Algèbre linéaire, corrigé de la série 12

Jonathan Scott

20 janvier 2006

- 1. (a) On remarque que T(0,0,1)=(0,0,1), alors 1 est bel et bien un valeur propre de T. Or, supposons que T(x,y,z)=(x,y,z). Donc $x=x-\sqrt{3}y,\ y=\sqrt{3}x+y$, et z=z. La première égalité signifie que y=0, donc la deuxième dit que x=0. Alors les vecteurs propres sont tous les vecteurs de la forme (0,0,z) pour $z\in\mathbb{R}$.
 - (b) $T(x, y, 0) = (x \sqrt{3}y, \sqrt{3}x + y, 0)$ donc $\{(x, y, 0) \mid x, y \in \mathbb{R}\}$ est invariant.
- 2. Vrai. Supposons que $U \neq 0, V$. On choisit une base (u_1, \ldots, u_m) de U et on la complète à une base $(u_1, \ldots, u_m, u_{m+1}, \ldots, u_n)$ de V. On définit $T: V \to V$ par $Tu_i = u_{m+1}$ si i = 1 et $Tu_i = 0$ autrement. Alors U n'est pas invariant pour T puisque $Tu_1 = u_{m+1} \notin U$.
- 3. Soit $v \in \ker(T \lambda \cdot \operatorname{Id}_V)$. Donc $Tv = \lambda v$. En appliquant S, $S(Tv) = S(\lambda v)$. Mais $S \circ T = T \circ S$ et S est linéaire, donc $T(Sv) = \lambda Sv$. Par conséquent, $Sv \in \ker(T \Lambda \cdot \operatorname{Id}_V)$ et ce noyau est invariant pour S.
- 4. On note E_{λ} l'espace propre associé à la valeur propre λ .
 - (a) Supposons qu'il existe $\lambda \in \mathbb{F}$ et un polynôme non-nul $a+bt \in \mathcal{P}_1(\mathbb{F})$ tels que $T(a+bt) = \lambda(a+bt)$. Alors $b+at=\lambda a+(\lambda b)t$. Par conséquent, $b=\lambda a$ et $a=\lambda b=\lambda(\lambda a)=\lambda^2 a$. Donc $(1-\lambda^2)a=0$. Si a=0 alors $b=\lambda a=\lambda 0=0$, et on a supposé que a+bt est non-nul. Alors $a\neq 0$, d'où $1-\lambda^2=(1+\lambda)(1-\lambda)=0$. Donc $\lambda=\pm 1$. Si $\lambda=1$, alors b=a, et

$$E_1 = \{a + at \mid a \in \mathbb{F}.$$

Si $\lambda = -1$, alors b = -a, et

$$E_{-1} = \{ a - at \mid a \in \mathbb{F} \}.$$

En conclusion, les valeurs propres de T sont 1 et -1.

(b) Supposons que $\lambda \in \mathbb{F}$ et que $\vec{0} \neq (z_1, z_2, z_3) \in \mathbb{F}^3$ t.q. $T(z_1, z_2, z_3) = \lambda(z_1, z_2, z_3)$. Alors $5z_1 = \lambda z_1, -z_3 = \lambda z_2$, et $0 = \lambda z_3$. De cette dernière équation, $\lambda = 0$ ou $z_3 = 0$. Si $\lambda = 0$, alors $-z_3 = 0 \cdot z_2$, donc $z_3 = 0$. Également, $5z_1 = 0 \cdot z_1$, donc $z_1 = 0$. Par conséquent, $(z_1, z_2, z_3) = (0, z_2, 0)$. Inversement, $T(0, z_2, 0) = (0, 0, 0)$, alors tout vecteur de la forme $(0, z_2, 0)$ est un vecteur propre associé à 0. Donc

$$E_0 = \{(0, z_2, 0) \mid z_2 \in \mathbb{F}\}.$$

On remarque que $E_0 = \ker T$.

Si $\lambda \neq 0$, alors $z_3 = 0$. Par conséquent, $\lambda z_2 = -z_3 = 0$. Alors $z_2 = 0$ car $\lambda \neq 0$. De plus, $\lambda z_1 = 5z_1$. On a supposé que $(z_1, z_2, z_3) \neq (0, 0, 0)$, et $z_2 = z_3 = 0$, donc $z_1 \neq 0$. Il s'ensuit que $\lambda = 5$. On remarque que $T(z_1, 0, 0) = (5z_1, 0, 0)$, alors

$$E_5 = \{(z_1, 0, 0) \mid z_1 \in \mathbb{F}\}.$$

Pour conclure, les valeurs propres de T sont 0 et 5.

