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··The·purpose of..thispaper.. is.to.....develop.a.higher. X..,theory. fpJ;' EiddUiy!!. categQtl~ ...__

with euct sequences which extends the ell:isting theory of ths Grothsndieck group in a

natural wll7. To describe' the approach taken here, let 10\ be an additive category
=

embedded as a full SUbcategory of an abelian category A, and assume M is closed under, = =
extensions in A. Then one can form a new category Q(M) having the same objects as ')0\ ,

= =, =
but :in which a morphism from 101 ' to 10\ is taken to be an isomorphism of MI with a

subquotient M,IMo of M, where MoC 101, are aubobjects of M such that 101
0

and MlM,

are objects of ~. Assuming 'the isomorphism classes of objects of ~ form a set, the,

cstegory Q(M) has a classifying space llQ(M) determined up to homotopy equivalence.= =
One can show that the fundamental group of this classifying spacs is canonically isomor-

phic to the Grothendieck group of ~ which motivates dsfining a ssquenoe of X-groups by

the formula

, *Daniel Quillen

Higher algebraic ~theory: I

It is ths goal of the present paper to show that this definition leads to an interesting

theory.

The first part pf the paper is concerned with the general theory of these X-groups.

Section 1 contains various tools for working .~th the classifying specs of a small

category. It concludes ~~th an important result which identifies ·the homotopy-theoretic

fibre of the map of classifying spaces induced by a.functor. In X-theory this is used

to obtain long exsct sequences of X-groups from the exact homotopy sequence of a map.

Ssction 2 is devoted to the definition of the X-groups and their elementary proper

tie.. One notes that the category Q(~) depends only on ~ ·and the family of those

short sequences 0 ~ M' ~ M..... 101" _ 0 in ~ which are exact in the ambient abelian

category. In order to have an intrinsic object ,of study, it is convenient to introduce

the notion of an exact category, which.ie an additive category equipped with a family of

short ssquences satisfying soms standard conditions '(essentially those axiomatized in

LHeller]). For an exact category ~ with a set of isomorphism classes one has a sequence

of X-groups Xi(~) varying functorially with respect to exact functors. Section 2' also

contains the proof that Xo(~) is isomorphic to the Grothendieck group of ~. It should

be mentioned, however, that thers aresxamples due to Gersten and Murthy showing that in

general X, (~) is not the same as the universal determinant group of lless.

The next three sections contain four basic results which might be called t~e

exactness, resolution, devissage, and localization theorems. Each of these generalizes

a well-known result for the Grothsndieck group ([llaSs, Ch, VIII), and, as will be

apparent from the ~est of the paper, they enable'ons to do a lot of X-theotj·.

The second part of the paper is concerned with appiicationa of the general'1:heory to

rings and schemes. Given a ring (resp. a noetherian ring) A , one defines the groups

, ;,'.
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Ki(A) (resp. Ki(A» to be the K-groups of the category of finitely generated projec-

tive A-modulea (reep. the abelian category of finitely generated A-modulee). There is a

canonical map K
i

(A) -+ Ki(A) which is an isomorphism for A regular by ths resolution

_~h~orem. Because the devissage and localization theorems spply only to abelian cstegories,

the interesting reeults concern the groups Ki (A) • In section 6 we prove the' formulas

Ki(A) = Ki(A[t) Ki(A[t,t-
1
]) = Ki(A) EFlKi_1(A)
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for A noetherian, which ent<dl the corresponding resulte for K-groups when A is

regular. The first formula is proved more generally for a class of rings with increasing

filtration, including some interesting non-commutative rings such as universal enveloping

algebras. To illustrate the generality, the K-groups of certain skew fields are compUted.

For a scheme (resp. noetherian) scheme X, the groups Ki (X.j (reep. Ki(X» are

defined ueing the category of vector bundlee (resp. coherent sheaves) on X,and there is

a canonical map Ki (X) -+ Ki. (X) which is an isomorphiem for X regular. Section 7 is

devoted to the ['-theory. Especially intereeting is s spectral sequence

EPq = ..LL K (k(x) =9 K' (X)1 -p-q -n
cod(x) = p

cbtained by filtering the cstegory of coherent sheaves according to the codimension of the

support. In the case where X is regular and of finite type over a field, we carry out a

progrem proposed by Gersten at this conference «(Gersten 3J), which leads to a proof of

Bloch ',s formula

AP(X) = HP(X, K (OT»
p=

proved by Bloch in particular ca.es ([Bloch]), where AP(X) is the group of codimension

p cycles modulo linear equivalence. One noteworthy feature of this formula is that the

right side is clearly contravariant in X, which suggests rather strongly that higher

K-theory might eventually prOVide a theory of the Chow ring for non-quasi-projective

regular varieties~

Section 8 contains the computation of the K-groups of the projective bundle

associated to a vector bundle over a schame. This result generalizee the computation of

the Grothendieck groups given in [SGA 6J, and it may be viewed as a first step toward a

higher K-theory for schemes, as opposed to the ['-theory of the preceding section. The"

proof, different from the one in [S~A 6J, is based on the existence of canonicel

resolutions for regular sheaves on projective space, which may be of some independent

interest. The method elso permits one to determine the [-groups of s Severi-Brauer

scheme in terms of the [-groups of the associated Azumaya algebra and its powers.

This psper contains proofs of all of the results announced in [Quillen 1}, except f ;',

Theorem 1 of that paper, which asserts that the groups [(A) here agree with those ,,'
i ,

obtained by ma.ld.ng BG1(A) into an H-space (see [Gersten 5]). From a logical point ,~'

view, this theorem should have preceded the second part of the present paper, sinCe it

used there a few times. However, I recently discovered that the ideas involved its

could be applied to prove the expected generalization of the localization theorem and



.
Thie paper was prepared with the editor's encouragement during the first two months

of 19'73. I mention this because the rssults:l!l B1 on Gersten's conjecture and Jlloch's

formula, which were discovered st this.time, directly affect the papers [Gersten 3, 4]
and [Jlloch] in this procediogs, which were prepared earlier.

11'!1I'l'iP" .
1i'~"~:: ..." fundamental theor... for non-regular riDgs [Bass, p.494,663]. These results will appeal"

iI"

:I.n the next :l.netallment of thie theory.

The proofs of Theorems A and Jl given :l!l section 1 0"" e great deal to convereations

_vitlL(ll;~e Se6al, to wham I smvsrygrsteful. Dns can derive theseresulte:l!l at least

two other ~;",~~--c~;''';';~·l~-~theWhit·~h~;.d--t;;;~~-~enj;. [Friedi~~de~ ;-;;;;dal;~

by means of the theory of minim.l fibrstione of simplicial sets. The present approach,

based on the Dold-Thom theory of quasi-fibrstions, is quite s bit shorter then the others,

although it is not as clsar aa I would heve liked, sinoe ths main points ars :l!l the

references. Someday these ideas will undoubtedly be :l!lcorporated into a general homotop,y

theory for topoi.

i ..··
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61. The claesify~ spaca ore small categ,ory

In the BUCcead~ eections of this paper X-groupe will be defined ILS the homotopy

--gr-o-u-p-.C-::o"'r~tne clase1f~ space of a cernm--alllsJ:l-c-.:tegory-.-In-th±s-rather-;l:ong-aection,--

ws collect together the various facts about the claeaifying space functor we will need.

All of these are fairly well-known, except for the important Theorem B which identifies

the homotopy-fibre of the map of claesifying spacea induced'by a functor under, suitable

cendi tiona. It will latar be used to derive long euct aequences in X-theory from the

homotopy emct sequence of s map.

Let C be a small category. Its nerve, denoted NC , ia the (aemi-) simplicial set= - =
whose p-simp1ices are the diagrams in C of the form

•
X _X, -+,,,_Xo p

The i-th face (rssp. degeneracy) of this simplex is obtained by deleting the object Xi

(resp. replacing Xi, by id: Xi - Xi) in the svident way. The classifying space of ~,

'denoted :e::, is the geometric realization of NC. It is a CW 'complex whose p-cells an!, = =
in one-One correspondence with the p-simplices of the nerve which are nondegenerate, i.e.

such that none of the arrows is an identity map. (See LSegal 1), [Milnor 1).)
For example, let J be a (partially) ordered set regarded as a category in the usual

way. Then BJ is the simplicial complex (with the week topology) whose vertices are the

elements of J and whose simplices are the totally ordered non-empty finite subsets of J.
Ccnverse1y, if K is a simplicial complex and if J is the ordered set of simplices of

X, then the simplicial complex BJ is the barycentric subdivision of X, Thus every

simplicial complex (with the week topology) is homeomorphic to the clsssifying space of

some. and in fact many, ordered sets. Furthermore, since it is known that any 'CII complex

is homotopy eqUivalent to s simplicial complex, it follows that any ~teresting homotopy

type is realized as the classifying space of an ordered set. (1 am grateful to Graeme

Segal for bringing these remarks to my attention.)

As another example, let a group G be regarded as a category with one object in the

usual way. Then BG is a classifying apace for the diecrete group G in the traditional

sense. It is an Eilenberg-MacLane spacs of type X( G,I ), so fell homotopy types occur in

this wsy.

Let X be an object of C. Using X to dsnote also the corresponding o-cellof, =
1':" we have a family of homotopy groups ""i(~,x), i <: 0, which will be called the homotopY

=ouns of C with basepoint X and denoted simply "'i(C ,X). Of couree, "" (C ,X) is not
~ = = 0=

a group, but a pointed set, which can be described as ths set ""~ of components of the

category C pOinted by the component containing X, In effect, connected components of
=

:e:: are in one-one correspondence with components of C.= =
lie will ses below that ""1 (~,x) and alsL~s hOlllology groupa of, ~ can be 'defined

"algebraically" without the use of spaces or some closely related machine such as semi

lUmplicial hOIllotopy theory, or simplicial complexes and subdivision. The existence of

simi1ax descriptions of the higher homotopy groups seems to be unlikely, because so far

89
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nobody has produced an "algebraic" definition of the homotopy grcups of a simplicial

complex.

