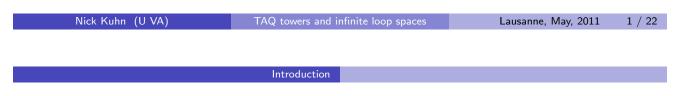
André-Quillen Towers and Infinite Loop Spaces

Nicholas J. Kuhn

University of Virginia

Lausanne, May, 2011



The big picture

• Infinite loopspace theory.

This concerns the adjoint functors $\mathcal{T} \stackrel{\sum^{\infty}}{\underset{\Omega^{\infty}}{\longrightarrow}} \mathcal{S}$. $\mathcal{T} = \text{based spaces. } \mathcal{S} = \text{spectra (aka S-modules).}$

• Topological André–Quillen theory.

This concerns homotopical tools to study how commutative rings and ring spectra are built up from indecomposables, etc.

My main objectives

• Recast part of the TAQ theory.

It also concerns adjoint functors $\mathcal{A}lg \stackrel{\Sigma^{\infty}}{\underset{\Omega^{\infty}}{\longrightarrow}} \mathcal{S}$. $\mathcal{A}lg = \text{augmented, commutative } S\text{-algebras.}$

Introduction

• Use this to construct filtrations and towers.

Example Goodwillie tower of 1_{Alg} = Augmentation ideal tower.

• Mix and match.

Example $X \in S \Rightarrow \Sigma^{\infty}_{+}\Omega^{\infty}X \in \mathcal{A}$ lg.

• Application to homology of infinite loopspaces.

Example $K(n)_*(\Omega^{\infty}X)$ wishes it were a functor of $K(n)_*(X)$.

Nick Kuhn (U VA)	TAQ towers and infinite loop spaces	Lausanne, May, 2011 3 / 2	

TAQ as stabilization Σ^{∞} and Ω^{∞} for ${\mathcal T}$ and ${\mathcal A}$ lg

Σ^∞ and Ω^∞ for ${\mathcal T}$

Recollections . . .

 \mathcal{T} is tensored over itself: $K \otimes Z = K \wedge Z$.

 $\Sigma^{\infty}Z$ is the *S*-module arising from the (pre)spectrum with *n*th space $S^n \otimes Z = \Sigma^n Z$.

 $\Omega^{\infty}X$ is just the 0th space of X. This is an infinite loop space.

Examples

- If $X = H\mathbb{Z}/2$, then $\Omega^{\infty}X = \mathbb{Z}/2$.
- If $X = \Sigma H\mathbb{Z}$, then $\Omega^{\infty} X = S^1$.
- If $X = \Sigma^{\infty} Z$, then $\Omega^{\infty} X = \operatorname{hocolim}_{n} \Omega^{n} \Sigma^{n} Z$

The category \mathcal{A} *lg*

S is the sphere spectrum.

 $R \in \mathcal{A}$ lg is an ' E_{∞} -algebra' equipped with $\epsilon : R \to S$.

The fiber I = I(R) is a nonunital commutative S-algebra.

Examples

If $X \in \mathcal{S}$, then $\Sigma^{\infty}_{+}\Omega^{\infty}X \in \mathcal{A}$ lg.

If
$$X \in S$$
, then $\mathbb{P}(X) = \bigvee_{\substack{d=0 \\ d=0}}^{\infty} (X^{\wedge d})_{h\Sigma_d} \in \mathcal{A} lg$.
This is the free algebra generated by X .