(c) Supposons que $\lambda \in \mathbb{C}$ et que $(0,0,0) \neq (w_1,w_2,w_3) \in \mathbb{C}^3$ t.q. $T(w_1,w_2,w_3) = \lambda(w_1,w_2,w_3)$. Alors $w_3 = \lambda w_1$, $w_1 = \lambda w_2$, et $w_2 = \lambda w_3$. Donc $w_3 = \lambda(\lambda w_2) = \lambda^2(\lambda w_3) = \lambda^3 w_3$. On l'écrit sous la forme $(\lambda^3 - 1)w_3 = 0$. Si $w_3 = 0$, alors $w_2 = \lambda 0 = 0$ et $w_1 = \lambda 0 = 0$. Mais on a supposé que $(w_1, w_2, w_3) \neq (0, 0, 0)$. Donc $w_3 \neq 0$; il s'ensuit que $\lambda^3 - 1 = 0$. Pour trouver les racines complexes du polynôme $\lambda^3 - 1$ il faut le décomposer :

$$\lambda^{3} - 1 = (\lambda - 1)(\lambda^{2} + \lambda + 1)$$
$$= (\lambda - 1)(\lambda - \omega)(\lambda - \bar{\omega})$$

οù

$$\omega = \frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

et $\bar{\omega}$ est le conjugé complexe :

$$\omega = \frac{1}{2} - i \frac{\sqrt{3}}{2}.$$

On trouve ω et $\bar{\omega}$, par exemple, avec la formule quadratique. C'est un bon exercice de montrer que $\bar{\omega} = \omega^2$ et que $1 = \omega^3$. De toute façon, $\lambda = 1, \omega$, ou $\bar{\omega}$.

Si $\lambda = 1$, alors $w_1 = w_2 = w_3$, donc

$$E_1 = \{(w, w, w) \mid w \in \mathbb{C}\}.$$

Si $\lambda = \omega$, alors $w_3 = \omega w_1$, et $w_2 = \omega w_3 = \omega^2 w_1 = \bar{\omega} w_1$. Donc

$$E_{\omega} = \{ (w, \bar{\omega}w, \omega w) \mid w \in \mathbb{C} \}.$$

Finalement, si $\lambda = \bar{\omega}$, alors $w_3 = \bar{\omega}w_1$ et $w_2 = \bar{\omega}w_3 = \bar{\omega}^2w_1 = \omega w_1$. Donc

$$E_{\bar{\omega}} = \{(w, \omega w, \bar{\omega} w) \mid w \in \mathbb{C}\}.$$

En conclusion, les valeurs propres de T sont $1, \omega$, et $\bar{\omega}$, où ω est une racine primitive d'unité.

(d) Supposons que $\lambda \in \mathbb{F}$ et que $p(t) = a + bt + ct^2$ est un polynôme non-nul t.q. $T(p) = \lambda p$. Alors

$$t(b+2ct) = \lambda(a+bt+ct^2)$$

$$bt+2ct^2 = \lambda a + (\lambda b)t + (\lambda c)t^2.$$

Alors $\lambda a = 0$, $\lambda b = b$, et $\lambda c = 2c$.

Soit $\lambda = 0$, soit a = 0, puisque $\lambda a = 0$. Si $\lambda = 0$, alors $b = 0 \cdot b = 0$ et $c = (1/2) \cdot 0 \cdot c = 0$. Donc les vecteurs propres associés à $\lambda = 0$ sont les polynômes constants : T(a) = tD(a) = t(0) = 0. Donc $E_0 = \{a \mid a \in \mathbb{F}\}$.

Si $\lambda \neq 0$, alors a=0. Or, $\lambda b=b$, d'où $(\lambda-1)b=0$. Alors soit $\lambda=1$, soit b=0. Si $\lambda=1$, alors c=2c, donc c=0. On vérifie que T(bt)=tD(bt)=t(b)=bt, alors $bt\in E_1$. Donc

$$E_1 = \{bt \mid b \in \mathbb{F}\}.$$

Si $\lambda \neq 0, 1$, alors a = 0, b = 0 et $\lambda c = 2c$, c-à-d que $(\lambda - 2)c = 0$. Parce que p est un polynôme non-nul et a = b = 0, $c \neq 0$. Donc $\lambda = 2$, et $T(ct^2) = tD(ct^2) = t(2ct) = 2ct^2$. Alors

$$E_2 = \{ct^2 \mid c \in \mathbb{F}\}.$$

En conclusion, les valeurs propres de T sont 0, 1, et 2.

(e) Supposons que $\lambda \in \mathbb{F}$ et que $(x_1, \ldots, x_n) \in \mathbb{F}^n$ est non-nul, t.q. $T(x_1, \ldots, x_n) = \lambda(x_1, \ldots, x_n)$. Alors pour tout $i, \lambda x_i = x_1 + \cdots + x_n$. Donc, pour tout $i \neq 1, \lambda(x_1 - x_i) = 0$. Si $\lambda = 0$, alors $x_n = -x_1 - \cdots - x_{n-1}$, donc

$$E_0 = \{(x_1, \dots, x_{n-1}, -x_1 - \dots - x_{n-1}) \mid x_1, \dots, x_{n-1} \in \mathbb{F}\}.$$

Si $\lambda \neq 0$, alors $x_i = x_1$ pour tout i, et $T(x, \dots, x) = (nx, \dots, nx) = n(x, \dots, x)$. Donc $\lambda = n$ et

$$E_n\{(x,\ldots,x)\mid x\in\mathbb{F}\}.$$

Pour conclure, les valeurs propres de T sont 0 et n.

