Méthode simpliciale en algèbres de Lie

David Blanc University of Haifa

André Memorial Conference École Polytechnique Fédérale de Lausanne May 11, 2011

Joint work with H.-J. Baues, M. Johnson, and J. Turner.

Outline

We consider the question of how a given graded connected Lie algebra Λ (over \mathbb{Q}) can be realized as the homology of a differential graded Lie algebra (DGL) L_* .

Strategy

- ► Try to realize a free simplicial resolution G_• of Λ as a DGLA-resolution V_• (of the putative DGLA L_{*}).
- If this can be done, use Bousfield-Friedlander SS:

$$E_{s,t}^2 = \pi_s H_t V_{\bullet} = \pi_s G_{\bullet} = \begin{cases} \Lambda & s = 0 \\ 0 & s > 0 \end{cases} \Rightarrow H_{s+t} \| V_{\bullet} \|$$

Construct such a V_{\bullet} by induction on the simplicial dimension. At each stage, we can do one of two things:

- Use Dwyer-Kan-Stover obstruction theory, in terms of the André-Quillen cohomology of Λ.
- Use higher homotopy operations as obstructions to rectifying a finite directed diagram.

Goals

- ► To show that these two approaches are the same.
- ► To show how vanishing obstructions permit rectification.

Dictionary to generalization:

DG Lie algebras	Q-homotopy theory	Homotopy theory
$DGLA\;(\boldsymbol{L}_*,\partial)\in\mathcal{DGL}$	$X_{\mathbb{Q}} \in \mathcal{T}\textit{op}_{\mathbb{Q}}$	Space $X \in T$ op
$H_*L_* = [\mathcal{L}\langle x^k angle, L_*]$	$\pi_{k}\Omega X_{\mathbb{Q}}$	$\pi_* X$
$GLA\;\Lambda=\textit{H}_{*}\textit{L}_{*}\in\mathcal{GL}$	GLA $\Lambda = \pi_* \Omega X_{\mathbb{Q}}$	<mark>Π</mark> -algebra π _∗ Χ
Free GLA $\mathcal{L}\langle \mathbf{x}^{n_i} \rangle_{i \in I}$	$\pi_* \bigvee_{i \in I} S^{n_i}_{\mathbb{O}}$	$\pi_* \bigvee_{i \in I} S^{n_i}$
$(\mathcal{L}\langle \mathbf{x}^{n_i} angle_{i \in I}, \partial = 0)$?	$\bigvee_{i \in I} S_{\mathbb{Q}}^{n_i}$	V _{i∈I} S ⁿ i

Simplicial constructions

For a simplicial object X.:

- ► The *n*-th Moore chains objects is $\mathbf{C}_n X_{\bullet} := \bigcap_{i=1}^n \operatorname{Ker} \{ d_i : X_n \to X_{n-1} \}$, with differential $\partial_n := (d_0)|_{\mathbf{C}_n X_{\bullet}} : \mathbf{C}_n X_{\bullet} \to \mathbf{C}_{n-1} X_{\bullet}$
- ► The *n*-th *Moore cycles* objects is $Z_n X_{\bullet} := \bigcap_{i=0}^n \operatorname{Ker} \{ d_i : X_n \to X_{n-1} \}.$
- ► The *n*-th matching object is $\mathbf{M}_n X_{\bullet} := \{(x_0, ..., x_n) \in (X_{n-1})^{n+1} | d_i x_j = d_{j-1} x_i \ 0 \le i < j \le n\}.$ All face maps on X_n factor through $\delta_n : X_n \to \mathbf{M}_n X$. X_{\bullet} is *Reedy fibrant* if each δ_n is a fibration.
- Dually, the n-th latching object is
 - $L_n X_{\bullet} := \coprod_{0 \le i \le n-1} X_{n-1} / \sim, \text{ where } [s_J x]_i \sim [s_l x]_j \Leftrightarrow s_i s_J = s_j s_l.$

All degeneracies to X_n factor through $\sigma_n : L_n X_{\bullet} \to X_n$.

An *n*-th *CW* basis object is X_n, equipped with an attaching map d₀^{X_n} : X_n → X_{n-1}, such that X_n = X_n ∐ L_nX_•, (d₀)|_{X_n} = d₀^{X_n} and (d_i)|_{X_n} = 0 for i ≥ 1. Note that d₀^{X_n} factors through Z_{n-1}X_• ⊆ C_{n-1}X_•.