'.;1

denot.. theE(X)let

ie a map in C, it
=

rise to a bijection E(u): E(X)

in this way we obtain a functor

that is, it carries arrows into

a path frO<ll X to X' in :ee, and hence gives=
It is essy to see that E(fg) = E(f)E(g), hence

from ~ to Sots which is morphi~inverting,

Cover1ngs of ~ and the fundamental grouE'

Let E be a covering space of B:. For any object X of C,
= =

fibre of E over X considered a..-~-Q-cell of :ee. If u: X _ X'= -
determines

~ E(X').

X t-+ E(X)

isomorphisms.

Conversely, given F: ~ _ Sets, let F\~ denote the cate..ory of pairs (X,x)

with X in C and xE F(X), in which a morphism (X,x) __ (X',x') is a _p u: X-.x'= .
such that F(u)x. x'. The forgetful functor F\C -+ C induces a map of classifying= =
spaces B(F\ C) -+:ee having the fibre F(X) over X for each object X. Using

[Gabriel-Zism:n, App~I. 3.2J it is not difficult to see that, when, F is morphiem~inver
ting, the map B(F\ ~)__~ is locally trivial, and hence B(F\;) is a covering space

of :ee. It is clear that the two procedures just described are inverse to each other,
=

whence we have an equivalence of categories

(Cover1ngs Of~) .Q:!. (Morph.-inv. F : ~ -+ Sets)

where the latter denotes the full subcategory of Funct(C, Sets), the category offunctore=
from C to Sets, consisting of the morphiem-invert1ng functors.

=
Let ~ • ; ~~)-lJ denote the groupoid obtained from ~ by formally adjoining

the inverses of all the arrows (Gabriel-Zisman, I, 1.1] The canonical funotor from ~

to G induces an equivalence of categories

= Funct(G, Sets) = (Norph.-inv. F : C -+ Sets) I
(12)..£11., 1,1.2). Let= X be an object of ; and le~ GX be the group of its auto- ..~

:~:ui~~::c~ o;b::::g::ie:: h::: o:e ~sc=:::::l:::einclusion functor Gx -+ ~ is i?i!i

Therefore by comb=t~~~ :::: e::va::::~X;eS::::in=an(:~::Le of categories of _~I'
':7F{'i!ir;;~

the category of coverings of ~ with the cat_gory of GX-sets given by the f\mctor "'."",, "/.,:!

E ~ E(X). By the theory of cover1ng spaces this impliea that there is a canonical iso-:

morphism: 'lr1(; ,X).:::: Gx. The eame conclusion holds when ; is not connected, as both

groups depend only on the component of C containing X. Thus we have established the
•

following.

Proposition 1. The category of covering epaces of ~ is canonically equivalent to.
the categcry of morphism-invert1ng functors F:; _ Sets, Or "hat amounts to the 'same
thiog, the category Funct(~, Sots).~ ~ = C[(~)-~ ie the grou oid obtained

fonnally invert1ng the arrows of ;. The fundamental group 'lr1(~,X) is canonicall,z'

isomorphic to the grOUp of automorphisms of X as an object of the groupoid ~.

It follows in particular that a local coefficient system L of abelian grouPs.':'~..;"

may be identified with the morphism-inverting functor X .... L(X) from C to abelian. , =
',.,.,J; .

:~ :
.



with ooefficiente in a local

Let A be a functor frClll e to Ab, the oategory of abelian groups, end let
=

B (e ,A) cjenote the hOlllology of the simplioial sbelien graup
p "' o (O,A) = JJ.. !(xo)

p. Xo-'· .-+~

of ohaine on Ne with ooeffioiente in A. (:By the homology we mean the hCllllo10gy of the
=

associated noma11Zed ohain oomplex.) Then there are oanonioal isomorph1ame
e

B (O,A) = lim =(A)
p= -p

where ve identify

filter:iJl& the CII

So
where ~. denotes the left derived functors of the right exact functor ~ frCllll

Func:t(e,Ab) to Ab. This is proved by showing that A r+ " (C ,A) is en exact il-i'unctor• ~ =
whioh ooincides with 1~ in degree zsrc and is effaceable in positive degrees. (See

[Gabrie1-Zisman, App.II, 3.3] .)

Let B. (:Be ,L) denote the e1ngW.ar homolo£y of :Be" =
ooeffioient systsm L. Then there are oenonioal isomorphisms

H (llC,L) = H (e,L)
p " p"

L with a morphism-inverting func tor aa sbove. This may be pro:ved by

oomp1ex :Be by means'of its skeleta and ccnsider:iJl& the associated
=: 1 1

spectral aequence. One has E = 0 for q i- 0 end E 0 = the nOl'lll&lized ohain oem-pq •
plex assooiated to C.(~,L). (Compare [Segal I, 5.1].) The spectral sequenoe degenerates

yielding the desired isomorphism.
#/!

Thus we have

PrOperties of the classifYing spaoe funotor.

B (:Be ,L)
p "

end similarly ve have a cenonioal isomorphism for cohomology

(2) , HP(~,L)= ~~(L)

vhere ~~ denotes the right derived funotore of the left exact funotor ~ from

Funct(C ,Ab) to Ab.
=

\
"
,

~:'

.:JI~\"

'~.: The hlDoloq of ~
~l
~'" It 18 ""ll-knovn that the hClllolo£y end oohClllology of the oleas1fY:iJl& spaoe of a clia-

-il)'-,,--orete-S1'O\lp-001noide_wi~lO'; end oohOlRol0lP' of the grau in the sense of hOllo-

t",; logioal alpbrs. lie now desoribe the generalization of this fact for en arbitrary -U

oatego17.

From nov on we use the letters C, C', eto. to denote smail categoriee. If
= "

f : ~ _ ~' is a funotor, it induoes a oellular map :Bf: B?, _ ~'. In this way""

obtain a faithful funotor from the oategory of small oategories to the catego17 of CII

complexes end oellular maps. Thie funotor ie of course not fully faithful. Ae a particu

larly intereet:iJl& exemple, we note, that there is an obviaus canonical cellular homeo

morphism

(3)

'where eO is the dual category, whioh is not realized by a functor from C to eO= = "
except in very speCial cases, e.g. groupe.

1

91
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By the compatibility of geometric realization witll producte [Milnor lJ ' one knowa

that the canonical map

(4) B(C xC') _ 1C:t llC '• = =::1

I..

.'
and also if the

in [Segal 1], this

IC' ie a finite complex,

topology. As pointed out

that for every arrow i -+ i' in I the ind
- . ,~l~~

Then the functor C -+ C is a homoto "
=i = ,

.....~.f,(r...'

or

If a functor f has eitller a left or s rigllt adjoint,~ f ~

-+ ~i' is a homotony equivalence.

for each i.

is a llomeomorphism if eitller IC
=

product is given the compactly generated

impliee the following.

Proposition 2. A Il&tural transformatiOll e: f -+ g of functors from ~ to ~ I

induces a llomotopy ~ X I _~' between Bf ~ Bg.

In effeot, the triple (f,g,e) can be viewed ae a functor ~ x t ~ ~', where 1

is tlle ordered set {o < IT and B1 is the unit interval.

Ws will say tllat a functor is a llomotopy squivalence if it induces a homotopy equi

valence of classifying spaces, and that a category is oontraotible if its claseifying

space is.

Corollary 1.

homotopY equivalence.

For if fl is say left adjoint to f, then there are natural transformations

f'f -+ id, id -+ ff', whence Bf' is e homotopy inverse for Bf.

Corollary 2. A category having either an initial or s final objeot is oontractible.

For then the functor from the category to the punctual category has an adjoint.

If X is the common image of the Xi ~ ~,~

lilf "'n(~i ,Xi) = 'lrn(~,X).

Proof. Because I is filtering and NC. lim NC
i

' it follows thet any simplicial
• - =

subeet of N~ with a finite number of nondegenerate eimplices lifte to N~i for eome

i, and 1II0reover the lifting is unique up to enlarging the index i in the eVident s~~

As every compact subset of a C\I complex is contained in a finite subcomplex, we se~":""

every compact subset of ~ lifts to ~i for some i, uniquely up to enlarging i.

proposition follows easily from this.

CorOllary I. Suppose in addition

functor ;i

equivalence

Proof. Replacing I by the cofinal oategory i'\I of objects under i,

suppose i is the initial object of I. It then followe from the propoeition tllat

map of C\I complexes BC
i

..... Ie induoes isomorphisms on homotopy. Hence it is a '= =
homotopy equiValence by a well-known theorem of Whitehead.

Let I be a emall category which is filtering (= non-empty + directed [Bass, p.41])

and let i l-+ ~i be a functor from I to small categories. Let ~ be the inductive

limit of the ~i; because filtered inductive limits commute with finite projective limits,

we have o~ = ~ O~i' ~ = ~~i' and 1II0re generally N~ = ~ N~i' Let Xi €

O~i be a family of objects such tllat for every arrow i -+ i' in I, the induced

functor ~i 4 ;i' carries Xi to Xi' , whence we have an inductive system "'n(~i'Xi)

'indexed by 1.

Prooosition 3.
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Corollary 2. AIry filtering category 1e contractible.

In effect, I 1s the induct1ve l;l.mit of the functor 1 ~ Iii , and the category

1/i of objects over i has a final object, hence is contractible.

•
1

','. -

-i,-------,S"'lifO><fiCient conirnionsfor a f~rt"be-.rhomotopY-equivsiencs.
Lst f , C _C' be a functor and denote objects of C by X, X', etc. and object. or

~ • c

~. by X, X', etc. If X, 1s a fixed object of ~', let X\ f denote the category con-

s1stiDg of pairs (X, v) with v: X~ i'X, 1D which a morphiBlll from (X, v) to (X ' ,v' )

1s a map w: X'~ X' such that f(w)v = v'. In particular, when f ie the identity

functor of C', we obtain the cstegory X\ C' of objects under X. S;l.milarly one definee= =
the category fix cons1sting of pairs (X,u) with u: i'X ....,. X.

TheorlllllA.. If the category X\f 1e contractible for every object X of ~', ~

the functor f 1s a homotopY equivalenoe.

In view of (3), this result adm1ts a dual fOrmulaUon to the effect thatf is a

homotopy equivalence when all of the catsgor1es fix are contrsctible.

