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Outline

We consider the question of how a given graded connected Lie
algebra A (over Q) can be realized as the homology of a
differential graded Lie algebra (DGL) L..

Strategy

» Try to realize a free simplicial resolution G, of A as a
DGLA-resolution V, (of the putative DGLA L..).

» If this can be done, use Bousfield-Friedlander SS:
AN s=0
E2. = msHiVe = msGe = = Hst||Ve
st — st T's 0 s>0 s+t” ”

Construct such a V, by induction on the simplicial dimension.
At each stage, we can do one of two things:

» Use Dwyer-Kan-Stover obstruction theory, in terms of the
André-Quillen cohomology of A.

» Use higher homotopy operations as obstructions to
rectifying a finite directed diagram.



Goals

» To show that these two approaches are the same.
» To show how vanishing obstructions permit rectification.

Dictionary to generalization:

DG Lie algebras Q-homotopy theory | Homotopy theory

DGLA (L.,0) € DGL Xog € Topg Space X € Top

H.L. = [£(x9), L] mQXg X

GLAAN=H.,L, € GL | GLAA=7.0Xg lN-algebra . X

Free GLA £(x")i¢ ™ Viel Sg T Vig S™

(L)1, 0 =0)? Vi, S Vi, S




Simplicial constructions
For a simplicial object X,:
» The n-th Moore chains objects is
CnXe = N, Ker{d; : Xy — X;_1}, with differential
Oh = (dO)’CnX.3 CnhXe — Ch_1Xe
» The n-th Moore cycles objects is
ZnXe = Ny Ker{d; : Xnp — Xn_1}.
» The n-th matching objectis M X, == {(Xo,...,Xn) €
(Xn_l)n+l ’ din = dj,lxi 0<i <j < n}.
All face maps on X, factor through 6, : X5, — MpX.
X, is Reedy fibrant if each ¢, is a fibration.
» Dually, the n-th latching object is
LnXe = [lo<icn_1Xn-1/ ~, where
[sax]i ~ [siX]j < sis; = sjs).
All degeneracies to X,, factor through oy, : Ly Xe — X;.
» An n-th CW basis object is X, equipped with an attaching
map d)" : X, — X,_1, such that X, = X, 1T L X,
(do)[y, = dg™ and (dj)[¢ =0 fori > 1.
Note that dxn factors through Z,,_1 X, C Cp_1X,.



oco-commutative diagrams

Assume given a simplicial resolution G, — A, with free GLA
CW basis (Gy )2, and let 7.1V, be an strict (n + 1)-truncated
simplicial DGLA realizing G, through dimn + 1.

Choose some free DGLA V., realizing G, », with attaching
map c_i(\)/”+2 Vii2 — Vays realizing aOGM Gny2 — Gpiaupto
homotopy (possible, since G, , is free).

We get a lax (n + 2)-truncated simplicial DGLA V"2, with
d"to 68/”” ~ 0 (i > 0) only up to homotopy.

If we can choose nullhomotopies 7; : d"* o a(\)/”” ~ 0, relative
homotopies 7; j : dj o7 ~ dj_1 o7 (i <]), and so on, we say

that we have made V." "2 so-homotopy commutative.

Theorem (Boardman-Vogt, Dwyer-Kan-Smith, Chacholski-Scherer)
An oco-homotopy commutative diagram can be rectified.

Idea: Foreach ¢ :n+2 — kin A°, we use the simplicial
enrichment in DG L to assemble the higher homotopies into a
map v : Cone(P"*+1) — map(Vny2, Vi)



Permutohedra

Here P™ is the (m — 1)-dimensional permutohedron, whose
vertices correspond to permutations on (1,...,m).
Cone(P™) is the cone on its standard triangulation.
Example (m = 1):

The 1-permutohedron is an interval (subdivided in the
triangulation), so Cone(?*) has two 2-simplices:

dod1(do) 5

_ do(do(d do(dq(d _
do(dodo) o(do(do)) o(d1(do)) do(dy o)
(do(do(@))) | | [ (do(ca(@)))
do(do(do)) (Ao (@) Ado(c o))

(dododo)



The 2-dimensional permutohedron

Form = 3:
((do)(d1))((d2)) ((do)((do))((d2))
(do)(d1)(d2) l (dod1)(d2) o (do)(do)(d2)
((do))((d1)(d2)) ((do))((do)(d2))
((do)(dy)(d2))
(do)(d1d2) R (do)(dod2)
((do))((dy)(d1)) ((dO)(dldz\)) ((do))((d1)(do))
(((do))((d1)(d1)))
(do)(d1)(d1) € ((do)(d1)(d1)) (do)(d1)(do)
(((do)(d1))((d1)))
((do)(d1))((d1)) ((do)(d1))((do))
((do)(d1dy2))
(dod1)(d1) (dod1)(do)
((do)(do))((d1)) ((do)(do))((do))

(do)(do)(d1) T T (do)(do)(do)



The 3-dimensional permutohedron
Form = 4:




Higher homotopy operations

The permutohedron P™ is a convex polytope, whose boundary
consists of products of lower-dimensional permutohedra.