∞ -commutative diagrams

Assume given a simplicial resolution $G_{\bullet} \rightarrow \Lambda$, with free GLA CW basis $(\overline{G}_k)_{k=0}^{\infty}$, and let $\tau_{n+1} V_{\bullet}$ be an strict (n+1)-truncated simplicial DGLA realizing G, through dim n + 1. Choose some free DGLA \overline{V}_{n+2} realizing \overline{G}_{n+2} , with attaching map $\overline{d}_0^{V_{n+2}}$: $\overline{V}_{n+2} \to V_{n+1}$ realizing $\overline{d}_0^{G_{n+2}}$: $\overline{G}_{n+2} \to G_{n+1}$ up to homotopy (possible, since \overline{G}_{n+2} is free). We get a lax(n+2)-truncated simplicial DGLA $\tilde{V}_{\bullet}^{(n+2)}$, with $d_i^{n+1} \circ \overline{d}_0^{V_{n+2}} \sim 0$ ($i \ge 0$) only up to homotopy. If we can choose nullhomotopies $\eta_i : d_i^{n+1} \circ \overline{d}_0^{V_{n+2}} \sim 0$, relative homotopies $\eta_{i,i}$: $d_i \circ \eta_i \sim d_{i-1} \circ \eta_i$ (*i* < *j*), and so on, we say that we have made $\tilde{V}_{\bullet}^{(n+2)} \infty$ -homotopy commutative.

Theorem (Boardman-Vogt, Dwyer-Kan-Smith, Chachólski-Scherer) $An \propto$ -homotopy commutative diagram can be rectified.

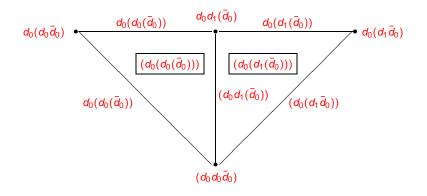
Idea: For each ϕ : $\mathbf{n} + \mathbf{2} \to \mathbf{k}$ in Δ^{op} , we use the simplicial enrichment in \mathcal{DGL} to assemble the higher homotopies into a map ψ_{ϕ} : Cone $(\mathbb{P}^{n-k+1}) \to \max(\overline{V}_{n+2}, V_k)$.

Permutohedra

Here \mathcal{P}^m is the (m-1)-dimensional permutohedron, whose vertices correspond to permutations on $(1, \ldots, m)$. Cone (\mathcal{P}^m) is the cone on its standard triangulation.

Example (m = 1):

The 1-permutohedron is an interval (subdivided in the triangulation), so $Cone(\mathcal{P}^1)$ has two 2-simplices:

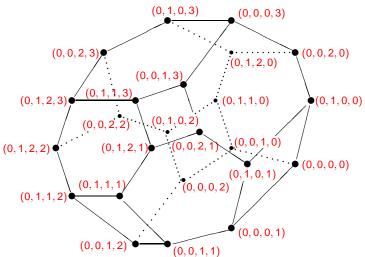


For m = 3: $((d_0)(d_1))((d_2))$ $((d_0)((d_0))((d_2)))$ $(d_0d_1)(d_2)$ $(d_0)(d_1)(d_2)$ $(d_0)(d_0)(d_2)$ $((d_0))((d_0)(d_2))$ $((d_0))((d_1)(d_2))$ $((d_0)(d_1)(d_2))$ $(d_0)(d_1d_2)$ $(d_0)(d_0d_2)$ $((d_0)(d_1d_2))$ $((d_0))((d_1)(d_0))$ $((d_0))((d_1)(d_1))$ $(((d_0))((d_1)(d_1)))$ $(d_0 d_1 d_2)$ $(d_0)(d_1)(d_1)$ $(d_0)(d_1)(d_0)$ $((d_0)(d_1)(d_1))$ $(((d_0)(d_1))((d_1)))$ $((d_0)(d_1))((d_1))$ $((d_0)(d_1))((d_0))$ $((d_0)(d_1d_2))$ $(d_0d_1)(d_0)$ $(d_0 d_1)(d_1)$ $((d_0)(d_0))((d_0))$ $((d_0)(d_0))((d_1))$ $(d_0)(d_0)(d_0)$ $(d_0)(d_0)(d_1)$ $(d_0)(d_0d_1)$ $((d_0)((d_0))((d_1))$ $((d_0)((d_0))((d_0))$