If $Z \in \mathcal{T}$, then $D(Z_+) \in \mathcal{A}$ lg. (D = Spanier–Whitehead dual)

Nick Kuhn (U VA)	TAQ towers and infinite loop spaces	Lausanne, May, 2011	5 / 22

TAQ as stabilization Σ^{∞} and Ω^{∞} for ${\mathcal T}$ and ${\mathcal A}$ lg

Σ^∞ and Ω^∞ for $\mathcal{A}{\it lg}$

 \mathcal{A} lg is also tensored over \mathcal{T} ; e.g., $S^1 \otimes R$ is the 'bar construction' on R.

$$\Sigma^{\infty} : \mathcal{A} lg \to \mathcal{S}$$
 is defined by $\Sigma^{\infty} R = \underset{n}{\operatorname{hocolim}} \Omega^{n} I(S^{n} \otimes R).$

 $\Omega^{\infty}: \mathcal{S} \to \mathcal{A}$ /g is defined by $\Omega^{\infty} X = \mathcal{S} \vee X$, with trivial multiplication.

Thus $\Omega^{\infty}\Sigma^{\infty}R = \operatorname{hocolim} \Omega^n(S^n \otimes R).$

Easy examples

If $R = \Sigma^{\infty}_{+} \Omega^{\infty} X$, then $\Sigma^{\infty} R$ is the connective cover of X.

If
$$R = \mathbb{P}(X) = \bigvee_{d=0}^{\infty} X_{h\Sigma_d}^{\wedge d}$$
, then $\Sigma^{\infty} R = X$.

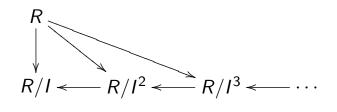
A much less obvious example If $R = D(S^1_+)$, then $\Sigma^{\infty} R = \Sigma^{-1} H \mathbb{Q}$.

The augmentation ideal tower

Let $\epsilon : R \to \mathbb{Z}$ be an ordinary augmented ring. Always commutative.

 $I = \ker \epsilon$, augmentation ideal.

R maps to its augmentation ideal tower



Indecomposables: $Q(R) = I/I^2$. Completion: $\hat{R} = \lim_d R/I^d$.

Example $R = \mathbb{P}(V)$, the free algebra on a free abelian group V.

Q(R) = V, and $I^d/I^{d+1} = (V^{\otimes d})_{\Sigma_d}$.

Nick Kuhn (U VA)	TAQ towers and in	nfinite loop spaces	Lausanne, May, 2011	7 / 22
	TAQ as stabilization	TAQ as derived indec	composables	

Classic André–Quillen theory

André and Quillen: do this in the world of homotopical algebra.

Work in the category of simplicial commutative rings.

 $R_* \to R$, R_* a simplicial resolution built from $\mathbb{P}(V)$'s.

Let $AQ(R) = Q(R_*)$.

Then $AQ_*(R; \mathbb{Z}) = \pi_*(AQ(R))$ is André–Quillen homology with coefficients in the *R*-module \mathbb{Z} .

Topological André–Quillen theory

Goerss, Hopkins, Miller, Robinson, Whitehouse, Richter, McCarthy, and particularly Basterra and Mandell:

Work in the category Alg.

$$Q(R) = \text{pushout}\{* \leftarrow I(R) \land I(R) \rightarrow I(R)\}$$

 $\tilde{R} \to R$, \tilde{R} a cofibrant replacement. Cofibrant: built from $\mathbb{P}(X)$'s.

Let $TAQ(R) = Q(\tilde{R})$.

Then $TAQ_*(R; S) = \pi_*(TAQ(R))$ is Topological André–Quillen homology with coefficients in the *R*-module *S*.

$TAQ(R) = \Sigma^{\infty}R$

André and Quillen, and then Basterra and Mandell emphasize that these are *homology theories*.

Thus, for example, $TAQ(S^n \otimes R) \simeq \Sigma^n TAQ(R)$.

Theorem [B-M, 2005] $TAQ(R) \simeq \Sigma^{\infty} R$.

Sketch proof: With R cofibrant, there is a natural map

$$\Sigma^{\infty} R = \operatorname{colim}_{n} \Omega^{n} I(S^{n} \otimes R) \to \operatorname{colim}_{n} \Omega^{n} TAQ(S^{n} \otimes R) \simeq TAQ(R).$$

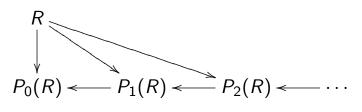
Now check that this map is an equivalence when $R = \mathbb{P}(X)$.

