Méthode simpliciale en algèbres de Lie

David Blanc
University of Haifa

André Memorial Conference
École Polytechnique Fédérale de Lausanne
May 11, 2011
Joint work with H.-J. Baues, M. Johnson, and J. Turner.

Outline

We consider the question of how a given graded connected Lie algebra $\wedge(\operatorname{over} \mathbb{Q})$ can be realized as the homology of a differential graded Lie algebra (DGL) L_{*}.

Strategy

- Try to realize a free simplicial resolution G_{0} of \wedge as a DGLA-resolution V_{0} (of the putative DGLA L_{*}).
- If this can be done, use Bousfield-Friedlander SS:

$$
E_{s, t}^{2}=\pi_{s} H_{t} V_{0}=\pi_{s} G_{0}=\left\{\begin{array}{ll}
\Lambda & s=0 \\
0 & s>0
\end{array} \Rightarrow H_{s+t}\left\|V_{\bullet}\right\|\right.
$$

Construct such a V_{0} by induction on the simplicial dimension. At each stage, we can do one of two things:

- Use Dwyer-Kan-Stover obstruction theory, in terms of the André-Quillen cohomology of \wedge.
- Use higher homotopy operations as obstructions to rectifying a finite directed diagram.

Goals

- To show that these two approaches are the same.
- To show how vanishing obstructions permit rectification.

Dictionary to generalization:

DG Lie algebras	\mathbb{Q}-homotopy theory	Homotopy theory
DGLA $\left(L_{*}, \partial\right) \in \mathcal{D G \mathcal { L }}$	$X_{\mathbb{Q}} \in \mathcal{T}$ op $\mathbb{Q}_{\mathbb{Q}}$	Space $X \in \mathcal{T}$ op
$H_{*} L_{*}=\left[\mathcal{L}\left\langle x^{k}\right\rangle, L_{*}\right]$	$\pi_{k} \Omega X_{\mathbb{Q}}$	$\pi_{*} X$
GLA $\Lambda=H_{*} L_{*} \in \mathcal{G} \mathcal{L}$	$\mathrm{GLA} \Lambda=\pi_{*} \Omega X_{\mathbb{Q}}$	Π-algebra $\pi_{*} X$
Free $\operatorname{GLA} \mathcal{L}\left\langle x^{n_{i}}\right\rangle_{i \in I}$	$\pi_{*} V_{i \in I} S_{\mathbb{Q}}^{n_{i}}$	$\pi_{*} V_{i \in I} S^{n_{i}}$
$\left(\mathcal{L}\left\langle x^{n_{i}}\right\rangle_{i \in I}, \partial=0\right) ?$	$V_{i \in I} S_{\mathbb{Q}}^{n_{i}}$	$V_{i \in I} S^{n_{i}}$

Simplicial constructions

For a simplicial object X_{\bullet} :