The 2-dimensional permutohedron

The 3-dimensional permutohedron

For m = 4:



Higher homotopy operations

The permutohedron \mathcal{P}^m is a convex polytope, whose boundary consists of products of lower-dimensional permutohedra. Thus the pointed maps $\psi_{\phi} : \operatorname{Cone}(\mathcal{P}^{n-k}) \to \operatorname{map}(\overline{V}_{n+2}, V_{k-1})$ fit together to form $\psi'_{\phi'} : \partial \operatorname{Cone}(\mathcal{P}^{n-k+1}) \to \operatorname{map}(\overline{V}_{n+2}, V_{k-2})$.

Fact: Its adjoint $\tilde{\psi'}: \Sigma^{n-k+1}\overline{V}_{n+2} \to V_{k-2}$ is null-homotopic iff the ψ_{ϕ} 's extend to $\psi_{\phi'}: \text{Cone}(\mathcal{P}^{n-k+1}) \to \text{map}(\overline{V}_{n+2}, V_{k-2})$. If this happens at each stage, we obtain a map (from the wedge over all composite face maps $\phi: \mathbf{n} + \mathbf{1} \to \mathbf{0}$ in Δ^{op}):

$$\Psi: \bigvee_{\phi} \Sigma^n \overline{V}_{n+2} \to V_0 \; .$$

Definition: The (n + 1)-st order homotopy operation associated to $\tilde{V}_{\bullet}^{\langle n+2 \rangle}$ is the set $\langle \langle \tilde{V}_{\bullet}^{\langle n+2 \rangle} \rangle \rangle \subseteq [\bigvee_{\phi} \Sigma^n \overline{V}_{n+2}, V_0]$ of all such Ψ .

Theorem

The higher homotopy operation $\langle \langle \tilde{V}_{\bullet}^{\langle n+2 \rangle} \rangle$ vanishes (that is, contains 0) if and only if $\tau_{n+1} V_{\bullet}$ extends to $\tau_{n+2} V_{\bullet}$ realizing G_{\bullet} through dim n + 2.

André-Quillen cohomology

Definition: For $X \in C = Top$, \mathcal{GL} , or \mathcal{DGL} , $\Lambda = \pi_*X$, and any Λ -module M, \exists Eilenberg-Mac Lane objects $E_{\Lambda}(M, n) \in sC$, and the *n*-th André-Quillen cohomology group of X is $H^n_{AQ}(X; M) = [W_{\bullet}, E_{\Lambda}(M, n)]_{sC/\Lambda}$, (for W_{\bullet} a resolution of X). Fact: When C is "algebraic" (=with an underlying group structure) we calculate $H^*_{AQ}(G_{\bullet}; K)$ via its Moore cochains $Hom(C_*G_{\bullet}, K)$; if G_{\bullet} has free CW basis $(\overline{G}_n)_{n=0}^{\infty}$, its normalized chains are isomorphic to $Hom(\overline{G}_*, K)$.

Definition: for any GLA Λ and n > 0, $\Omega^n \Lambda$ is the graded Λ -module given by $(\Omega^n \Lambda)_i = \Lambda_{n+i}$

Recall The *n*-th *Postnikov section* $\mathbf{P}^n W_{\bullet}$ of a Reedy fibrant simplicial (D)GLA W_{\bullet} is its (n + 1)-coskeleton, with $(\mathbf{P}^n W_{\bullet})_i = W_i$ for $i \le n$, and $(\mathbf{P}^n W_{\bullet})_{n+1} = \mathbf{M}_{n+1} W_{\bullet}$.

Lemma: The *n*-th *k*-invariant of $W_{\bullet} \in s\mathcal{GL}$ is the class $k_n \in H^{n+2}_{AQ}(\mathbb{P}^n X_{\bullet}; \pi_{n+1} W_{\bullet})$ sending $\sigma \in W_{n+1}$ to α_{σ} in $\pi_n W_{\bullet}$, represented by matching set $(d_0\sigma, \ldots, d_{n+1}\sigma)$ in $\mathbb{M}_{n+1} W_{\bullet}$.