Remark Thus $\Omega^{\infty}\Sigma^{\infty}R = S \vee TAQ(R)$.

From TAQ(R) to R via calculus

Goodwillie's calculus gives a tower for $1_{\mathcal{A} \textit{lg}} : \mathcal{A} \textit{lg} \to \mathcal{A} \textit{lg}.$

Theorem For $R \in Alg$, there is a natural tower



such that $P_0(R)=S$, and $D_d(R)=(\mathit{TAQ}(R)^{\wedge d})_{h\Sigma_d}$,

where $D_d(R) = \text{hofib}\{P_d(R) \rightarrow P_{d-1}(R)\}.$

Remark This can be viewed as the augmentation ideal tower for R, with

$$I^{d}(R) = \operatorname{hofib}\{R \to P_{d-1}(R)\}$$
 and $\hat{R} = \operatorname{holim}_{d} P_{d}(R).$
Nick Kuhn (U VA) TAQ towers and infinite loop spaces Lausanne, May, 2011 11 / 22

Towers and filtrations Reconstructing R from TAQ(R)

The easy proof, using that
$$TAQ(R) = \Sigma^{\infty} R$$
:

General calculus theory tells us that

 $D_d(R)$ = is the ho-orbits of multilinearization of the *d*th cross effect cr_d .

In \mathcal{A} *lg*, the coproduct is \wedge , and one easily sees $cr_d(R) = I(R)^{\wedge d}$.

Multilinearization: stabilize each I(R), so one gets $TAQ(R)^{\wedge d}$.

Punchline: $D_d(R) = (TAQ(R)^{\wedge d})_{h\Sigma_d}$.

Remark Take the Arone–Ching viewpoint. This can be rewritten as

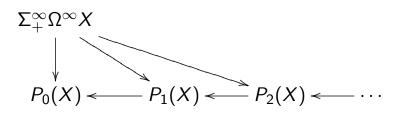
$$D_d(R) = (\operatorname{Com}(d) \wedge TAQ(R)^{\wedge d})_{h\Sigma_d},$$

where Com(d) = S. So $\partial_* 1_{Alg} = Com(*)$, the commutative operad.

From X to $\Sigma^{\infty}\Omega^{\infty}X$

Specialize to $R = \Sigma^{\infty}_{+} \Omega^{\infty} X$, X connective, and recall that TAQ(R) = X.

Theorem For connective $X \in S$, there is a tower in Alg



with $D_d(X) = (X^{\wedge d})_{h\Sigma_d}$, where $D_d(X) = \text{hofib}\{P_d(X) \rightarrow P_{d-1}(X)\}$.

This adds much structure to the tower of $\Sigma^{\infty}\Omega^{\infty}: \mathcal{S} \to \mathcal{S}.$

Remark Note that $\partial_* \Sigma^{\infty} \Omega^{\infty} = Com(*)$.

Nick Kuhn (U VA)	TAQ towers and ir	nfinite loop spaces	Lausanne, May, 2011	13 / 22
	Towers and filtrations	Reconstructing TAQ	(R) from R	

From R to TAQ(R)

Less well known ...

Theorem [K, 2003] For all $R \in Alg$, TAQ(R) has a natural filtration

$$F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow \ldots$$

such that hocolim $F_d \simeq TAQ(R)$ and

$$F_d/F_{d-1} \simeq (\operatorname{Lie}(d) \wedge I(R)^{\wedge d})_{h\Sigma_d}.$$

Here Lie(*) is Ching and Arone's geometric Lie co-operad.

Remark Otherwise said, $\Omega^{\infty}\Sigma^{\infty}R$ is filtered with F_d/F_{d-1} as above.

Sketch proof:

• For $K \in \mathcal{T}$ and $R \in \mathcal{A}$ lg, $K \otimes R$ is naturally filtered with

$$F_d/F_{d-1} = (K^{(d)} \wedge I(R)^{\wedge d})_{h\Sigma_d},$$

where $K^{(d)} = K^{\wedge d}/\text{fat diagonal}$.