- The n-th Moore chains objects is
$\mathbf{C}_{n} X_{0}:=\cap_{i=1}^{n} \operatorname{Ker}\left\{d_{i}: X_{n} \rightarrow X_{n-1}\right\}$, with differential $\partial_{n}:=\left.\left(d_{0}\right)\right|_{\mathbf{c}_{n} X_{\bullet}}: \mathbf{C}_{n} X_{\bullet} \rightarrow \mathbf{C}_{n-1} X_{\bullet}$
- The n-th Moore cycles objects is
$\mathbf{Z}_{n} X_{\bullet}:=\cap_{i=0}^{n} \operatorname{Ker}\left\{d_{i}: X_{n} \rightarrow X_{n-1}\right\}$.
- The n-th matching object is $\mathbf{M}_{n} X$: $:=\left\{\left(x_{0}, \ldots, x_{n}\right) \in\right.$ $\left.\left(X_{n-1}\right)^{n+1} \mid d_{i} x_{j}=d_{j-1} x_{i} \quad 0 \leq i<j \leq n\right\}$.
All face maps on X_{n} factor through $\delta_{n}: X_{n} \rightarrow \mathbf{M}_{n} X$.
X_{0} is Reedy fibrant if each δ_{n} is a fibration.
- Dually, the n-th latching object is
$L_{n} X_{0}:=\coprod_{0 \leq i \leq n-1} X_{n-1} / \sim$, where
$\left[s_{J} X\right]_{i} \sim\left[s_{\mid} X\right]_{j} \Leftrightarrow s_{i} s_{J}=s_{j} s_{/}$.
All degeneracies to X_{n} factor through $\sigma_{n}: L_{n} X_{\bullet} \rightarrow X_{n}$.
- An n-th $C W$ basis object is \bar{X}_{n}, equipped with an attaching $\operatorname{map} \bar{d}_{0}^{X_{n}}: \bar{X}_{n} \rightarrow X_{n-1}$, such that $X_{n}=\bar{X}_{n} \amalg L_{n} X_{\bullet}$, $\left.\left(d_{0}\right)\right|_{\bar{X}_{n}}=\bar{d}_{0}^{X_{n}}$ and $\left.\left(d_{i}\right)\right|_{\bar{X}_{n}}=0$ for $i \geq 1$.
Note that $\bar{d}_{0}^{X_{n}}$ factors through $\mathbf{Z}_{n-1} X_{\bullet} \subseteq \mathbf{C}_{n-1} X_{\bullet}$.
∞-commutative diagrams
Assume given a simplicial resolution $G_{0} \rightarrow \Lambda$, with free GLA CW basis $\left(\bar{G}_{k}\right)_{k=0}^{\infty}$, and let $\tau_{n+1} V_{0}$ be an strict $(n+1)$-truncated simplicial DGLA realizing G_{0} through $\operatorname{dim} n+1$.
Choose some free DGLA \bar{V}_{n+2} realizing \bar{G}_{n+2}, with attaching map $\bar{d}_{0}^{V_{n+2}}: \bar{V}_{n+2} \rightarrow V_{n+1}$ realizing $\bar{d}_{0}^{G_{n+2}}: \bar{G}_{n+2} \rightarrow G_{n+1}$ up to homotopy (possible, since \bar{G}_{n+2} is free).
We get a lax $(n+2)$-truncated simplicial DGLA $\tilde{V}_{0}^{\langle n+2\rangle}$, with $d_{i}^{n+1} \circ \bar{d}_{0}^{V_{n+2}} \sim 0(i \geq 0)$ only up to homotopy.
If we can choose nullhomotopies $\eta_{i}: d_{i}^{n+1} \circ \bar{d}_{0}^{V_{n+2}} \sim 0$, relative homotopies $\eta_{i, j}: d_{i} \circ \eta_{j} \sim d_{j-1} \circ \eta_{i}(i<j)$, and so on, we say that we have made $\tilde{V}_{0}^{\langle n+2\rangle} \infty$-homotopy commutative.
Theorem (Boardman-Vogt, Dwyer-Kan-Smith, Chachólski-Scherer) An ∞-homotopy commutative diagram can be rectified.

Idea: For each $\phi: \mathbf{n}+\mathbf{2} \rightarrow \mathbf{k}$ in Δ^{op}, we use the simplicial enrichment in $\mathcal{D G \mathcal { L }}$ to assemble the higher homotopies into a $\operatorname{map} \psi_{\phi}: \operatorname{Cone}\left(\mathcal{P}^{n-k+1}\right) \rightarrow \operatorname{map}\left(\bar{V}_{n+2}, V_{k}\right)$.

Permutohedra

Here \mathcal{P}^{m} is the ($m-1$)-dimensional permutohedron, whose vertices correspond to permutations on ($1, \ldots, m$).
Cone $\left({ }^{(}{ }^{m}\right)$ is the cone on its standard triangulation.
Example ($m=1$):
The 1-permutohedron is an interval (subdivided in the triangulation), so Cone(\mathcal{P}^{1}) has two 2-simplices:

The 2-dimensional permutohedron

For $m=3$:

The 3-dimensional permutohedron

For $m=4$:

Higher homotopy operations

The permutohedron \mathcal{P}^{m} is a convex polytope, whose boundary consists of products of lower-dimensional permutohedra.
Thus the pointed maps $\psi_{\phi}: \operatorname{Cone}\left(\mathcal{P}^{n-k}\right) \rightarrow \operatorname{map}\left(\bar{V}_{n+2}, V_{k-1}\right)$ fit together to form $\psi_{\phi^{\prime}}^{\prime}: \partial \operatorname{Cone}\left(\mathcal{P}^{n-k+1}\right) \rightarrow \operatorname{map}\left(\bar{V}_{n+2}, V_{k-2}\right)$.
Fact: Its adjoint $\widetilde{\psi}^{\prime}: \Sigma^{n-k+1} \bar{V}_{n+2} \rightarrow V_{k-2}$ is null-homotopic iff the ψ_{ϕ} 's extend to $\psi_{\phi^{\prime}}: \operatorname{Cone}\left(\mathcal{P}^{n-k+1}\right) \rightarrow \operatorname{map}\left(\bar{V}_{n+2}, V_{k-2}\right)$. If this happens at each stage, we obtain a map (from the wedge over all composite face maps $\phi: \mathbf{n}+\mathbf{1} \rightarrow \mathbf{0}$ in Δ^{OP}):