Example. Let g' K ... K' be a simpl1cial map of simpl1cial complexee, and let

f : J _ J' be the induced map of ordered sets of simpl1cee in K and K', so that g

18 homsomorph1c to llf. If (j- denotes the el....ent of J' correeponding to a simplex 0"

of K', then f/~ ie the ordered eet of simpl1ces in g-I (0-). In thie situotion the

theorem eays that a simplicial map ie a homotopy equivalence when the inverse image of

each (closed) eimplex is contrectible.

llefore proviDg the theorem we der1ve e corollary. Firetwe'recall the definition of

fibred and cofibred cetegories (OOA 1, Exp. VI) in a suitable form. Let f-1(X) denote

the fibre of f over X, that ie, the subcategory of C whose arrows are thoa. mapped to
=

the identity of I by f. It is easily seen that f makes ~ s tlrefibrsd category over

C' in the senee of lon.cit. if and only 1f 'for every object I of C' the functor
= =

f- I (I) _ 1\ f X 1-+ (X, idyl
has a right adjoint. Denoting the adjoint Cy (X,v) H v"x, w. obtain for any map

v : I -+ I' a functor

v· : f-1(I') _ f-I (X)

determined up to ,canOnical isomorphism, called base-change by v. The prefibred category

~ over ~' is a fibred category i.f for every pair u, v of compo....ble arrows in £', the

canonical morphism of functors u*v* -;. (vu)· is an iSOlllorpblem. We will call Buch

functors f prsfibred and fibred respect1vely.

Dually, f makee £ into a precofibred category over C' when the functors
1 - • I

f- (I) _f/I heve left adjoint. (X,v) I+v.X. In this case the functor v.' f- (y) _

f-'(I') induced by v', X -+ X' is called cobaae-change by v, and ~ is a cofibred

categcry when (vu).::::" v.u. for all composable u,v. Such functors f will be called

precof1bred and cofibred respectively.

cor~iiary. Supposs that f is either prefibred or preeofibred, and that f-' (Y) is

contractible for every X. Thsnf is a homotopy equivalence.

This follows from Prop. 2, Cor. 1.
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Example. Let S(£) be the category whose objects are the arrows of ~ , aI>d in

.which So morphism from u: X -+ Y to u': X· -+ Y' is So pair v: X' ... X, v : 'Y - Y'

such that u' =vuv. (Thus S(C) is the oofibred oategory over COxC with discrete
= - =

fibres defined by the functor (X, y) 1-+ liem(X, Y).) One has funotors

Co" s S(C) t) C= = =
given by source and target, and it is easy to see that these functors are cofibred. The

oategories s-1 (X) • X\~ and t-1(Y) = (~/Y)O have initial objects, hence are oontrao

tible. Therefore s and t are homotopy equivalences by the corollary. This construc

tion provideS the simplest vsy of realizing by means of functors the homotopy equiValence

(3) •

We now turn to the proof of Theorem A. We will need a standard fsct about the

realization of biSimplioial spaces which we nov derive.

Let Ord be the oategory of ordered sets p = {O< 1~ ••<p} , p,:lII, sO that by

definition simplioisl ·objects are functors vith domain Ord°. The realization functor

(p\-Xp) ~ IJIll-+Xpl

from simplioial apaoes to spaces ([Segal 1]) may be defined as the funotor left adjoint

to the funotor vhioh associates to a space Y the simplioial speee p 1-+ .!!2m(AP, Y),

vhere .!!2m denotes function spece and ~ is the simplex having p aa its set of

vertioes. In partioular the realization funotor oommutes with inductive limits.

Let T: JIl, 'll ....-+ T be a bisimplioial spaoe, i.e. a functor from OrdOxOrdo
pq -- ===

to spaoes. Realizing with respect to 'I. l<eeping , fixed, ve obtsin a simplicial spece

p 1-1' Iq r+ Tpql whioh may then be realized with respect to ,. Also, we may realize

first in the p-direction and then in the q-direotion, or we may realize the diagonal

simplioial space p 1-+ Tpp ' It is vell-l<nown (e.g. [ Tornehave]) that these three

procedures yield the same result:

~. There are homeomorphilSllls

1,\-IoTppi - lpl-+l.~Tpql1 = I.\-+-!' ...... Tpql\
whioh are functorial in the simplicial space T.

Proof. Suppose first that T is of the form

h
ra x g : (".)~ Rom(p,r) x Rom(q••) x g

where S is s given spaoe. Then

1,1-+ Hom(p,r) x Rom(p,.) x g I = Ar x AS x S.

(This is the basio hcmeomorphiSll used to prove that geometric realization cQllllllUtes with

products l Milnor I] .) On the other hand, we have

I pl-l> 1.. 1-+ Rom("r) x Hom( 'I•• ) x sll
I ( . sir s= ,10+ Rom "r) x A x s = A x A xg,

and similarly for the ilouble realization tal<en in the other order. Thus the re~ .,",

functorial homeomorphisms exist on the full subcategory of bisimplicial spacee ofthia.

form.

l,



and in which a morphi8lll from

w: I' -+1 such that

e x e10 dsfined by the functor= =

= Ne=q

= N(C'O)= P
pt

an element of T(f) is a pair ofpq

} C
=

--

p,(X,I,v) =X, P2(X,I,v) =I.

T(f) be,the bieimplicial set such that

But eIJY T hee a canonical presentation

with X an object of e and v: 1-+ r:x a..ap in C',• =
(X,I,v) to (X',Y',V') is a pair of arrOll"a u : X ..... X',

v' = f(u)vv. (Thus S(f) 1& the cof1bredcatagory over

(X,I) 1-+ llcm(I,r:x).) \Ie have fUllCtore

C'0.. P2 S(f)
=

giV8llby

Let

diagrams

which is a homotopy equivalence for each q because the category e'Irx has a final
• 0

object. Applying a basic result of !lay end Tornehave «(Tornehave. A.;J ), or the lellllll8

below (Th. ll), we see ths realization of (*) ie a homotopy equivalence. Thue the

functor P, is a homotopy equivalence.

Similarly there is a map of bisiJllplicial eets T(f) -+ N(C '0) whose realization
pq = p

is the map llP2: :as(f) ~~'o Realizinl;"with respect to q, ve obtain a map of

siJllplicial spaces

11 ll(IC:\f) -
Io_··....yp

(y -:r ... ~ I _ r:x ,X :.....,. ... __ X )
P (> 0 0 q

in e' and e respectively, end such that the i-th face in the p-(resp. q-)direction• = "
deletee the object Ii (resp Xi) in the obvious way. Forgetting the first component gives

a map of bieimplicial sete

(*) T(f) ---+ NC
pq =q

where the latter is constant in the p-direction. Since the diagonal eimplicial, set of

T(f) is the nerve of the category S(f), it ie clear that the realization of (*) ia the

map Bp,' :as(f) __ ~. (By the realization of a bisimplicial set we mean the space

deecribed in "the above lemma, where the bieimplicial eet ie regarded ae a bieimplicial

.pace in the obvioue way.) On the other hand, realizinB (*) vith rnpect to p gives

a map of siJllplicial spaces

.1L B(c'/rx)O= 0
Xo-+ ••-1'\

,~",','-'-< •-)~~ .. ~,
-: ......,..

~4,:

1',"1;-"" \ I hr's'", T
rs

t II hrsx T_ ----4 T

~~l:;--~r- (r,~".,) ~~).~
-\'ll'l'- lI"hlcll is euet wthFlJ8ll8ll-thet-the-r±&llt-errow-is-the-colcernel-of-the-pai1'--of-lUTowB.---_

;>.~",'

,,~- SiDee" the three functors from bieimplic1al speces to spaces lXlder cOXlBideretion commute

witn inductive limitil I the 1_ follows.

Proof of Theorelll A. Let S(f) be the caterory whose objects are tnples (X,I,v)

which is a homotopy equivalence for each p, because the categoriee Y\ l' are contrac

tible by hypotheeis. Thue we conclude that the functor P2 is s homotopy equivalence. ,
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But we have a cOllllllUtat1ve diagram cf categories

C10 ~
P2

S(f)
PI

C..
1f'

..
II If

P2 PI
C' a t' S(1"o, ) ~ C'.. ....

where f'(X,I,v) .. (n,Y,v). 'rhe horizontal arrowe are homotopy equivalencee by what has

beell proved, (note thl.t I\1"o, .. I\~' is contractible as it has an initial object) •..
'rhus f is a homotopy equivalence, whence the theor8lll.

'rhe exact homotopY seQuence.

Let g: E ... B be a map of topological spaces and let b be a poillt of B. 'rhe

homotopY-fibre of f over b is the space

1(g, b) .. E XBBI ; (b}

consisting of pairs (e,p) with e a poillt of E and p a path jo1n1ng g(e) end b.

Fcr any e in g-1 (b) one has the exact homotopy seguence of g with basepOint s

- '"i+l (B,b) -- '"1(F(g,b), i) _ '"1(E,e) gt I '"1(B,b) _ ••

vhere i .. (e,b), 'D denoting the constant path at b~

Let f : C _ C ' be a functor and I an object of C'. If j : I'\f __ C is the= = =- =
functor sending (X,v: I -+f'X) to X, thsn (X,v)!-"'v I~f'X is a natural trans-

formation from the constant functcr vi th valus I to fj. Hence by Prop. 2 ths composite

B(I \f) ... Be -t Be' contracts cancnically to the constant map with 1mage Y, end so we.. ..
obtain a canonical map

-,

,.,

" t

~

!

I

B(I \ f) -_, F(Bf, I).

e' ~ (,'(e'), hi'tb'), h'(e')

B'

E'

g'l

/

is called homotopy-cartesian 1£ the map

E' _ B' ; BI x
B

E

j{e vant to know when this map is a homotopy equivalence, for then we have en exact

sequence relating the homotopy groups of the categories Y\f, 9. and 9.'. Since the

homotopy-fibres of a map over points connected by s path are homotopY equivalent, it is

clearly necessary in order for the above map to be a homotopy equivalence for all I, that

the functor Y'\ f -1" I\f , (X,v) ~ (X,vu) induced by u: I _ Y' be a homotopy

equivalence for every map u in C'. We are going to show the converse is true •..
Because homotopy-fibres are not classifying spaces of categories, and hance are

vhat removed from what we ultimately will work with, it is convenisnt to formulate things

in terms of homotopy-cartesian squares. Recall that a commutative square of spaces

_...;;h;;.'_+ E

h 19
_::...~ B

from E' to the homotopy-fibre-product of h and g is a homotopy equivalence.