5. Supposons λ est une valeur propre de $S \circ T$. Alors il existe un vecteur non-nul $v \in V$ tel que $S(Tv) = \lambda v$.

Si Tv=0 alors S(Tv)=0, donc $\lambda=0$. En particulier, ni T ni $S\circ T$ n'est inversible. Il faut montrer que 0 est une valeur propre de $T\circ S$, c-à-d que $T\circ S$ n'est pas injectif. Si $T\circ S$ est injectif, alors il est surjectif. Donc T est surjectif. Mais V est de dimension finie, alors T est également injectif, contradiction, car Tv=0. Par conséquent, $T\circ S$ n'est pas injectif, et 0 est une valeur propre de $T\circ S$.

Supposons maintenant que $Tv \neq 0$. En appliquant T à l'équation $S(Tv) = \lambda v$, on trouve que $T(S(Tv)) = (T \circ S)(Tv) = T(\lambda v) = \lambda Tv$. Alors λ est une valeur propre de $T \circ S$.

La démonstration que toute valeur propre de $T \circ S$ est une valeur propre de $S \circ T$ est symétrique.

- 6. Soient (v_1, \ldots, v_n) une base de V. Par hypothèse, il existe $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$ tels que $Tv_i = \lambda_i v_i$ pour tout i. De plus, pour tout $i \neq 1$, $T(v_1 v_i) = \lambda(v_1 v_i) = \lambda v_1 \lambda v_i$. Mais $T(v_1 v_i) = Tv_1 Tv_i = \lambda_1 v_1 \lambda_i v_i$. Il s'ensuit que $\lambda = \lambda_1$ et $\lambda = \lambda_i$. Alors $\lambda_i = \lambda_1$ pour tout i. Donc $Tv = \lambda_1 v$ pour tout $v \in V$, c-à-d que T est un multiple scalaire de Id_V .
- 7. (a) Pour $0 \le i \le n-1$, on définit $\delta_i : \{0, \dots, n-1\} \to \mathbb{F}$ par $\delta_i(j) = 1$ si i = j et 0 autrement. On vérifie que $(\delta_0, \dots, \delta_{n-1})$ est une base de $\mathcal{F}(\{0, \dots, n-1\}, \mathbb{F})$, et donc l'espace est de dimension n. Puisque la dimension est invariant par les isomorphismes, dim V = n. Réciproquement, si dim V = n, on fixe une base (v_1, \dots, v_n) de V. On définit $T : V \to \mathcal{F}(\{0, \dots, n-1\}, \mathbb{F})$ par $T(v_i) = \delta_i$. Alors T est une bijection entre les bases, donc c'est un isomorphisme.
 - (b) On définit $T: \mathbb{F}^{\infty} \to \mathcal{F}(\mathbb{N}, \mathbb{F})$ par $T(x_1, x_2, \ldots) = f$, où $f(n) = x_{n+1}$. On vérifie que T est linéaire, et son inverse est l'application $S: \mathcal{F}(\mathbb{N}, \mathbb{F}) \to \mathbb{F}^{\infty}$ définie par $S(f) = (f(0), f(1), \ldots)$.
 - (c) Supposons que $\lambda \in \mathbb{F}$ et que $(z_1, z_2, \ldots) \in \mathbb{F}^{\infty}$ est un vecteur non-nul tel que

$$(z_2, z_3, \ldots) = (\lambda z_1, \lambda z_2, \ldots).$$

Alors $z_2 = \lambda z_1$, $z_3 = \lambda z_2 = \lambda^2 z_1$, et ainsi de suite; en générale, $z_k = \lambda^{k-1} z_1$. Donc, soit $\lambda \in \mathbb{F}$. Par le calcul ci-dessus, λ est une valeur propre de T, avec

 $\dim V$.

$$E_{\lambda} = \{(z, \lambda z, \lambda^2 z, \lambda^3 z, \ldots) \mid z \in \mathbb{F}\}.$$

(d) L'ensemble des valeurs propres, P, est exactement \mathbb{F} , et $\mathbb{F} = \mathbb{R}$ où $\mathbb{F} = \mathbb{C}$. Donc \mathbb{F} n'est pas dénombrable, tandis que \mathbb{N} est dénombrable. Alors $\operatorname{card} P > \operatorname{card} \mathbb{N} = \dim \mathbb{F}^{\infty}$. Par contre, pour un opérateur sur un espace vectoriel de dimension *finie*, on a toujours $\operatorname{card} P \leq$