$$
\psi: \bigvee \Sigma^{n} \bar{V}_{n+2} \rightarrow V_{0}
$$

ϕ
Definition: The $(n+1)$-st order homotopy operation associated to $\tilde{V}_{0}^{(n+2)}$ is the set $\left.\left\langle\left\langle\tilde{V}_{0}^{(n+2)}\right\rangle\right\rangle \subseteq V_{\phi} \Sigma^{n} \bar{V}_{n+2}, V_{0}\right]$ of all such ψ.

Theorem

The higher homotopy operation $\left\langle\left\langle\tilde{V}_{0}^{\langle n+2\rangle}\right\rangle\right\rangle$ vanishes (that is, contains 0) if and only if $\tau_{n+1} V_{\bullet}$ extends to $\tau_{n+2} V_{\bullet}$ realizing G_{\bullet} through $\operatorname{dim} n+2$.

André-Quillen cohomology
Definition: For $X \in \mathcal{C}=\mathcal{T}$ op, $\mathcal{G} \mathcal{L}$, or $\mathcal{D G \mathcal { L }}, \wedge=\pi_{*} X$, and any Λ-module M, \exists Eilenberg-Mac Lane objects $E_{\Lambda}(M, n) \in s \mathcal{C}$, and the n-th André-Quillen cohomology group of X is $H_{A Q}^{n}(X ; M)=\left[W_{0}, E_{\Lambda}(M, n)\right]_{s / / \Lambda}$, (for W_{\bullet} a resolution of X).
Fact: When \mathcal{C} is "algebraic" (=with an underlying group structure) we calculate $H_{A Q}^{*}\left(G_{0} ; K\right)$ via its Moore cochains $\operatorname{Hom}\left(\mathbf{C}_{*} G_{0}, K\right)$; if G_{0} has free CW basis $\left(\bar{G}_{n}\right)_{n=0}^{\infty}$, its normalized chains are isomorphic to $\operatorname{Hom}\left(\bar{G}_{*}, K\right)$.
Definition: for any GLA \wedge and $n>0, \Omega^{n} \wedge$ is the graded Λ-module given by $\left(\Omega^{n} \wedge\right)_{i}=\Lambda_{n+i}$
Recall The n-th Postnikov section $\mathbf{P}^{n} W_{\text {o }}$ of a Reedy fibrant simplicial (D)GLA W_{0} is its $(n+1)$-coskeleton, with $\left(\mathbf{P}^{n} W_{\bullet}\right)_{i}=W_{i}$ for $i \leq n$, and $\left(\mathbf{P}^{n} W_{\bullet}\right)_{n+1}=\mathbf{M}_{n+1} W_{\bullet}$.
Lemma: The n-th k-invariant of $W_{0} \in s \mathcal{G} \mathcal{L}$ is the class $k_{n} \in H_{A Q}^{n+2}\left(\mathbf{P}^{n} X_{0} ; \pi_{n+1} W_{\bullet}\right)$ sending $\sigma \in W_{n+1}$ to α_{σ} in $\pi_{n} W_{0}$, represented by matching set $\left(d_{0} \sigma, \ldots, d_{n+1} \sigma\right)$ in $\mathbf{M}_{n+1} W_{\circ}$.