:L



we have an exact sequence

j(X,v) = X

f'(X,v) = (iX,v)

j'(Y',v) = Y'

X in f-1(y)

jo, J ",_(C,X)
).=

j
) C

j I
If

• C'
=

i »C
=

Consequently for any

f-1 (y)

L
pt

is homotopy-cartesian.

-+- "'i+l (~" Y) --+"'i(Y\f. xl
where X = (X, idy).

As_with Theorem A, this result admits a dual formulation with the cstegories fly.

Corollary. Suppose f: C -+ C' is prefibred (resp. precofibred) and that for every/ =.. 1 1
arrow u : Y -+ Y' the base-change functor u·: f- (Y') ~ f- (Yl, (resp. the cobese-

;;;;;e functor u.' f-'(y) _f-'(y')) is a homotopY e9uival~nce. Then for any Y in

£', ~he category f-l(y) is homotopy eouivalent to the homotopy-fibre of f over Y.

(Precisely, the squsre

~-:' When B' is contractible, the map F(g' ,b') ~ E' ie a homotopy e~uivalence for aIly b'

!f~:~' in B', henee one has a IIIBp E' -of F(g,h(b')) unique up to, homotopy. In this case the

_ :i,..'~~---;-8'l,,:uar::::;:-::e::::i-::s--::::e:::a~si:::l:-;y~s:-e::,.n~t_o_b_e~h __om~ot_apy~_-__car~t_e_s_ian~_if~an~d~Onl~y~if~_E_',--;~_F_(:..,g_,h~(b_'_)_)~i_s_s~~_
'.I~: homotopy equivalenoe'.

A commutative square of catsgoriss will be called homotopy-cartesian if the corres

ponding square of cl~ssifY1n€ spaces is. With this terminology we have the folloving

generalization of Theorem A..

Theorem B. Let f: C ..... C' be a functor such that for every arrow Y _ Y' in= =
C'" the induced functorY' \f _ Y\f is s homotopy equivalence. Then for any object
=
Y 2!. ~' the cartesian square of cs tegories

where i is the inclusion functor, is homotopY-cartesian.) Consequently for any X in,

f-I (y) we have an exact homotopY sequence

-+"'i+l(g'.y) --+ "'1(C
1

(y),x) 1., ''''i(g.x) fo" "'i(~"Y) -.

This is clear, aince f-1(y) __ Y\ f is a homotopy equivalence for prefibred f.

For the proof of the theorem we will need a lemma based on the theory of qussi-fibrs

tioIlS LDold-LaShOf], which is a special case of a general result about the realization

of a IIlBp of simplicial spaces [Segal 2 ]. A. qussi-fibration is a map g: E - B of

spaces such that the canonical map g-l (b) -+ F(g,b) induces isomorphisms on homotopy

for all b in B. When E, B are in the class ~ of spaces having the homotopy type of
,- ~

a ew complex, one lenows from [Milnor 2] that F(g,b) is in ~. Thus if g (b) is
, ,

also in W, and g is a quasi-fibration,we have that g- (b) ~ F(g,b) is a homotopy=
equivalence, i.e. the equare

97
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,-1(b) ---:i:......... E

Jt b ,ig

________._ ia b~QJQPY:~~_Il,J:'_t""ilOIl_'_______ . _ _
..._ _."..- "._-,."-, " ,, __._..---"""_..,.__"""""."'~_._ . "'_. ,_..__.__.__,:1,

~. ~ i f-1. \ be a functor frPm a sm.a.ll category I to topological spaces,:

and let g: Xr ~ BI be the epace over BI obtained by realizing the simplicial epace

II Xi
i ~ ••-+i 0
o P

-.'
!'

-.<,

.. g

Jlll
1

!! Xi ~ Xi' ie a homotopY equivalence for every arrow i .... i' in I,~ , 2:!-!
quasi-fibration.

Proof. It suffices by: Lelllllla 1.5 of [Do1d-Laehof] to show thatthe restriction of ,

to the p-eke1eton '1' of BI is a quasi-fibration for all p. We have a map'of

coearteaian squares

Proof of Theorem B. We return to the proof of Theorem A. The functor PI "

ia a homotopy: equivalence aa before, but not neceaearily: the functor 1'2' The map ,-: i.;"-
Bp2 : ES(f) -+ B(~'O) is the realization of the map (-). Thus apply:ing tbe prec

,-':'''
lemma to tbe functor I t-+ B(I\f) from !i.'o to epaces, we see that Bp2 is & quasi--

fibration, and hence the cartesian square

98

.ll Xi x ~h..p c::: 11 x. x l::!
0L ~o~

-1 ( ) - ,-I (F )Fp-1 C Fp g Fp-1 '-- l'

where the disjoint uniona are takan OVer the nondegenerated p-simp1ices i ...... -+ i of
o l'

HI. Let U be the open eet of F obtained by: removing the baryeenters of the p-cella,
l'

and let V = '1' - Fp-1 It suffices by: Lemma 1.4 of 10c. m. to show the restrictions

of g to U, V and UnV are quasi-fibrations. Thie is clear for .. X and UnV, since
.'

over each p-cell g is a product map.' j,>

We will apply: Lemma 1.3 of 10c. cit. to glU.- assuming as we 0Ay: by: induction that

glFp-1 is a quasi-fibration, and using the evident fibre-preserving deformation D of

glU into glF I provided by: the radial deformation of b! minue baryeenter onto 'Jt:l. ~~
p- -1 ( ) IWe have only: to check that if D carries x EU into x' ~ Fl' then the map g x_

g-1 (x') induced by D induces isomorphisms of homotopy gro~e. SUpposing x f:. Fp-I as

we may:, let x come from an interior point z of the copy of /:::.1' corresponding to the_J
silllplex s = (i ..............i ). and let the radial deformation push z into the open face or -,),:

1:::..1' with verti~es j ! .. < j • Then it is easy to see that g-1(x) =~i and ,-i(,.,)_j
o q" 0 ,;,.

\: ' k = i j , and that the map in question is the one X. __ \: induced by the race
o ~o

io~ k of s. As these induced maps are homotopy equivalences by hypotheaie,

of the lemma ie complete.



is

in

and AlA'
Let E be

=

an admissible

(resp. j) of scme

For any Ii; I,M"

scmetimss be denoted

denotes a homotopy

it follows that (1)

occurs as the map i

spimorphisms ..ill

(id,O) • JoI' e JoI" __p_r::,2_. K" __..,,~ 0

_.:i-+: M _ ..j,--.., M" __ 0

Y\f --+1 S(f) .... j ~

L (1) i f' (2) !f-
Y\£' I S(id_,)~ £'if (}) 11~ -

pt , C,0

Y "

12. The K;groupa of an exact category

o ---'to, M'

in whioh the squares are oartssian, and in whioh the sign ,,,,,

equivalencs. Since ths aquare (1) + (}) is homotopy-cartesian,

homotopy-oartesian, hence (1) + (2) is alac, whence tbs tbsorem.

Exact categories. Let !! be an additive cstegory which is embeddsd ss a full sub

category of an abelian category A, and suppcse that )l is closed under sxtensicllB in A
; . ~ c

in the sense that if an object A of A has a subobjsct A' such that A'
"are isomorphic to objects of M, then A is isomorphic to an object of M.

= =
the class cf sequences

o ---.~' M'

in II which are exact in the abslian category A. lie call a map in M.. .. ..
monomorphism (resp. admissible epimorpbiSlll) if it

member ( ,) of E • loJlmissible monomorphisms and..
M'~M and M~K", rsspectively.

The class E clearly enjoys the following properties:..
a) Any sequence in !! isomorphic to a sequence in ~ is in ~.

is in E. For any sequence (1) in E, i is a kernel for j and j is a cokernel fcr.. ..
i in the additive category M•..

b) The class of admiSSible epimorphisms is closed under composition and under baBe-'

change by arbitrary maps in !!. Dually, the class of admissible monomorphisms is closed

under compositiOll' and under cobase-change by ubitrs'Y IIIl.pS in M•..
c) Let M -+ K" be a map possessing a kernel in M. If there eXists a map Ii -+ K..

in ~ euch that Ii -,+JoI .... II" is an admissible epimorphism, then M -+ M" is an

admissible epimorphism. .llually for. admissible mOllomorphisms.

For example, suppose givell a sequsncs (1) ill E and a map f N~ M" in M... ..
Form the diagram in A..

II, the sequencs..

f'''''':
Y\f S(r)~; ,

!

1 ! P2
/",:

pt Y , C,O
~.

..
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O---+-~l' __ II~M" __ O

il j tf

O_M' ~P~N--.,.i'"O

where P is a fibre product of f and ,j in A.... Because II is closed under exten-.. ..
sions in ~,we can suppose P is an object of ~. Hence the basechange of j by f

exists in II and it:lll an admissible epimorphiBlll •..
Pefini tion. An exact category is an additive category ~ equipped with a family ~

of sequences of the form (I), called the (short) euet seguenoes of II, such that the
•

properties a), b), c) hold. An exaot funotor F : 1'1 ~ 1'1' between exaot oategories is= =
an additive functor carrying exact sequences in 1'1 into exact sequences in II',. ..

Examples. Any abelian category is an exact category in an evident wsy. Any additive

category can be made into an exact category in at least one way by taking E to be the..
family of split exact sequences (2). A category which is 'abelian' in the aense of

[Beller] is an exact category which is Karoubian (i.e. every projector has an image), and

conversely.

