S)$) et $\operatorname{Im} S' \subset \ker T$, alors

$$\dim \ker(T \circ S) \leq \dim \ker S + \dim \ker T.$$

3. (a) Supposons que T est injective. Soit (v_1, \ldots, v_m) une base de V. Par l'exercice 4(a) de la série $7, (Tv_1, \ldots, Tv_m)$ est linéairement indépendante. Supposons que dim W = n. On peut trouver des vecteurs w_{m+1}, \ldots, w_n tels que

$$(Tv_1,\ldots,Tv_m,w_{m+1},\ldots,w_n)$$

est une base de W. On définit $S: W \to V$ par $S(Tv_i) = v_i$ pour i = 1, ..., m, et $S(w_j) = 0$ pour j = m + 1, ..., n. Par construction, $S \circ T = \mathrm{Id}_V$ sur la base donnée. Il s'ensuit que $S \circ T = \mathrm{Id}_V$.

Réciproquement, si $S \circ T = \mathrm{Id}_V$, alors $S \circ T$ est injective, donc T est injective par l'exercice 2 de la série 1.

(b) Soit $T: \mathbb{R} \to \mathbb{R}^2$, Tu = (u, 0). On définit $S, S': \mathbb{R}^2 \to \mathbb{R}$ par

$$S(x,y) = x$$
 et $S'(x,y) = x + y$.

Alors S(Tu) = S(u,0) = u et S'(Tu) = S'(u,0) = u + 0 = u, mais $S \neq S'$ car S(1,1) = 1 tandis que S'(1,1) = 2, par exemple.

- (c) Supposons que T est surjective et soit (w_1, \ldots, w_n) une base de W. Alors, pour tout $i = 1, \ldots, n$, il existe $v_i \in V$ tel que $Tv_i = w_i$. On définit $S: W \to V$ par $Sw_i = v_i$. Alors $T(Sw_i) = Tv_i = w_i$ pour $i = 1, \ldots, n$. Il s'ensuit que T(Sw) = w pour tout $w \in W$.
- (d) Soit $T: \mathbb{R}^2 \to \mathbb{R}$, T(x,y) = x. On définit $S, S': \mathbb{R} \to \mathbb{R}^2$ par

$$Sx = (x, 0)$$
 et $S'x = (x, x)$.

Alors T(Sx) = T(x, 0) = x et T(S'x) = T(x, x) = x. Par contre, S(1) = (1, 0) mais S'(1) = (1, 1) alors $S \neq S'$.

- (e) $S = S \circ \operatorname{Id}_W = S \circ (T \circ S') = (S \circ T) \circ S' = \operatorname{Id}_V \circ S' = S'.$
- 4. (a) L'application nulle n'est pas inversible.
 - (b) On prend la composition pour l'opération binaire. Il faut montrer que GL(V) est stable pour la composition. Mais si S et T sont inversibles, on a vu dans le cours que $S \circ T$ est inversible, en fait, $(S \circ T)^{-1} = T^{-1} \circ S^{-1}$. Donc $S \circ T \in GL(V)$. Remarquons que Id_V est inversible, donc $\mathrm{Id}_V \in GL(V)$.
 - i. Puisque $T \circ \text{Id}_V = \text{Id}_V \circ T = T$ pour tout $T \in GL(V)$, Id_V est l'élément neutre par rapport à la composition.
 - ii. Puisque $T^{-1} \circ T = T \circ T^{-1} = \operatorname{Id}_V$, l'inverse T^{-1} est inversible (son inverse est T). Donc $T^{-1} \in GL(V)$.
 - iii. On sait déjà que la composition d'applications est associative.

En conclusion, GL(V) est un groupe par rapport à la composition.

5. Supposons que $\dim V = m$ et $\dim W = n$. Soit (v_1, \ldots, v_m) une base de V et soit (w_1, \ldots, w_n) une base de W. Pour $1 \le i \le m$ et $1 \le j \le n$ on définit

$$T_{ij}(v_k) = \begin{cases} w_j & i = k \\ 0 & i \neq k. \end{cases}$$

Nous allons montrer que $(T_{ij}) = (T_{11}, \ldots, T_{mn})$ est une base de $\mathcal{L}(V, W)$.

Si $T:V\to W$ est linéaire, et $1\leq k\leq m$, alors il existe $a_1,\ldots,a_m\in\mathbb{F}$ tels que

$$T(v_k) = a_{k1}w_1 + \dots + a_{kn}w_n$$

= $a_{k1}T_{k1}(v_k) + \dots + a_{kn}T_{kn}(v_k)$
= $(a_{k1}T_{k1} + \dots + a_{kn}T_{kn})(v_k)$.

Alors

$$T = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} T_{ij}$$

et donc $\mathcal{L}(V, W)$ est engendré par (T_{11}, \ldots, T_{mn}) . Si

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} T_{ij} = 0,$$

alors pour $k = 1, \ldots, m$,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} T_{ij}(v_k) = a_{k1} w_1 + \dots + a_{kn} w_n = 0$$

donc $a_{k1} = \cdots = a_{kn} = 0$ (car (w_j) est une base). Alors (T_{11}, \ldots, T_{mn}) est linéairement indépendante, donc une base. On conclut que

$$\dim \mathcal{L}(V, W) = mn = (\dim V)(\dim W).$$