Cohomology obstructions

Definition: An (n-1)-semi-Postnikov section for a GLA Λ is a simplicial DGLA $V_{\bullet}^{\langle n-1 \rangle}$ with $V_{\bullet}^{\langle n-1 \rangle} \simeq \mathbf{P}^{n-1} V_{\bullet}^{\langle n-1 \rangle}$ such that

$$\pi_k H_* V_{\bullet}^{\langle n \rangle} \cong \begin{cases} \Lambda & \text{for } k = 0, \\ \Omega^n \Lambda & \text{for } k = n+1, \\ 0 & \text{otherwise }. \end{cases}$$
(1)

Example: If W_{\bullet} realizes G_{\bullet} through simplicial dimension n + 1, then $\operatorname{csk}_{n} W_{\bullet} = \mathbf{P}^{n-1} W_{\bullet}$ is an (n - 1)-semi-Postnikov section for Λ .

Theorem: An (n - 1)-semi-Postnikov section $V_{\bullet}^{\langle n-1 \rangle}$ extends to an *n*-semi-Postnikov section $V_{\bullet}^{\langle n \rangle}$ iff the simplicial GLA $H_*V_{\bullet}^{\langle n-1 \rangle}$ has trivial *n*-th *k*-invariant.

Remark: By (1), we have a w.e. $f : G_{\bullet} \simeq \tilde{P}^{n}H_{*}V_{\bullet}^{\langle n-1 \rangle}$, mapping G_{n+1} to the matching set $(d_{0}^{V_{n+1}}, \ldots, d_{n}^{V_{n+1}})$ in $\mathbb{M}_{n+1}V_{\bullet}^{\langle n-1 \rangle}$. Thus by the Lemma, k_{n} "is" $d_{0}^{V_{n+1}} \circ \bar{d}_{0}^{\overline{V}_{n+2}} : \overline{V}_{n+2} \to \mathbb{Z}_{n}V_{\bullet}^{\langle n \rangle}$.

Lemma (Stover)

For any fibrant simplicial DGLA W_{\bullet} , the inclusion induces an isomorphism on Moore chains $H_*C_kW_{\bullet} \simeq C_kH_*W_{\bullet}$.

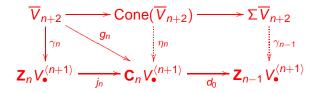
Question: How does $\gamma_n := d_0^{V_{n+1}} \overline{d}_0^{\overline{V}_{n+2}} : \overline{V}_{n+2} \to \mathbf{Z}_n V_{\bullet}^{\langle n \rangle}$ represent a collection of classes in $\Omega^n \Lambda$?

Idea: Since $H_* V_0^{\langle n \rangle} = G_0$ maps onto Λ , it is enough to find a map $\Sigma^n \overline{V}_{n+2} \rightarrow V_0^{\langle n \rangle}$, as follows:

The algebraic attaching map $\overline{d}_0^{\overline{G}_{n+2}}$ lands in $\mathbb{Z}_{n+1}G_{\bullet}$, but we cannot guarantee that the DGLA realization $\overline{d}_0^{\overline{V}_{n+2}}$ lands in $\mathbb{Z}_{n+1}V_{\bullet}^{\langle n \rangle}$ (which would mean that $\widetilde{V}_{\bullet}^{\langle n+2 \rangle}$ realizes $\tau_{n+2}G_{\bullet}$). However, by Stover's Lemma $\overline{d}_0^{\overline{V}_{n+2}}$ can be chosen to land in $\mathbb{C}_{n+1}V_{\bullet}^{\langle n \rangle}$, so $d_i^{n+1}\overline{d}_0^{\overline{V}_{n+2}} = 0$ on the nose for $i \geq 1$.

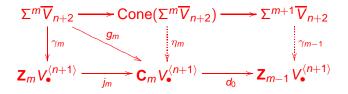
Ladder diagrams

Consider the solid commutative diagram:



- ► By the Lemma we can choose a nullhomotopy η_n for $g_n := j_n \circ \gamma_n$
- Since $d_0^{V_n} d_0^{V_{n+1}} \overline{d}_0^{\overline{V}_{n+2}} = 0$, η_n induces a map γ_{n-1} from the suspension $\Sigma \overline{V}_{n+2} \cong \text{Cone}(\overline{V}_{n+2})/\overline{V}_{n+2}$.
- ► **G** is acyclic, so $d_0 : \mathbf{C}_n[\Sigma \overline{V}_{n+2}, V_{\bullet}^{\langle n+1 \rangle}] \to \mathbf{Z}_{n-1}[\Sigma \overline{V}_{n+2}, V_{\bullet}^{\langle n+1 \rangle}]$ is onto. So by the Lemma $\exists \alpha : \Sigma \overline{V}_{n+2} \to \mathbf{C}_n V_{\bullet}^{\langle n+1 \rangle}$ with $d_0 \alpha = -\gamma_{n-1}$.
- Replacing η_n by η_n⊤α makes the new j_{n-1} ∘ γ_{n-1} nullhomotopic.