Now suppose given an exact

contravariant functors from M..
category II.' Let A be the additivs category of additive= ..
to abelian groups which are left exect, i.e. carry (I) to

'~
"

i:

the composition of this morphism with the morphiBll from II to II' represented by (3),

is the morphism represented by the pair j 'pr
l

' i' 'pr
2

in the diagram

~ having the same objects as

II and II' 'be objects in II
•

Let

i
N )--''-_, II'

Ql'l •
=

If II is an exact category, we form a new category..
The category

an exact sequence
o _F(II") _ F(II) _ 1'(11') •

(?recisely, chooee a universe containing 1'1, and let A be the category of left exact
, ...

functors whose values are abelian ,groupe in the universe.) Following well-known ideas

(e.g. (Gabriel]), one can prove ~ is an abelian category, that the Yonede. functor h

embeds II as a full subcategory of A cloaed under extenaions, and finally that a.. ..
sequence. (1) is in E if and only if h carries it into an exact sequence in A. Ths.. =
details will be omitted, as they are not really important for the sequel.

~ but with morphisms defined in the following way.

and consider all diagrams

(3) II E( j

whare j is an admissible epimorphiSlll and i is an admissible monomorphism. lie considsr
~!

isomorphisme of these diagrams which induce the identity on l'l and II', such isomorphisms:"

being unique when they eX:l.st. A morphism from II to II' in the Ce tegory ~ is by" 'iii
definition an isomorphism claas of: these d:l.agrsma. Given a morphiBlll from II' to II"

represented by the diagram

j ' i'II' ~Io((O-"'--- N' ) ) II"



11

pr2 i'
N ~,N' > ) HI »)_-=-_... Mil

prl~ ij I
:;~'-:

3i~:--------------1
j

I1--.2:>=:iF~M~1----------------

K

It is olear thet compoeition ia vell-de1'ined and assooiative. Thus when the isomorphism

classes 01' diagr&ms (3) 1'orm s set (e.g. i1' ever,r object of M hes a set 01' subobjects)=
then QM is a well-de1'ined category. We assume this to be ths case from now on.= .

It is uss1'ul to describe the preceding construction using admissible sub- and

quotient objects. lly an admissible subobject of M we will mean an isomorphiBlll class 01'

admissible monomorphisms H' >-1' H, isomorphism being understood as isomorphism of objects

aver M. Admissible subobjects are in one-one correspondence with admissible quotient

objects defined in the analogous way. The admissible eubobjects 01' M 1'om an ordered set

wi th the ordering: H
1
" M

2
i:f' the unique map H, -;. H

2
over H is an admissible mono

morphism. When .1, lii M2 , we call (Il, ""2) an admissible layer of H, and we call the

cokernel HzlH, an admissible subquotient of H.

With this terminology, it is clear thet a morphism from H to II' in QM may be=
identified with a pair .( (H, 'Y(2)' e) coneisting of en admissible layer in HI end an

isomorphism e: Ii, ~ HzlH, • Composition is the obvious way 01' combining an isomorphism

of ~j with an admiasi"ole subquo.tient of H' and an isomorphism of M' with an admis

sible subquotient 01' . W' to get an isomorphism of H ,1.th en admissible subquotient of

Mit.

For example. the morphisms from 0 to M in QM are in one-one correspondence vi th
=

the admissible subobjects of II. Isomorphisms fromH to MI in QM are the ssme as=
isomorphisms fran H to MI in Ii.

=
I:f' i : H' _ H is an admissibls monomorphism, then it gives rise to a morphism

from MI to 11 in Q):l which will be denoted

i, : H' _ 11.

Such morphisms will be called injective. Similarly, an admissible epimorphism j.: M-i/oM"

g1ves riae to a morphism
I

j' : H" -+ H

end "",eee IIIOrphisms will be called surjective. By definition, any morphism u in Q.,!!
I .

can be factored u = itj', and this 1'actorization is uniqus up to unique isomorphism.

If we 1'om the bicarteeien square

I
then u = jl'i'j , and this injective-followed-by-surjective factorization is also unique

up to unique isomorphism. A map which is both injective end surjective is en ieomorphism,
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MO is
=

resulting func-'-,
l~'
J

~~t
}p,

B(~) is equivalent to the~I'

It suffices therefore to

We note also that if

M is a slllS1l exact category, so
=

o be a given zero object of ~.

is canonically isomorohic to the

Suppose nov that

is defined. Let

are composable admissible monomorphisms, then (i' i)! = i 'I i, •

are composable admissible epimorphisms then

(i~)! - (i~)1 • i~ •

b) If (4) is a bicartesian square in vhich ths horizontal (resp. vsrtical)lIlSps

(
. I ,

are admissible monomorphi8lls resp. epimorphi8lls). then i! j' = j" i '! •

Nov suppose givsn a oategory ~ and for eech object M of ~ an object hM of

9., and for sach i: ll' ~ M (resp. j: II _ll") a IIlSp i, ; hll' ~ hlI- , '

(resp. j' : hll" __ hll) such that the properties a), b) hold. Then it is clear that

this data induces a unique functor QM -+ C , II t-+ hll compatible with the operatione
I = =

i H- i, and j 1-+ j , in the tvo categories.

In ~icu1ar, an exact functor F: M~M' between exact categories induces a
= I = I

functor Q~ ~ ~', II H- Flo! , i, H-(Fi) I • j" f-T (Fj)'

the dual exact category, then ve have an isomorphism of categories

The fundamental grOUP of Q~.

that the classifying'space B(QM)
z

Theorem 1.. The fundamental group tt, (E( Q~), 0)

Grothendieck group Ko~;

Proof. The Grothsndieok g1'OUP is by definition the abelian group with one generetor .,

[MJ for each object M ·of .~ and one relation (M] = (Mil LM'j for each exact sequence_::)~,

(, ) in ~. Ve note that it could also be definsd as the not-necessarily-abelian g1'oup

--.ith the sams generators and relations, because the relations [Il'JlII"J = lM' @ M"J =
Lll"J[ll'] force the g1'oup to be abelian.

According to Prop. " the category of covering spaces of

category ~ of morphism-invsrting functors F: Q~ ~ Sets.

shoy the group K M acts naturally on F(O) for F in F, and that the
0= =

tor from F to K M- ssts is an squivalence of catsgories.= 0=

Let ~: 0>-+ II and JM : II ~O denots the obvious IIlSpS, and let ~' be the

full subcategory of ~ consisting of F such that F(M) =F(O) and ?(~!) = idF(O)

for all II. Clearly any F is isomorphic to an object of F', so it suffices to shOW=

(5)

such that the injective arrows in the former correspond to surjective arrows in the latter

and conversely.

(
_') Iand it is of ths form eI = e ' for a unique isomorphism e in ~ •

Injsctive and surjective IIlSpS in QIl should not be confused with monomorphisms and
=

epimorphisms in the categorical sense. Indeed, every morphi811 in Q!! is a monolllorphiSlll.

III fact, the category QIl/)l is easily sesn to be equivalent to the ordered set of ad-=
- _.- missible layers in M with the ordering: (M ,M,) ~ (II' ,II,' ) if II' ~ II S. M, l> II,' •

a ,,0 a 0
V. can use the operations i.....,. i r and j I-t j' to oharacterize the category ~

by a universal property. First v. note that these operations have the following

"properties:

a) If i and i'

Dually, if j and j'
I I I

(jj')' = j"j. Also

-,',



Elementary properties of' K-firoups. An sxact fU%lctor f : ~ -t ~' induces a functor

QM ~ QM', and hence a homomorphism of K-group8 which rill be denoted• •
,..

~:

Also

j t M"_O

I I I
- i,jJol; ,hence F(j'). FUM;) G Aut(F(O».

F(jM!) • F(j!jM~) • F(jM;)F(jM!')

I

j'~"!we have

UBiIl&' the universal property of ~. Clearly S 1-+ FS is. fU%lctor from Ko~ - sets to

r. 0J:l the other hand if FE ~', then 'given i: M1>--+ M we have i'~' =~ , heDcs

F(i,) - 1~(O)' Givan the exact sequence

Higher K-groups. 'rhe abovs theorem offers soms motivstion for the following

def1nitioo of K-groups for a 8IIl.all exact category M
=

Definitioo. \~ = tti +1(ll(Q~),O) .

Note first of all that theK-groups are independent of the choice of the zero object

O. lIlde.d, given another zero object 0', thsre is a unique map 0 -+ 0' in QM, hence
•

tbere is a canonical patb frail 0 to .0' in the cl....ifying space.

Secondly we note that the preceding definition extends to exact categories haVing 8

set of isomorphism classes of objects. We define Ki~ to be 'Ki~" where ~' is a small

eUbcategory equivalent to M, the choice of lol' being irrelevant by Prop. 2. From DOW on
~ ,- =

we will only consider exact categories whose isomorphism classes form a set, except when

meDtioned otherwise. III addition, when we 'spply the rssult. of ~', it rill be tscitly

assumed that we have replaced any large exact category by an equivalent small one.

so by the universal property of K M , there is a uniqus group homomorphism frOlll K II to
I 01:11 . 0=

Aut(F(O» such that [M] 1-+ F(jloi)' 'rhus we havs a natural sction of Ko~ OD F(O) for

B:IJ:¥ F :in F'. III fact, it is clear that the resulting functor F L..o. F(O) from F' to. /' .
K M- 8ets is an 1sallorphi8lll. of categories with inverse S 1-+ Fs • so the proof of the
0- .

theorem is· complete.

F ' 1e equivaleDt to K M- eets.
• 0=

GiveD a Ko~ - set, S, let FS : Q~ -+S;ts bs the .functor defined by

FS(M) = S • Fs (1!) • idS' FS(j') - mtilt1plicatiOn by [Ker j] on S,

_t,'•.

(6)

III thi8 way K
1

becomes a fU%lctor from exact c..tegories and exact' functors to abelian

groups. Moreover, isomorphic functors induce the ssme mep on K-groups by Prop. 2. From

(5) we have

(7) Ki (~O) = Ki~ •
..

'~.

'rbe product M x lol' of two exact categoriee is an sxsct cstegory in which a sequence
= =

is sxact WbSD its projections in M and MI are. Clearly Q(M x MI) = QM x e:tol'. Sincs
_.III: = =:. = =

the clsssifying space fU%lctor is compstibls witb products (aI, (4», we have

(e)
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The functor 1$): II x r; ~ M , (M,M') H MED M' is exaot, so it inducss a homomorphism ."
= = =

This map coincidas with the sum in the abelian group Ki~ because the functors M_b
o@ II , M1-0 Me 0 are isomorphic to the identity.

