Simplicial sets II

1) Let $K_{\bullet} \in \mathrm{Ob} s \underline{\text { Set }}$ be a simplicial set, i.e., a contravariant functor

$$
K: \underline{\Delta} \rightarrow \underline{S e t} .
$$

Recall that

$$
\begin{aligned}
K_{n} & =K(n) \\
d_{i} & =K\left(\delta^{i}\right) \\
s_{j} & =K\left(\sigma^{j}\right) .
\end{aligned}
$$

Pick any of the simplicial identities

$$
\begin{array}{rlrl}
d_{i} d_{j} & =d_{j-1} d_{i} & \quad ; i<j \\
s_{i} s_{j} & =s_{j+1} s_{i} \quad ; i \leq j \\
d_{i} s_{j} & =s_{j-1} d_{i} \quad ; i<j \\
d_{j} s_{j} & =I d=d_{j+1} s_{j} \\
d_{i} s_{j} & =s_{j} d_{i-1} \quad ; i>j+1
\end{array}
$$

and prove it by proving the dual relation between the δ_{i} 's and the σ^{j} 's.
2 a) Let $A_{\bullet} \in \mathrm{Ob} s \underline{A b}$ be a simplicial Abelian group. Define $\left(\hat{A}_{*}, \hat{d}_{*}\right) \in$ $\mathrm{Ob} \underline{C h}$ to be the chain complex with

$$
\hat{A}_{n}= \begin{cases}A_{n} & n \geq 0 \\ 0 & n<0\end{cases}
$$

and differential $\hat{d}_{n}: \hat{A}_{n} \rightarrow \hat{A}_{n-1}$ defined by

$$
\hat{d}_{n}(x)=\sum_{i=0}^{n}(-1)^{i} d_{i}(x) .
$$

Show that $\hat{d}_{n-1} \hat{d}_{n}=0$ by explicit computation. (Use the fact that $d_{i} d_{j}=d_{j-1} d_{i}$ when $i<j$.)
2 b) Show that the assignment $A_{\bullet} \mapsto\left(\hat{A}_{*}, \hat{d}_{*}\right)$ defines a functor $\chi: s \underline{A b} \rightarrow$ $\underline{C h}$.
Specifically, given a morphism of simplicial Abelian groups $F: A_{\bullet} \rightarrow$ $B_{\text {e }}$, show that you can define a map of chain complexes

$$
\chi(F):\left(\hat{A}_{*}, \hat{d}_{*}\right) \rightarrow\left(\hat{B}_{*}, \hat{d}_{*}\right)
$$

by letting $\chi(F)_{n}=F_{n}: \hat{A}_{n} \rightarrow \hat{B}_{n}$.
Then, verify that $\chi(i d)=i d$ and $\chi(F) \circ \chi(G)=\chi(F \circ G)$.
3) Let $K_{\bullet} \in \mathrm{Ob} s \underline{G r}$ be a simplicial group (not necessarily Abelian). I.e. K_{n} is a group for all $n \geq 0$ and $d_{i}: K_{n} \rightarrow K_{n-1}$ and $s_{j}: K_{n} \rightarrow K_{n+1}$ are group homomorphisms.
By the following steps, you show that K_{\bullet} satisfies the Kan extension property, i.e. show that K_{\bullet} thought of as a simplicial set is a Kan complex:
Let $\left\{x_{0}, x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right\} \subset K_{n-1}$ be $(n-1)$-simplices satisfying $d_{i}\left(x_{j}\right)=d_{j-1}\left(x_{i}\right)$ for $i \neq k \neq j$ and $i<j$.

3 a) Assume $k>0$. Let $u_{0}=s_{0}\left(x_{0}\right) \in K_{n}$. Verify that $d_{0}\left(u_{0}\right)=x_{0}$.
3 b) Assume inductively that $u_{r-1} \in K_{n}$ exists such that $d_{i}\left(u_{r-1}\right)=x_{i}$ for $i \leq r-1$ and $0<r \leq k-1$. Let

$$
\begin{aligned}
y_{r-1} & :=s_{r}\left(d_{r}\left(u_{r-1}\right)^{-1} x_{r}\right) \\
u_{r} & :=u_{r-1} y_{r-1} .
\end{aligned}
$$

Show by calculation that for $i<r$ we have

$$
d_{i}\left(y_{r-1}\right)=e_{n-1}
$$

where $e_{n-1} \in K_{n-1}$ is the neutral element in the group.
Then show that $d_{i} u_{r}=x_{i}$ for $i \leq r$.
3 c) Let

$$
v_{0}:= \begin{cases}u_{k-1} & k>0 \\ e_{n} & k=0\end{cases}
$$

Assume inductively that v_{r-1} has been defined such that

$$
d_{i}\left(v_{r-1}\right)=x_{i} \quad \text { if } i<k \text { or } i>n-r+1 .
$$

Then let

$$
\begin{aligned}
z_{r-1} & :=s_{n-r}\left(d_{n-r+1}\left(v_{r-1}\right)^{-1} x_{n-r+1}\right) \\
v_{r} & :=v_{r-1} z_{r-1} .
\end{aligned}
$$

Show that $d_{i}\left(z_{r-1}\right)=e_{n-1}$ if $i<k$ or $i>n-r+1$.
Then show that $d_{i}\left(v_{r}\right)=x_{i}$ if $i<k$ or $i>n-r$.
Let $y=v_{n-k}$. We have now shown that $d_{i}(y)=x_{i}$ for all $i \neq k$, and hence that K_{\bullet} is a Kan complex when thought of as a simplicial set.