A filtration of this type occurs in a 1969 paper by McCord.

• An observation of Arone-Mahowold (see [Arone-Dwyer]):

$$\operatorname{hocolim}_{n} \Omega^{n} S^{n(d)} \simeq \operatorname{Lie}(d).$$

Remark There are emerging new perspectives which explain the Koszul duality we are seeing here in our tower and filtration. (Arone, Ching, K, Behrens, ...)

Nick Kuhn (U VA)	TAQ towers and ir	nfinite loop spaces	Lausanne, May, 2011	15 / 22
	Towers and filtrations	Reconstructing TAQ((R) from R	

From $\Sigma^{\infty}\Omega^{\infty}X$ to X

Again specialize to $R = \Sigma^{\infty}_{+} \Omega^{\infty} X$.

Theorem A connective spectrum X has a natural filtration

$$F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow \ldots$$

such that hocolim $F_d \simeq X$ and

$$F_d/F_{d-1}\simeq \Sigma^\infty(\operatorname{Lie}(d)\wedge (\Omega^\infty X)^{\wedge d})_{h\Sigma_d}.$$

Some applications and examples of all this

Two parallel splittings

From these towers and filtrations one can deduce:

• With $\mathcal{T} \stackrel{\sum^{\infty}}{\underset{\Omega^{\infty}}{\longrightarrow}} \mathcal{S}$, there is a natural splitting

$$\Sigma^{\infty}\Omega^{\infty}\Sigma^{\infty}Z\simeq\bigvee_{d}(\operatorname{Com}(d)\wedge(\Sigma^{\infty}Z)^{\wedge d})_{h\Sigma_{d}}$$

for all 0-connected $Z \in \mathcal{T}$.

• With \mathcal{A} $lg \stackrel{\Sigma^{\infty}}{\underset{\Omega^{\infty}}{\longrightarrow}} \mathcal{S}$, there is a natural splitting

$$\Sigma^{\infty}\Omega^{\infty}\Sigma^{\infty}R\simeq \bigvee_{d}(\operatorname{Lie}(d)\wedge(\Sigma^{\infty}R)^{\wedge d})_{h\Sigma_{d}}$$

for all $R \in \mathcal{A}$ *lg*. (N.B. Already $\Sigma^{\infty} \Omega^{\infty} X$ splits for all $X \in \mathcal{S}$.)

Nick Kuhn (U VA)	TAQ towers and infinite loop spaces	Lausanne, May, 2011	17 / 22

Applications of the filtration and tower Homology isomorphisms

Applications to homology isomorphisms

Let h_* be a homology theory, and $f: A \to B$ a map in $\mathcal{A}lg$.

From the filtration of TAQ, we learn

Corollary If $f_* : h_*(A) \xrightarrow{\sim} h_*(B)$ is an isomorphism, then so is

$$f_*: h_*(TAQ(A)) \rightarrow h_*(TAQ(B)).$$

From the tower for S-algebras, we learn

Corollary If $f_* : h_*(TAQ(A)) \xrightarrow{\sim} h_*(TAQ(B))$ is an isomorphism, then, for all d, so is

$$f_*:h_*(P_d(A))\to h_*(P_d(B)).$$

In particular, if $TAQ(A) \rightarrow TAQ(B)$ is an equivalence, then so is $\hat{A} \rightarrow \hat{B}$.

Interesting examples of the filtration

Example Let $X = \Sigma H\mathbb{Z}$, so $\Omega^{\infty} X = S^1$. Arone–Dywer:

$$\Sigma^{\infty}(\operatorname{Lie}(d) \wedge S^d)_{h\Sigma_d} = \Sigma SP^d(S)/SP^{d-1}(S).$$

One can conclude that the filtration of $\Sigma H\mathbb{Z} = \Sigma SP^{\infty}(S)$ is the symmetric powers of spheres filtration.