Thus the pointed maps ¢, : Cone(P"*) — map(V na2, V1) fit
together to form 1/) 10 Cone(P"**+1) — map(V o, Vi_2).

Fact: Its adjoint u Sy - k+1vn+2 — Vi _» is null-homotopic iff
the ,'s extend to 1, : Cone(P" K1) — map(V .2, Vi _2).

If this happens at each stage, we obtain a map (from the wedge
over all composite face maps ¢ : n +1 — 0 in A°P):

v \/ Y™V — Vo .

é

Definition: The (n + 1)-st order homotopy operation associated
to V" is the set (V.""7) C [\, £"V .2, Vo] of all such v,

Theorem

The higher homotopy operation (\V.""?)) vanishes (that is,
contains 0) if and only if 7,1V, extends to 7, ,V, realizing G,
through dim n + 2.



André-Quillen cohomology

Definition: For X € C =7op, GL, or DGL, A = 7, X, and any
A-module M, 3 Eilenberg-Mac Lane objects EA(M,n) € sC, and
the n-th André-Quillen cohomology group of X is

Hao(X: M) = [We, EA(M, n)]sc/n, (for W, a resolution of X).
Fact: When C is “algebraic” (=with an underlying group
structure) we calculate H,(G.; K) via its Moore cochains
Hom(C.G,,K); if G, has free CW basis (Gn);2 ), its
normalized chains are isomorphic to Hom(G..,K).

Definition: for any GLA A and n > 0, Q"A is the graded
A-module given by (Q"A); = Ap

Recall The n-th Postnikov section P"W, of a Reedy fibrant
simplicial (D)GLA W, is its (n + 1)-coskeleton, with

(P"W, )i =W, fori < n,and (P"W,)n11 = Mp1W,.
Lemma: The n-th k-invariant of W, € sGL is the class

kn € HAGZ(P"Xe; i1 W) sending o € Wi g to a, in mW,
represented by matching set (dgo, ..., dp10) In My 1 W,.



Cohomology obstructions
Definition: An (n — 1)-semi-Postnikov section for a GLA Ais a

simplicial DGLA V"% with V{" ™Y ~ pn-1v "1 sych that
A for k =0,
mH VY = QA for k =n 1, (1)
0 otherwise .

Example: If W, realizes G, through simplicial dimension n + 1,
then csk, W, = P"~1W, is an (n — 1)-semi-Postnikov section
for A.

Theorem: An (n — 1)-semi-Postnikov section V" extends to
an n-semi-Postnikov section V.<n> iff the simplicial GLA

H. V""" has trivial n-th k-invariant.

Remark: By (1), we haveaw.e.f: G, ~ PrH, VY, mapping
Gp.1 to the matching set (dy™, ..., dy™")in My V3",

Thus by the Lemma, k;, “is” d(\)/”*l dVn+2 Vo — Zn V< )



Lemma (Stover)

For any fibrant simplicial DGLA W,, the inclusion induces an
isomorphism on Moore chains H,C W, ~ C H.W,.

Question: How does 7, := d(;/”“a(\)/”+2 Vi — ZnV.<n>
represent a collection of classes in Q"A?
Idea: Since H*Vén> = Gg maps onto A, it is enough to find a

(n)

map X"V, — V", as follows:

The algebraic attaching map 606”*2 lands in Z,, 1 G,, but we
cannot guarantee that the DGLA realization aovw lands in
Zn+1V (WhICh would mean that V<n+2> realizes m,,,G,).
However, by Stover's Lemma d0 "*# can be chosen to land in
Cra1Ve", s0 di”“aov”*z — 0 on the nose fori > 1.



Ladder diagrams
Consider the solid commutative diagram:

Vini2 Cone(Vn42) Zv_n+2

n :7n in—-1
Y Y

va.<n+1> Cnv.(n+l> —do> Zn,1V.<n+l>

in

» By the Lemma we can choose a nullhomotopy 7, for
On :==Jn M

» Since dy"dy""*dy "** = 0, 7, induces a map 4, 1 from the
suspension XV ., = Cone(Vi2)/Vnio.