Let j ~M, bs a functor from a small filtsring category to exact categories and
=J

functors, and 1st ~~j be the inductive limit of the ~j in the sense of Prop. 3.
Then ~ ~j is an exact category in a natural way, and Q(~~) = ~ Q~j ,

hsnce from Prop. 3 we obtain an isomorphism

(9) Ki (~~j) = ~ Ki~j •

E:umple. Let A be a ring with 1 and let ~(A) denote the additive category of

finitely generated projective (left) A-modules. ~e regard ptA) as an exact category in
=

which the exact sequences are those sequences which are exact in the category of all

A-modules, and we define the K-groups of the ring A by

Kill. = Ki(~(A)).

A ring homomorphism A-+ A' induces an exact functor A' fJA? : E(A) -+ ~(A') which is

defined up to canonical isomorphism, hence it induces a well-defined homomorphism
-

(10) (A '®A 1). : Kill. --to KiA'.

making Kill. a covariant functor of A. From (8) we have

= l,A III l.A'.
~ ~

If j f-+ Aj is a filtered inductive syatem of rings, we have from (9) an isomorphism

(12) Ki(~Aj) = ~KiAj •
-.;

(To apply (9), One replaces ~(Aj) by the equivalent category ~(Aj)' whose objects are;
the idempotent matrices over A, , ao that P(liJD Aj )' = liJD P(Aj )'.) Finally we note .

J =---1" -= J.
that p ..... Hom

A
(P,A) is an equiValence of ~(A) with the duel category to ~(AOP), vhere;

Aop is the opposed ring to A, hence from (7) ve get a canonical ieomorphism "

Re!!l!irks. It can be proved that the groups K.A defined here agree with thoee
~

defined by making BGL(A) into an H-space and taking homotopy groups (see for sxample

[Gereten 5J). In particular, they coincide for i = 1 ,2 with the groupe defined by

by Bass and Milnor, and vith the K-graupe computed for a finite field in [Quillen 2). ~~

On the other hand, for a general exact category ~, the group K,(!:!) is not the same as
the universal determinant group defined in [Besa, p.389]. There is a canonical homamo,

phism from the universal determinant group to K, (':!), but Gersten and Murthy have "

produced examples shoring that it is neither surjective nor injective in general.

-..~

t'



O_sE~tE_qE_O

13. Characteristic exact sequences and filtrations

in M associated to sach object E of E. A sequence in E will be called exact if it• =.
gives rise tc three exact sequences in .II on applying s, t, and q. With this notion of

=
exactnese, it is clear that E is an exact category, and that s, t, and q are exact

•
functors from E to .II •= •

it suffices tc show

have' left adjoints.

x = (E,u,v),.C,
=

X in C'.
=

ths flllllily E of short exaC t sequences in .II
• •

We denote objects of E by E, E', etc. and
=

quotient objects of E, whence ve have an

in C. Let
=

in C with

i : sE >-;- Jol', j , .II _ M', and define the exact sequence i.E

The inclusicn functors C' _ C and C" _ C'
= = - = :;;

.Let .II bs an exact category and regard
, .

Consider first the inclusion of C'
=

arrow X -+ X

~.

as an additive category in the obvious way.

let sE, tE, qE denots the su~, total, and

exact sequence

that there is a universal
I

Let u =j'i! where

by •pushout I:

E , O __ sE __ tE __ qE _0

iJ r 1/
i.E 0 ---+ ~~I - T _qE ---+ o .

Theorem 2. The functor (s,q/' Q!~ Q~ x Q~ is a homotoPY equiValence.

Proof. It suffices by Thecrem A tc show the category' (s,q)/(.II,N) is contractible

for any given pair M,N of objects of M. :Put C = ,(s,q)/(M,N); it is the fibred
, ..

category over QE consisting of triples (E,u,v), where u: sE '-7 M, v , qE -7 N are=
maps in QM. Let C' be the full SUbcategory of C consisting of the triples (E,u,v)= = I:

such that u is surjective, and let C" be ths full subcategory of triples such that u=
is surjective and v is injective.

I
Let X = (i.E,j' ,v), it belongs to C' and there is a canonical arrow X -? It given by

=
the evident injective map E -+ i.E •

I
Now suppose given X _ X' with X'. (E',j" ,v') in C'. Represent the map E-+E'

=
by the pair E~ Eo, E'~ ED. Since

sE ~ sE _ sE'~M
o

represents u, we can suppose Eo chosen so that sE~ sE
o

is the 'map i, and

M~ BE is j. By the universal property of pushoutB, the map E H E factorso ,0

uniqusly E >-+ i.E H ED ' sO it iB clear that we have a map X -+ X' in ~' such that

X-+X'-7X' is the given map X-tX'.

It remains to show the uniqueness of the..map X~ X'. Consider factorizations

X-+X"-+X' of 1. .... 1.. such that X" is in C'. Note that C/X' = QE/E' iBequi-= =
valent to the ordered Bet of admissible layers in E'. Let (Eo' E,) be the layer

corresponding to X _ X' and (E~ ,E,) the layer corresponding to X" -+ X' so that

105



X ~ X.
Next consider the inclusion of C" in CI, and let (E, u, v) € C' • Represent

= = =
v : qE -+ N by the pair j : N'~ qE, ,i : N' >-+ N , and define j"E by pu.J.l-back:

(Eo ,El)'(E~ ,E;') and BE;' =sE'. There is e least such laysr (E~ ,E;') given by

tE~ = tEo ' tEl' = BE' + tEl , which is characterized by the hct that the map E/Eo ~

E;'/E~ is injective and induces an isomorphism on quotient objects. Thus among the

factorizaticns X -+ X" ~ X' _.there is a least on.... unique up to canonical isomorphism,

and charactsrizsd by the condition that E -+ E" should be injective and induee an ise>-

morphism qE ~ qE". Since the factorization X -+ X. ~ X' h&e this property. it is

clear that the up X -+ X I is uniquely determined. Thus C I -+ C has the left adjoint= =

A- up from

E' of E
ia an initial

proof of the

_N'_O

1

~ ~ be exact categories and letLet X'- =°---;. F' _ F --+ FlO _ 0

O_sE_T

Ii ~

Corollary 1.

theorem.

O_BE_tE_qE_O

One verifies by an argument essentially dual to the preceding one that (E,u,v)~

(j*E,u,i!) is left adjoint to ths inclusion of ~" in ~'. This finishes the lSllllllA.

By Prop. 2, Cor. 1, the categories C and C" are homotopy equivalent. Let
1==

(E,j',i,)€9,", and let jM: M_0 and L : O_N be the obvious maps.
" - I ~

(O,jx' '~') to (E,j' ,i,) may be identified with an admissible SUbO~ject

such that BE' = BE and qE ' = O. Clearly E' is unique, so (O,jx' ,~!)

object of C", Thus ell and hence C is contractible, 'Which finishes the
= = ' =

to the spHt exact sequence
0 __ X' _ X' eM" _ X" _ °

The func tora tf and (£) (s, q) l' are isomorphic, henoe

be an exa.ct seguence of exact functors from ~ I to ~. Then

F... F' ... + Fit ... : Ki~' ~ Ki~ •

Proof. It clearly sufficee to treat the case of the exact sequence
O __ s_t_q_O

of functors from E to X. Let 1': II x M~ E be the exact functor sending (II' ,M")• = =- = :=

Tllis meane that F 1(X)_ F (X)
p- P

t"f" = El"(s",q,.)f,, = (a" + q,.)1'" : (Ki~)2~ Ki~ •

But f. is a section of (s.,q,.) : KJ -+- (KJ!)2 whicll is an isomorphism by tile

Thus t" = s. + q,., prOVing the corollal'7.

Note that the category of functors from a category C to an exact category 1'l is= =
an exact category in wllich a eequence of functors is exact if it is pointwise sxact.

thus have the notion of an admiseible filtration °= F c: F, c: .. c.F = F of a functor :On,,'
is an admissible monomorphism in ~ for every, ,j\

!(
,J~

F.

J.
~/l••
t~;<,
~,

,
" I~!

""



ie an e:mct sequence of tnaet functors from !:!' ~ !:! '~
n

L; (-I )P(F). = 0 : Ki~' -- Ki~'
p=O P

These result from Cor.' by induction.

23

(Produc ts K. X~ KjX ~ Ki .X can
1 +J

99

in C, and 1t impl1e. that there uist quotient functor. , IF for q~ P, detel'llliJ:ted up_ F q

to canOJlicsl i.omorphi.... It is 88s11y seen that if C is an sxact category, and if the

tunetors r/F , are euct for ,~ psn, then sll th: quotients , IF are exact.
p I'"" P q

Corollm 2. (Ju1ditivity for 'charscteriatic' filtrations) Let F:~' -t ~ ~

cact functor bet"sen sxact categories equipped with an admiseible filtration 0 - Fe ••
o

.:;F -, such that the quotient functors F IF , are exact for 1~ p$" n. Than
n n PI'"" -

'. - 1: (F IF ,). I KiM' ~ Ki~ •1""' P I'"" = -
Corollal'Y 3. (Ju1ditivity for 'characteristic' e:act sequences) If

O~Fo_ •••·~Fn--O

which clearly mak. KiX into a module over KoX.

also be dafinad, bIIt this requiras more IIl8cm.nary.)

Graded rings. Let A = .1.
0
e A, $. •• bs s graded ring and denote by ~gr(A) the

category of graded finitely generated projsctive A-lIlodules P = .$ Pn ' nE~. The

group Ki(~gr(A» is a z[t,t-']-lIlodule. where multiplication by t is the autOlllorphism

induced by the translation functor P 1-+ P(-1 ), p(.,) = P ,
n n-

Proposition. There ia a ~ [t,t-'] -module isOlllorpliism

Appl1cations. We giv. tvo simple 8%smples to illustrate the precsding results.