Example If $R = D(S^1)_+$, then $I(R) \simeq S^{-1}$, and $TAQ(R) \simeq \Sigma^{-1}H\mathbb{Q}$. Localized at 2, $F_d/F_{d-1} \simeq *$ unless $d = 2^k$, and

$$(\operatorname{Lie}(2^k) \wedge S^{-2^k})_{h\Sigma_{2^k}} = \Sigma^{-1} SP_{\Delta}^{2^k}(S).$$

Remark Let $\tilde{D}_d(X) = (\text{Lie}(d) \wedge X^{\wedge d})_{h\Sigma_d}$. A 2001 paper of mine has formulae that come close to describing $H^*(\tilde{D}_d(X); \mathbb{Z}/2)$ as a functor of $H^*(X; \mathbb{Z}/2)$, including the action of Steenrod algebra \mathcal{A} .

Nick Kuhn (U VA)	TAQ towers and i	nfinite loop spaces	Lausanne, May, 2011	19 / 22
Applications of th	e filtration and tower	Calculations via the t	cower	

The K(n) homology of infinite loopspaces

Given any homology theory h_* , the tower gives a spectral sequence, natural for $X \in S$, of the form $E_{*,*}^1 = h_*(\mathbb{P}(X)) \Rightarrow h_*(\Omega^{\infty}X)$.

Theorem [K, 2006] This always collapses when h is a Morava K-theory K(n). Even more, there is a natural monomorphism of $K(n)_*$ -Hopf algebra

$$K(n)_*(\mathbb{P}(X)) \to K(n)_*(\Omega^{\infty}X).$$

Sketch proof: In the K(n)-local category, there exists a natural section $\eta_n : X \to L_{K(n)} \Sigma^{\infty} \Omega^{\infty} X$ to the evaluation $\Sigma^{\infty} \Omega^{\infty} X \to X$. This induces a natural map in K(n)-local algebras

$$s_n: L_{\mathcal{K}(n)}\mathbb{P}(X) \to L_{\mathcal{K}(n)}\Sigma^{\infty}_+\Omega^{\infty}X$$

By construction, this is induces an equivalence on TAQ ... and thus on the associated towers. But the tower for $\mathbb{P}(X)$ is clearly trivial.

The mod 2 homology of infinite loopspaces

A very new result ...

In joint work with Jason McCarty, we have recently figured out the 'generic' differentials in the spectral sequence

$$E^1_{*,*} = H_*(\mathbb{P}(X); \mathbb{Z}/2) \Rightarrow H_*(\Omega^{\infty}X; \mathbb{Z}/2).$$

This leads to an *unstable* upper bound for $E_{*,*}^{\infty}$ which is a functor of $H_*(X; \mathbb{Z}/2)$ as an \mathcal{A} -module. This algebraic functor involves the derived functors of destablization of \mathcal{A} -modules (as studied in the 1980's by Singer, Lannes-Zarati, Goerss).

To hear more, come to my talk in Paris next Wednesday!

Thanks for listening today!

Some references

- G. Arone and M. Ching, *Operads and chain rules for the calculus of functors*, Astérisque, to appear.
- M. Basterra and M. Mandell, Homology and cohomology of E_{∞} ring spectra, Math. Zeit. **249** (2005), 903–944.
- N. J. Kuhn, *New relationships among loopspaces, symmetric products, and Eilenberg MacLane spaces*, Cohomological Methods in Homotopy Theory (Barcelona, 1998), Progress in Math **196** (2001), 185–216.
- N. J. Kuhn, The McCord model for the tensor product of a space and a commutative ring spectrum, Categorical Decomposition Techniques in Algebraic Topology (Isle of Skye, Scotland, 2001), Progress in Math 215 (2003), 213–236.
- N. J. Kuhn, Localization of André–Quillen–Goodwillie towers, and the periodic homology of infinite loopspaces, Adv. Math. 201 (2006), 318–378.