Continue inductively for all m > 0 to:



yields $\gamma_0: \Sigma^n \overline{V}_{n+2} \to V_0^{\langle n \rangle}$.

Composing with the augmentation ε : H₀V₀⁽ⁿ⁾ = G₀ → Λ and taking adjoints yields the required map G_{n+2} → ΩⁿΛ.

Summary: The above choices (starting with $\bar{d}_0 = \bar{d}_0^{\overline{V}_{n+2}}$) yield

- A 1-nullhomotopy η_n : $d_0 \overline{d}_0 \sim 0$, with $d_i \overline{d}_0 = 0$ for $i \ge 1$.
- A 2-nullhomotopy η_{n-1} : $d_0\eta_n \sim 0$, with $d_i\eta_{n-1} = 0$ for $i \ge 1$.
- A 3-nullhomotopy η_{n-2} : $d_0\eta_{n-1} \sim 0$, and so on.

Minimal values and the comparison homomorphism

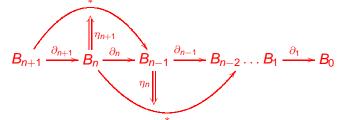
Definition: From $(\eta_{n-i})_{i=0}^{n}$ (and all other homotopies trivial), we obtain a *minimal value* of the (n + 1)-st order higher homotopy operation $\langle \langle \tilde{V}_{\bullet}^{\langle n+2 \rangle} \rangle \rangle$ which is zero on all wedge summands but $\phi = d_0 d_0 \dots d_0$.

Definition: For $\varepsilon : G_{\bullet} \to \Lambda$ and $\tilde{V}_{\bullet}^{\langle n+2 \rangle}$ as above, the comparison homomorphism $\Phi : [\Sigma^n \overline{V}_{n+2}, V_0] \to H^{n+2}_{AQ}(\Lambda; \Omega^n \Lambda)$ is the composite of

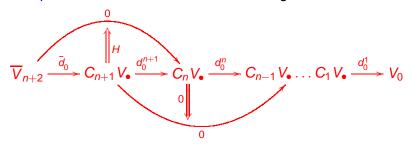
$$\begin{split} [\Sigma^{n}\overline{V}_{n+2},V_{0}] &\cong [\overline{V}_{n+2},\Omega^{n}V_{0}] \cong \operatorname{Hom}_{\mathcal{GL}}(H_{*}\overline{V}_{n+2},H_{*}V_{0}) \\ &\cong \operatorname{Hom}_{\mathcal{GL}}(\overline{G}_{n+2},\Omega^{n}G_{0}) \xrightarrow{\varepsilon_{*}} \operatorname{Hom}_{\mathcal{GL}}(\overline{G}_{n+2},\Omega^{n}\Lambda) \\ &\longrightarrow H^{n+2}_{AQ}(\Lambda;\Omega^{n}\Lambda) \end{split}$$

Fact: Φ takes a minimal value of $\langle \langle \tilde{V}_{\bullet}^{\langle n+2 \rangle} \rangle \rangle$ to the obstruction $k_n \in H^{n+2}_{AQ}(\Lambda; \Omega^n \Lambda)$.

Definition: A long Toda bracket is the higher homotopy operation $\langle\!\langle B_* \rangle\!\rangle$ for a higher-order chain complex B_* :



 B_* is *fibrant* if each $\partial'_k : B_k \to Z_{k-1}B_* := \text{Ker } \partial_{k-1}$ is a fibration. Example: Minimal values as above are long Toda brackets for:



Proposition

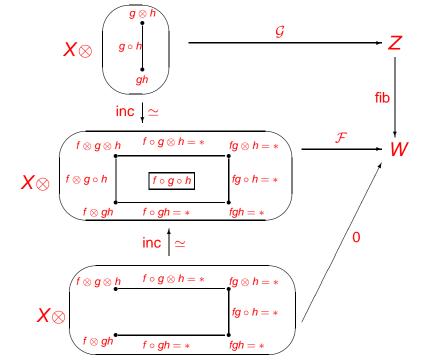
A fibrant higher chain x B_* is rectifiable (without changing objects) iff $\langle\!\langle B_* \rangle\!\rangle$ vanishes.