Let X be a ringed space·, and put KiX - K.P(X). where P(X) i. the category of
1- -

vector bundle. on X, (i.e. sheavee. of ~-modulea which are locally direct factors of ~)

equipped with the usual notion of e:act sequence. Given E in' p(X), we have an exact-functor E@? : ~(X) ..... ~(x) which induces a homomorphism of X-groups (E@?).' KiX ~

!CiX, If .0 _ E' -;- E~ E" -+ 0 is an exact sequence of vector bundlea, then

Cor. , implies (E€I?). = (E'@?). + (E"@?)•• Thus we obtain products

(I) lCoX(&l:liX ~ KiX , [E]/'ll: 1-+ (E~?).%

a:[t,C1J~~KiAO ~Ki(~gr(A)), 16>% ~ (A@A ?).%.
o

Proof. Given P in ~gr(A). let FkP be the A-submodule of P generated by Pn
for n~ k, 'and let P be the full subcategory of Pgr(A) consistirlg of those P for=q •
which F , P - 0 and F P = P. lie have an exact functor-q- q

T , ~gr(A) __ ~gr(Ao)' T(P) = AoSA P

"".

;"'r

;"'.:;

·'i-~'

where Ao is considered as a graded ring concentrated in degree

([Bass], p.637) that P ie non-canonically isomorphic to
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It follow. that P r-+ Fl is an euct functor from

.. canoIl1c..l iSOlllorphism of ex..ct fWlctors

to it.elf, and that there i.

,
",.zero

and

in P
=

-q~ n~ q . Since

which is

0= F 1C. ••CF = id,
-q- q

tn®x ~ (A(-n)l8IA 1)*x

°

o --1'M' _M _M"--+O

O~P ~ ••••• _P ~M_O.
n '0

object and for any exact eequence in M=

(2)

explioitly.

object. of

F p/F 1P =:. A(-n) SA T(P)
n n- 0 n

Applying Cor. 2 to the identity functor of P and the filtr.. tion
-q

one .ees that the hOlilo..orphism

11 tn<J)KiAo - Ki~ '
-q:(n~q Cl

is an isomorphism with inver.e given by the ....p with component.

Pgr(A) i. the Wlion of the P ,the proposition re.ults from
- -q

§4-. Reduction by resoluticn

In this .ection M denote. an ex"ct c..tegory with ...et of i.omorphi.... classes,
=E a full subc..tegory closed under exten.ions in ~ in the sen.e that E contains a

Theorem 3. Let ~ be a full subcategory of an exact c..tegory ~

under exten.ion. and i ••uch that

i) For any exact .equence (1), if K i. in P, then M'
- - = --

ii) For any M" .!!!. ~ ' there exi.t. s.c exact .equence (,)

The .tandard proof for K consist. in defiDing an inver.e ....p I M~ K P by showing
o . ~ ~

2:'(-1 )n(PnlE IoE depend. only on [Ml. By Cor. 3 of the preceding eection, this method,;'

works when there exist reeolutions (2) depending on M in an exact functorial fashion.

However, this situation occurs rarely, eo we must proceed differently.

The following theore.. handles the case where reeolutione of length one exist.

example, think of ~ as modules of, projective dimension ~ n, and E ae the subcategory .0,

modules of projective dimen.ion <n. The general ca.e followe by induction (eee Cor. 1).,

Then the inclu.ion functor

~'-7 ,
.ubobject.,

'.A
l
~,~.

if MI and Mit are isomorphic to objects of ~, 90 is M. Such a ~ is an exact ~;

category where a sequence i. elOac t if and only if it i. ex..c t in M. The cstegory QP ie 1!'
= - .w·:

.. subc.. tegory of I<t! which i. not u.ually .. full subcategory, a. ~-admi••ible monomor- '~

phi.... and epiJDorphi..... need not be ~-..dmi••ible. ,I
In the following, letters P, P', etc. will denote objects of P , and the .ymbol. ,fu= ·W

.. will ..lw..y. refer to M-..dmi••ible ..onomorphism., epiJDorphi.ms and= ,
respectively. The corre.ponding P-sdmi.sible notion. will be .pecified=
For example, P~ P' denotes an ~-sdmi.sible monomorphi.m between two

P ; it is P-sdmissible iff the cokernel is i.omorphic to an object of P.= s: K

~e ..rs interested in .howing that the inclusion of P in M induce. i.o..orphi.ms
= =-

I.P ~ K M when every object M of M he. a fiIl1te P-resolution:
1= i= = =



wllich may be Vieved as natural transformations from the functor (P ..... !'I) H- (p ~P0 -+t II)

to the constent functor vith value Po-l't M and to the identity functor. Using Prop. 2,

we conclude that F' is oontractible, finishing the proof of the theorem.=

ii"

~ (p _M)
o

tiP -L;. C ~w.= • =

(p _ M) <t"-

We factor QP _ QI! into tvo inclusion functors
= =Proof.

wllich can be viewed as natural transformations of functors from J to J joining the

functor (Mo,M,) ~ (O,M,) to the identity and to the constant functor with value (0,0).
Using Prop. 2, we see that J, hence g/P, is contractible, so g is a homotopy

equivalence.

To .prove f is a homotopy equivalence, ve shov M\ f is contractibls for any M in

~. Put ~ = M\ f ~ it is the cofibred category over ~ consisting of pairs (p,u) rith

u : M-:,P a map in Q~. Let F' be the full sUbcstegory consisting of (p,u) rith u
= I

surjective. Given X = (p,u) in ~, write u = i!j" with j : P~ M , i : P~ P .

By hypothesis i), P i. in P as the notation suggests. Thus X= (p,j!) is an object=
of F', and i defines a map X~ X. One verifies easily that j[ -+ X i. a universal

•
arrow from an object of F' to X , hence X f--+ X is right adjoint to the inclusion of

=
F' in F. Ew Prop. 2, Cor. " ve have only to prove that F' is contractible.= = =

The dual category F'o is the category vhoae objects are mapa P ~M , and in= .
which a morphism from P -# M to P' -lot M is a map P --* P' such that the obvioue

triangla cOllllllutes. By hypothesie il), there is at leaet one such object P __ M •
o

Given another P ~)). , the fibre product P ~Po is an object of ~,a. it is an.

extension of Po by Ker (p ~ Il) which is in ~ Ly hypothesis i). Hence in ~,o "e

have arrows

--iiliiire-r-ie-the-full subcategory of- ~rith-thesame-objects-as Q~.- -We rill prove

g and f are homotopy equivalences.

To show g is a homotopy equivalencs, it suf"fices by Theorem A to prove g/p ie

contractible for any object P in C. The catecory g/p is easily seen to be equi-
~

vaient to the ordered set J of ~-admissible leyers (Mo,M,) in P such that M,IMo€~'

rith the ordering (M ,M,) ~ (M' ,M,') iff M' '" M ... M, ,. M,' sncI M1M' , M,'/!!, E P. Byo 0 00 00 =
hypothesis i), one kIlovs that M, end M

o
are in ~ for every (Mo,M,) in J. Hence

in J ws have arrows

Corollary 1. Assume P is closed under extensione in II end further that= =
a) For every exact seguence (, ),.!! ~l, M" are in ~, then so is M'.

b) ~ j : M~ P, there exists j ': P'~ P -.2 f : P' -+M such that

jf = j'. (This100lds, for example, if for every M there exists P'-7tM.)

~ ~n be the full SUbcategory of ~ consisting of M having ~-resolutions of length

~n, i. e. auch that there exists en exact seguence (2), and put- P = Up • Then
- - =00 =n -

K P ..:::..i=
lCP, ~ .... _ K.P

1= J,.=CC

---------_._-------
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K.P are defined1=n

R' )r R ) an

l l t
p t ---+0 p I~ P" ---1'" P"

~ 1 ~
M. 1----1" M. I Nt!

102

0_ P' -- P'

~ 1 1
II' ---..F_P

II L ~
M' --."..M -...M"

That P is closed under extensions in II, and hence the groups

results fr:the followin8 etandard facts (com;are [Bass, p.39]).

Lemma. For any exact sequence (1) and 10teger n ~ 0, we have

1) II .. P ,II" f P ='9' II' E P=n =n+1 _n
2) M',M"e.~n+l ==PIIE~+l

3) II 101" E P ~ II'E P
J =n+1 =n+1

Assuming thie, we apply Theorem 3 to the pair ~c i:n+l • Hypothesis. ii) is satis

fied, for given II., ~+1 ' there exists an ~-adm1ssible epimorphism P _ II with PG~ ;

and by I) it is P l-adm1ssible. The other hypotheses are clear, so K.P ~ K.P. 1=n+ .l=I1 1=D.+

for each n. The case of ~oo follows by passage to the limit (§2, ( 9».

To prove the lemma, it suffices by a simple induction to treat the case n =O.

1) : Since WI G ~, . there exists a short exact sequence P I ~ P -;, K", so we can

form the diagram on the left with short exact rows and columns

and with F = II "M"P. Sinc~ P', 1'1 are 10 i: and ~ is closed under extensiona, we

have F G~. S10ce F, P GO ~ we have from a) that 101' E~ ,proving ,).