» G, is acyclic, so
do : Cn[ZVneo, VY] = 70 12V . V] is onto. So
by the Lemma Jo : ¥V, o — CnV.<n+1> with dgav = —vyn_1.

» Replacing 7, by 17, Ta makes the new j, 1 oy,1
nullhomotopic.



» Continue inductively for all m > 0 to:

Ym Tm SYm—1
Y v

V<n+1> Cmv.(n+l> . Zm,1V.<n+1>

mVe

jm
yields Yo : van+2 — Vém
» Composing with the augmentation ¢ : HOVé”> =Gy — A
and taking adjoints yields the required map G, » — Q"A.
Summary: The above choices (starting with d, = aovw) yield

» A 1-nullhomotopy 7, : dod, ~ O, with did, = 0 fori > 1.
» A 2-nullhomotopy 7n_1 : donn ~ 0, with din,_, = 0 fori > 1.
» A 3-nullhomotopy 7,_> : dgnn—1 ~ 0, and so on.



Minimal values and the comparison homomorphism

Definition: From (7,_;){'_, (and all other homotopies trivial), we
obtain a minimal value of the (n + 1)-st order higher homotopy
operation ((V.""?")) which is zero on all wedge summands but
¢ = dodo ... d,.

Definition: For ¢ : G, — A and V.""? as above, the
comparison homomorphism @ : [Z"V 15, Vo] — HALZ(A; Q"A)
is the composite of

[Z"Vni2. Vol = Va2, Q"Vo] = Homge(H. V2, HiVo)
=~ Homg.(Gny2, 2"Go) == Homg.(Gny2, Q"A)
— HAZ (A Q™A

Fact: ¢ takes a minimal value of (V.""?)) to the obstruction
kn € HAGZ(A; Q"A).



Definition: A Iong Toda bracket is the higher homotopy

operation ((B..) for a higher-order chain complex B,:
n an n— 8
Bny1 — Bn Bn 1 ..Bi——=By

B. is fibrant if each o : B — Zk_lB* = Ker dy_1 is afibration.
Example: Minimal values as above are long Toda brackets for:

m )

V12 —> CnpaVe — VR RV AV BRVA

W




Proposition

A fibrant higher chain x B, is rectifiable (without changing
objects) iff (B..)) vanishes.

Proof:
By induction on n we may assume that B.. has been rectified
from B, down.

For simplicity, consider the usual Toda diagram:

We use cubical notation (as for W-construction):
f x g is (cubical) composition, fg is chosen representative for
composite, and f o g is homotopy f @ g and fg.



Z
fib
F
jg@h:* W
f ®gh fogh=x fgh = *
0

fog®h fog®h=x .fg@h:*

x® fgoh =«

f@gh fogh=x fgh = «




Difference obstructions

Assume we have two different (n + 2)-realizations V¥ and
vV of G, — A, with same (n + 1)-coskeleton W,, and
Postnikov fibrations p{"), : V& — W., determined by the
attaching maps d} : V.o — Zni1VY = ZoaW, (t = a,b).
Fact: This is equivalent to choosing sections

s : BA — H W, ~ E(Q"!A,n +2) (t =a,b).

Theorem: The difference obstruction ¢, = [s(® — s(®)] vanishes
in HAG2(A, Q) iff V¥ ~ Vi (rel ).

Fact: o, is represented by 6 :=d@ — d® : V.0 — Zn 1 W,.
Idea: Define a lax (n + 3)-truncated simp. CW object Y. by
7'n+lY = Tn+1We, Yni2 = ZnpaWe, and Yn+3 = Vn+2, with
attaching map ¢.

Get: Higher operation ((Y.)) with minimal value in
[V 12, Vo] corresponding to 4, and:

(Y.) vanishes < V, rectifiable < V¥ ~ Vv (relw,).



Interpreting Postnikov sections

Question: if V, realizes G,, and so X := ||V, || realizes A, what
does P"V, tell us about X?

Theorem

An n-semi-Postnikov section for A determines the n-stem of X:
that is, the n-windows P"**X (k — 1) (k > 0)

Remark: A special feature of DGLAS: unlike spaces, each GLA
A has a prefered coformal model L. = (A, 0). For free GLAs,
these DGLAs are cofibrant.

Thus G, always has a prefered DGLA realization V,, in which
all higher homotopy operations vanish, so the same is true for
X = ||V.||. Note that V, is not usually Reedy fibrant, so this is
not visible in Postnikov version.

However, we can use the comparison homomorphism to get:

Fact: if W, is another realization of G, with Y = ||W,| and
P"W, ~ P"V,, the n-stem of Y is coformal, and so has
vanishing higher homotopy operations.