Cohomology obstructions
Definition: An ($n-1$)-semi-Postnikov section for a GLA \wedge is a simplicial DGLA $V_{0}^{\langle n-1\rangle}$ with $V_{0}^{\langle n-1\rangle} \simeq \mathbf{P}^{n-1} V_{0}^{\langle n-1\rangle}$ such that

$$
\pi_{k} H_{*} V_{0}^{\langle n\rangle} \cong \begin{cases}\wedge & \text { for } k=0 \tag{1}\\ \Omega^{n} \wedge & \text { for } k=n+1 \\ 0 & \text { otherwise }\end{cases}
$$

Example: If W_{0} realizes G_{0} through simplicial dimension $n+1$, then $\operatorname{csk}_{n} W_{0}=\mathbf{P}^{n-1} W_{0}$ is an $(n-1)$-semi-Postnikov section for \wedge.
Theorem: An ($n-1$)-semi-Postnikov section $V_{0}^{\langle n-1\rangle}$ extends to an n-semi-Postnikov section $V_{0}^{\langle n\rangle}$ iff the simplicial GLA $H_{*} V_{0}^{\langle n-1\rangle}$ has trivial n-th k-invariant.
Remark: By (1), we have a w.e. $f: G_{0} \simeq \tilde{P}^{n} H_{*} V_{0}^{\langle n-1\rangle}$, mapping G_{n+1} to the matching set $\left(d_{0}^{V_{n+1}}, \ldots, d_{n}^{V_{n+1}}\right)$ in $\mathbf{M}_{n+1} V_{0}^{\langle n-1\rangle}$. Thus by the Lemma, k_{n} "is" $d_{0}^{V_{n+1}} \circ \bar{d}_{0}^{\bar{V}_{n+2}}: \bar{V}_{n+2} \rightarrow \mathbf{Z}_{n} v_{0}^{\langle n\rangle}$.

Lemma (Stover)

For any fibrant simplicial DGLA W_{0}, the inclusion induces an isomorphism on Moore chains $H_{*} \mathbf{C}_{k} W_{\bullet} \simeq \mathbf{C}_{k} H_{*} W_{\bullet}$.

Question: How does $\gamma_{n}:=d_{0}^{V_{n+1}} \bar{d}_{0}^{\bar{V}_{n+2}}: \bar{V}_{n+2} \rightarrow \mathbf{Z}_{n} V_{\bullet}^{\langle n\rangle}$ represent a collection of classes in $\Omega^{n} \wedge$?
Idea: Since $H_{*} V_{0}^{\langle n\rangle}=G_{0}$ maps onto Λ, it is enough to find a $\operatorname{map} \Sigma^{n} \bar{V}_{n+2} \rightarrow V_{0}^{\langle n\rangle}$, as follows:
The algebraic attaching map $\bar{d}_{0}^{\bar{G}_{n+2}}$ lands in $\mathbf{Z}_{n+1} G_{\bullet}$, but we cannot guarantee that the DGLA realization $\bar{d}_{0}^{\bar{V}_{n+2}}$ lands in $\mathbf{Z}_{n+1} V_{\bullet}^{\langle n\rangle}$ (which would mean that $\tilde{V}_{\bullet}^{\langle n+2\rangle}$ realizes $\tau_{n+2} G_{\bullet}$). However, by Stover's Lemma $\bar{d}_{0}^{\bar{V}_{n+2}}$ can be chosen to land in $C_{n+1} V_{\bullet}^{\langle n\rangle}$, so $d_{i}^{n+1} \bar{d}_{0}^{V_{n+2}}=0$ on the nose for $i \geq 1$.

Ladder diagrams
Consider the solid commutative diagram:

$$
\bar{V}_{n+2} \longrightarrow \text { Cone }\left(\bar{V}_{n+2}\right) \longrightarrow \Sigma \bar{V}_{n+2}
$$

- By the Lemma we can choose a nullhomotopy η_{n} for $g_{n}:=j_{n} \circ \gamma_{n}$
- Since $d_{0}^{V_{n}} d_{0}^{V_{n+1}} \bar{d}_{0}^{V_{n+2}}=0, \eta_{n}$ induces a map γ_{n-1} from the suspension $\Sigma \bar{V}_{n+2} \cong \operatorname{Cone}\left(\bar{V}_{n+2}\right) / \bar{V}_{n+2}$.
- G_{0} is acyclic, so $d_{0}: \mathbf{C}_{n}\left[\Sigma \bar{V}_{n+2}, V_{\bullet}^{\langle n+1\rangle}\right] \rightarrow \mathbf{Z}_{n-1}\left[\Sigma \bar{V}_{n+2}, V_{\bullet}^{\langle n+1\rangle}\right]$ is onto. So by the Lemma $\exists \alpha: \Sigma \bar{V}_{n+2} \rightarrow \mathbf{C}_{n} V_{\bullet}^{\langle n+1\rangle}$ with $d_{0} \alpha=-\gamma_{n-1}$.
- Replacing η_{n} by $\eta_{n} T \alpha$ makes the new $j_{n-1} \circ \gamma_{n-1}$ nullhomotopic.
- Continue inductively for all $m>0$ to:

$$
\begin{gathered}
\Sigma^{m} \bar{V}_{n+2} \longrightarrow \operatorname{Cone}\left(\sum^{m} \bar{V}_{n+2}\right) \longrightarrow \Sigma^{m+1} \bar{V}_{n+2} \\
\mathbf{Z}_{m} V_{\bullet}^{\langle n+1\rangle} \underset{j_{m}}{\gamma_{m}} \mathbf{C}_{m} V_{\bullet}^{\langle n+1\rangle} \xrightarrow[d_{0}]{\eta_{m}} \mathbf{Z}_{m-1} V_{\bullet}^{\langle n+1\rangle}
\end{gathered}
$$

yields $\gamma_{0}: \Sigma^{n} \bar{V}_{n+2} \rightarrow V_{0}^{\langle n\rangle}$.

- Composing with the augmentation $\varepsilon: H_{0} V_{0}^{\langle n\rangle}=G_{0} \rightarrow \Lambda$ and taking adjoints yields the required map $\bar{G}_{n+2} \rightarrow \Omega^{n} \wedge$.

Summary: The above choices (starting with $\bar{d}_{0}=\bar{d}_{0}^{\bar{V}_{n+2}}$) yield

- A 1-nullhomotopy $\eta_{n}: d_{0} \bar{d}_{0} \sim 0$, with $d_{i} \bar{d}_{0}=0$ for $i \geq 1$.
- A 2-nullhomotopy $\eta_{n-1}: d_{0} \eta_{n} \sim 0$, with $d_{i} \eta_{n-1}=0$ for $i \geq 1$.
- A 3-nullhomotopy $\eta_{n-2}: d_{0} \eta_{n-1} \sim 0$, and so on.

Minimal values and the comparison homomorphism
Definition: From $\left(\eta_{n-i}\right)_{i=0}^{n}$ (and all other homotopies trivial), we obtain a minimal value of the ($n+1$)-st order higher homotopy operation $\left\langle\left\langle\tilde{V}_{\dot{D}}^{(n+2\rangle}\right\rangle\right\rangle$ which is zero on all wedge summands but $\phi=d_{0} d_{0} \ldots \bar{d}_{0}$.
Definition: For $\varepsilon: G_{0} \rightarrow \Lambda$ and $\tilde{V}_{0}^{(n+2\rangle}$ as above, the comparison homomorphism $\Phi:\left[\Sigma^{n} \bar{V}_{n+2}, V_{0}\right] \rightarrow H_{A Q}^{n+2}\left(\Lambda ; \Omega^{n} \wedge\right)$ is the composite of

$$
\begin{aligned}
{\left[\Sigma^{n} \bar{V}_{n+2}, V_{0}\right] } & \cong\left[\bar{V}_{n+2}, \Omega^{n} V_{0}\right] \cong \operatorname{Hom}_{\mathcal{G} \mathcal{L}}\left(H_{*} \bar{V}_{n+2}, H_{*} V_{0}\right) \\
& \cong \operatorname{Hom}_{\mathcal{\mathcal { L }}}\left(\bar{G}_{n+2}, \Omega^{n} G_{0}\right) \xrightarrow{\varepsilon_{*}} \operatorname{Hom}_{\mathcal{G} \mathcal{L}}\left(\bar{G}_{n+2}, \Omega^{n} \Lambda\right) \\
& \rightarrow H_{A Q}^{n+2}\left(\Lambda ; \Omega^{n} \Lambda\right)
\end{aligned}
$$

Fact: Φ takes a minimal value of $\left\langle\left\langle\tilde{V}_{0}^{\langle n+2\rangle}\right\rangle\right\rangle$ to the obstruction $k_{n} \in H_{A Q}^{n+2}\left(\Lambda ; \Omega^{n} \Lambda\right)$.

Definition: A long Toda bracket is the higher homotopy operation $\left\langle\left\langle B_{*}\right\rangle\right\rangle$ for a higher-order chain complex B_{*} :

B_{*} is fibrant if each $\partial_{k}^{\prime}: B_{k} \rightarrow Z_{k-1} B_{*}:=\operatorname{Ker} \partial_{k-1}$ is a fibration. Example: Minimal values as above are long Toda brackets for:

Proposition

A fibrant higher chain $x B_{*}$ is rectifiable (without changing objects) iff $\left.\left\langle B_{*}\right\rangle\right\rangle$ vanishes.