Proof:

By induction on *n* we may assume that B_* has been rectified from B_n down.

For simplicity, consider the usual Toda diagram:

We use cubical notation (as for W-construction): $f \times g$ is (cubical) composition, fg is chosen representative for composite, and $f \circ g$ is homotopy $f \otimes g$ and fg.



Difference obstructions

Assume we have two different (n + 2)-realizations $V_{\bullet}^{(a)}$ and $V_{\bullet}^{(b)}$ of $G_{\bullet} \to \Lambda$, with same (n+1)-coskeleton W_{\bullet} , and Postnikov fibrations $p_{n+1}^{(t)}: V_{\bullet}^{(t)} \to W_{\bullet}$, determined by the attaching maps $\overline{d}_0^t : \overline{V}_{n+2} \to \mathbb{Z}_{n+1} V_{\bullet}^{\langle t \rangle} = \mathbb{Z}_{n+1} W_{\bullet}$ (t = a, b). Fact: This is equivalent to choosing sections $s^{(t)}: \widetilde{B}\Lambda \to H_*W_{\bullet} \simeq \widetilde{E}(\Omega^{n+1}\Lambda, n+2)$ (t = a, b).Theorem: The difference obstruction $\delta_n = [\mathbf{s}^{(a)} - \mathbf{s}^{(b)}]$ vanishes in $H^{n+2}_{\Lambda O}(\Lambda, \Omega^{n+1}\Lambda)$ iff $V^{\langle a \rangle}_{\bullet} \simeq V^{\langle b \rangle}_{\bullet}$ (rel W_{\bullet}). Fact: δ_n is represented by $\overline{\delta} := \overline{d}_0^a - \overline{d}_0^b : \overline{V}_{n+2} \to \mathbb{Z}_{n+1} W_{\bullet}$. Idea: Define a lax (n+3)-truncated simp. CW object \tilde{Y}_{\bullet} by $\tau_{n+1}\tilde{Y}_{\bullet} = \tau_{n+1}W_{\bullet}, \ Y_{n+2} = Z_{n+1}W_{\bullet}, \text{ and } \overline{Y}_{n+3} = \overline{V}_{n+2}, \text{ with }$ attaching map δ . Get: Higher operation $\langle \langle \tilde{Y}_{\bullet} \rangle \rangle$ with minimal value in $[\Sigma^{n+1}\overline{V}_{n+2}, V_0]$ corresponding to δ_n , and: $\langle \langle \tilde{Y}_{\bullet} \rangle \rangle$ vanishes $\Leftrightarrow \tilde{Y}_{\bullet}$ rectifiable $\Leftrightarrow V_{\bullet}^{\langle a \rangle} \simeq V_{\bullet}^{\langle b \rangle}$ (rel W_{\bullet}).

Interpreting Postnikov sections

Question: if V_{\bullet} realizes G_{\bullet} , and so $X := ||V_{\bullet}||$ realizes Λ , what does $\mathbb{P}^{n}V_{\bullet}$ tell us about X?

Theorem

An *n*-semi-Postnikov section for Λ determines the *n*-stem of *X*: that is, the *n*-windows $\mathbf{P}^{n+k}X\langle k-1\rangle$ ($k \ge 0$)

Remark: A special feature of DGLAs: unlike spaces, each GLA Λ has a prefered *coformal model* $L_* = (\Lambda, 0)$. For free GLAs, these DGLAs are cofibrant.

Thus G_{\bullet} always has a prefered DGLA realization V_{\bullet} , in which all higher homotopy operations vanish, so the same is true for $X = ||V_{\bullet}||$. Note that V_{\bullet} is not usually Reedy fibrant, so this is not visible in Postnikov version.

However, we can use the comparison homomorphism to get:

Fact: if W_{\bullet} is another realization of G_{\bullet} with $Y = ||W_{\bullet}||$ and $P^{n}W_{\bullet} \simeq P^{n}V_{\bullet}$, the *n*-stem of Y is coformal, and so has vanishing higher homotopy operations.