Proof:
By induction on n we may assume that B_{*} has been rectified from B_{n} down.
For simplicity, consider the usual Toda diagram:

We use cubical notation (as for W-construction):
$f \times g$ is (cubical) composition, $f g$ is chosen representative for composite, and $f \circ g$ is homotopy $f \otimes g$ and $f g$.

Difference obstructions

Assume we have two different $(n+2)$-realizations $V_{0}^{(a)}$ and $V_{0}^{\langle b\rangle}$ of $G_{0} \rightarrow \Lambda$, with same $(n+1)$-coskeleton W_{0}, and
Postnikov fibrations $p_{n+1}^{(t)}: V_{0}^{(t\rangle} \rightarrow W_{0}$, determined by the attaching maps $\bar{d}_{0}^{t}: \bar{V}_{n+2} \rightarrow \mathbf{Z}_{n+1} V_{0}^{\langle t\rangle}=\mathbf{Z}_{n+1} W_{\bullet}(t=a, b)$.
Fact: This is equivalent to choosing sections
$s^{(t)}: \widetilde{B} \wedge \rightarrow H_{*} W_{0} \simeq \widetilde{E}\left(\Omega^{n+1} \wedge, n+2\right)(t=a, b)$.
Theorem: The difference obstruction $\delta_{n}=\left[s^{(a)}-s^{(b)}\right]$ vanishes in $H_{A Q}^{n+2}\left(\Lambda, \Omega^{n+1} \Lambda\right)$ iff $V_{0}^{\langle a\rangle} \simeq V_{0}^{\langle b\rangle}$ (rel W_{0}).
Fact: δ_{n} is represented by $\bar{\delta}:=\bar{d}_{0}^{a}-\bar{d}_{0}^{b}: \bar{V}_{n+2} \rightarrow \mathbf{Z}_{n+1} W_{0}$. Idea: Define a lax $(n+3)$-truncated simp. CW object \tilde{Y}_{\bullet} by $\tau_{n+1} \tilde{Y}_{0}=\tau_{n+1} W_{0}, \quad Y_{n+2}=Z_{n+1} W_{0}$, and $\bar{Y}_{n+3}=\bar{V}_{n+2}$, with attaching map $\bar{\delta}$.
Get: Higher operation $\left\langle\left\langle\tilde{Y}_{0}\right\rangle\right\rangle$ with minimal value in [$\left.\Sigma^{n+1} \bar{V}_{n+2}, V_{0}\right]$ corresponding to δ_{n}, and:
$\left\langle\left\langle\tilde{Y}_{0}\right\rangle\right\rangle$ vanishes $\Leftrightarrow \tilde{Y}_{0}$ rectifiable $\Leftrightarrow V_{0}^{\langle a\rangle} \simeq V_{0}^{\langle b\rangle}$ (rel W_{0}).

Interpreting Postnikov sections
Question: if V_{\bullet} realizes G_{\bullet}, and so $X:=\left\|V_{\bullet}\right\|$ realizes \wedge, what does $\mathbf{P}^{n} V_{0}$ tell us about X ?

Theorem

An n-semi-Postnikov section for \wedge determines the n-stem of X : that is, the n-windows $\mathbf{P}^{n+k} X\langle k-1\rangle \quad(k \geq 0)$

Remark: A special feature of DGLAs: unlike spaces, each GLA Λ has a prefered coformal model $L_{*}=(\Lambda, 0)$. For free GLAs, these DGLAs are cofibrant.
Thus G_{\bullet} always has a prefered DGLA realization V_{\bullet}, in which all higher homotopy operations vanish, so the same is true for $X=\left\|V_{\bullet}\right\|$. Note that V_{\bullet} is not usually Reedy fibrant, so this is not visible in Postnikov version.
However, we can use the comparison homomorphism to get:
Fact: if W_{0} is another realization of G_{0} with $Y=\left\|W_{\bullet}\right\|$ and $\mathbf{P}^{n} W_{\bullet} \simeq \mathbf{P}^{n} V_{\bullet}$, the n-stem of Y is coformal, and so has vanishing higher homotopy operations.