2): Since II" G~1' there exists P _ W', 50 applying b) to prj : P "M"M +P ,

we can enlarge P and find P" ~ K factoring into P"...,. M -+ M". Thus we can form

the above diagrsm on the right with short exact rows and columns, and >lith P', R'E P as
=

Applying 1) we see that R" E ~ ' so RE J: and II Eo ~1 ,proving 2) •

Since ME ~1' we can form the diagram with short exact rows and columns

II' (; J:, •
3):

P' = P'----""O

l t ~
K~P --<oK"

1 ~ II
MI -".. M ---.-.. M"

As ·1I"E~l ,1) impliee KE'~, so M'€~l ,proving 3). The lemma and Cor. 1 are

As an example of the corollary, take P = ptA) and M= Mod(A), the category of
= = ::I

(left) A-modules. (Better, so that M has a set of isomorphillD classes, take K to be;1
:::II' ,. i:

the abelian category of all A-modules of cardinality <0(, where 0( is some inf'io1te .

cardinal > card(A).) Let P (A) be the category of A-modules having P-resolutiOl1ll..., =
length .::; n, and P (A) = U P (A). Then P (A) = P as in the corollary, so we ob

=00 =n -n =n

Corollary 2. !!!!:. O,n~oo, we have KiA z....Ki(~(A). In llSZticular if A

KiA ""', Ki (Modf(A),~ Modf(A) .:::i:::.s_t::h~e:....::;ca~t.::e==...:o:::f:...:.f.:::io1=t:.:e:;l:L-=;;;;';;regular,~

A-modules.



r;(A) x !:n(A) -+ t.(A) (p,)!) ~ Pfl)/, •

for O-li,n "IX), vhicb ind\lcs a product KoA0Ki A - KiA I lp]@. ~ (P~A?)*. , and

sW1a:r1y for B. Then if f* = (B r&A?)* I KiA ~ leiB, ve have ths projection fo:nnul..s

(5) f*(f'x . y) = x· f~

P(A)-for x£ KoA and ye KiB. This results immedistely from the fact that for X in

there is an isomorpb:i.sm of exact functors

, •. i

We recall that a regula:r ring :i.s a noetber:Lan ring sucb that every (lett) module bes

t1nite project:l.ve dimension. For suab a ring A ve bave P (A) - JoIodt(A).. _IX)

j~2__ Simila:rly, Cor. 1 implies tbat tor a regula:r noetherien aeperated scheu the ie-groUpS

.+,. ---o-f;;--,-th-;-e,----:cc:'!--:i:t=ego=ry:::--;;o"f--;c,-,Ohe==ren=tO-:sh"e=a,-,v=::.:-:s:-:cand::>Cit"'he::-:c:Ca:-'te=go:::ry=.-;;o:>'f--:v:::ec=t::o=-r'bun=-;;dl'e:::s::-:a:r=e--:t"he:::-::BSID=e:::,-::s:;lnc=e=--~
~:' .

eve'" coberent abeaf bas a tinite resolution by vector bundles [sea 6, II, 2.21.

Transfer IIIllpS. Let f I A -+ E be S ring bomomorpb:i.sm such tbat as en A_odul.e E

is in P (A). Then reetriction of acala:rs defines an e:tact functor from P (E) to.= =m
P (A) I benes by Cor. 2 it induces a bomomorpb:i.sm of Ie-groupe vhich we w111 denote
_CD

(:~) f*: KiE _ KiA

and call the transfer map with respect to f. Clearly given another bomomorpb:i.....

g : B -+ C with CE P (B), we have=IX)

(4) (gf)* = f*g* : KiC -r leiA

We suppose nov for simplicity tbat A end B are commutative, so that vs have functors

y 4 (B@l)~BY = X@/

from P (E) to P (A).
=0:> =aJ

Corollary 3• .f:!! T = £Ti • i "to I} be en exact connected seguence of functors from

en exact category ~ to an abe1:Lan category ~ (i.s. for every exact seguence (1), ve

bave a long exact seguence

--,I> Tl'" - T,M' - TIM __ T,M" ).

Let !: be the full subcategory of T-acyclic objects (Tl' = 0 for all n ~'), ~

assume for each ~l in M that there exists P _ M with P in p. and that T M = 0 i'
-_ -- -. n

for· n sufficiently la:rge. ~ Ki~ ~Kill

This results eitber from Cor. I, or better by applying Theorem 3 directly to the

inclusion ~C ~+, ,wbere t. consists of M such that TjM = 0 for j >n •

Here is an application of this result. Put KiA = Ki (Modt(A» for A noether:i.an,

end 1et f I A~ E be a homomorphism of noe therien rings. If B is flat as a right

A-module. then we obtain a homomorphism of K-groups

~,.

rightE is of f1ni te Tor-dimension as a

and T M=TorA(E,M) ,
n n

111

l{
~

f
~
iJ
~ .
.{{:
.~

:~".

r.._-~~ ..._.._--"._._-----~---_.. _-_.~--_._---_ .._--_._--_._------._-- --- - ------- .._---- -- ------_...- - _._-----_._--_.~.._~----'

(6)

because E(?)A? is sxact. But more generally if

A-mOdule. then applying Cor.' to M = Modt(A)
=
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objects of B.
=

§5. DevisS&ge and localization in abelian categories

In this section A will denote an abelian category having a set of isomorphism
=

classee of objects, and II will be a non-empty full subcategory closed under taking
•

subobjec:ts, quotient objects, and finite products in ~. Clsarly ~ is an abeli.an cate-

gory and the inclusion functor II -+ A is exact. we regard A and II as exact cate-
= = -=:::1

gones in the obvious way. so that all monomorphisms and epimorphisms are admissi.ble.

Then Qll is the full subcategory of QA consisting of those objects which are also= =

we find that

M sucll that

~
.\,

.1
l

consisting of

P , we obtain a homomorphiem=

K P ~ I'A ,where P is the full eubcategory of MoM(A)
i= i =

TnM = °for n>O. Since 118lA? is exact On

in this more general situation.(6)

-.1\"

&'

" .

Ki~ ==- .iL KiD.
j e J J

~ fX j • j € J} is a set of representatives for the isomorphism classes of

objects of ~. and Dj is the sfield End(Xj)OP.

1
Theorem 4. (Devissage) Suppose that every object M Ef. ~. has a finite filtration .,

0= II CM,C •• CM = II such that M./Mj I is in II for each j. Then the inclusion J,
o n J - -= "

functor ~ -r ~ is a homotopy eguivalsnce,!2. Ki~':::" KJ; •

(with a set of isomor hism classes

(Mo ,Jol , ) I-r (Mo " M', M," M')

(Mo,M, ) !-'" (Mon M', ",) :

r J(M) ~ J(M')

s : J(M) _ J(l~)

Let A be an abelian cate 0
-- =

has fin1te length. Then

Corollary 1.

that every object

These ars well-defined because

MIn M' I Mo")\' C M, I "on M' C M/Mo x MIM'

and because B is closed under subobjects and products by a.sumption. Nots that ri ==
idJ(M') and that thers are natural transformations ir -+ s ~ idJ(M) represented by

(Mo n M'. M, n M') $ (Mo 1'\ M'. M, ) .. (Mo' M, ) •

Hence by Prop. 2. r is a homotopy inverse for. i, so the proof is complete •.

Proof. Denoting the·inclusion functor by f, it euffices by Theorem A to prove

that f/M is contractible for any object M of A. The category f/M is the £i'ored
=

catsgory over Qll consieting of pairs (N,u), where NEO Qll and u: N -+ M is a map in= =
~. By associating to u what might be called its ima,,;e, that is, the layer (Mo,M,) of

1'1 such that u is given by an isomorphism N::::!. M/M
o

' it is clear that we obtain an

equivalence of f/M with the ordered set J(M) consisting of layers ("o,M,) in M

such that M,IM €ll, with the ordering (M ,M,)s (M',M,') iff M'CM eM,cM,'o = a 0 0 0

By Virtue of the hypothesis that M has a finite filtration with quotients in ~

it will suffice to show the inclusion i: J(M') _ J(M) is a homotopy eqUivalence

whenever K'C:" is such that KIM' G'~. we define fune tors

·,~L'

I
f

f



where m runs over the maximal ideals of A.

(It will be clear from the proof that this exact sequencs is functorial for exact

functore (A,B) -+ (A',ll'). Unfortunately the proof does not shed much light on the-= ::. :II; =
nature of the boundary map d : Ki +1(~~) -+ I::i (~) , and further work rSlllSins to be done

in this direction.)

Before taking up the proof of the theorem. we give an example.

Corollary. !! A is e Dedek1na domain with quotient field F, there is a long exact

sequence

88quence

follows.

we reduce to the case where ! baa a single simple object X up to iSOIIlorphism. But
. I· -

then Ill-+ HClIII(X,I'l) is an equivalence of A with P(D), D = End(X)OP, so the corollary
= =

Proof. Fr"'" the theorem we have Ki~ = Ki~ ' where ~ is thesubcatsgory of semi

simple objects, so we reduce to the case where every object of ~ is eemi-simple. Using

the fact that K-groups cOllllllUte with products and filtered inductive limits (§2, (8),(9»

Corollary 2. .!!. I is a nilpotent two-sided ideal in a noetherian ring A, then

Ki(A!I):::' KiA ' (notation as in §4,(6».

This results by applying the theorem to the inclusion 1!0df(A!I) c: Modf(A).

Theorem 5. (Localization) Let' B be a Serre subcategory of A, let AlB be the-= • -==
associated quotient abelian category (see for example [Gabriel), [Swan]), and let

e I II ~ A , S : A .... WB denote the canonical functors. Then there is a long exact
-= = a =•

This'follows by applying the theorem to .1..= Modf(A), with B the subcategory of

torsion modules, whence ~~' is eqUivalent to= Modf(F) = ~(FJ. (~OIIlpB.re [Swan. p. 115J).

We have Ki~ = KiA by Cor. 2 of Theorem 3. and Ki~ =11 K
i

(Aim) by Theorem 4, Cor. 1.

~ote tba't the map KiA .... KiF in the exact sequence ie the one induced by the hOlllCllllor

phie.. A _ F as in §2, (10), and thelllB.p K
i

(Aim) ..... KiA is the transfer map aasoci

ated to the homomorphism A ..... Aim in the sense of the preceding section.

Proof of Theorem 5.. Fix a zero object 0 in A. and let 0 also denote its image
=

in ~!. ' One knows that ! is the full subcategory of ~ consisting of M such that

efoI :;;:,!, O. Hence the cOlllposite of qe I \Ill -+ QA with Qs : QA .... Q(yB) is isomorphic to
lIS = =_=

the conetant functor with value 0, so Qe factors

~ ---+1 0 \ Qe -----+-1 ~

M\-0> (Il, 0 1:::. aM) , (N,u) ~ N •

In view of Theorem B, §1, it suffices to establish the following assertions.

a) For every U I V'-:,. V .!:!!. Q(¥~), u·: V\ Qs ..".. V'\Qs is s hOll1otolOY eouivalence.

,b) The functor ~ -+ 0 \ Qs is a homotopy equivalence.

113
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such that

QB , sO assertion b)
"

106

(M,h) ~ Ker(h)

(M,h) in ~ we associate Ker(h) , which is 9.Il object,~,

isomorphism. To the map (M,h) -+ (M' .h') represente4'

~ represented by the maps

to

(*)

in B, or equivalently
=
(M',h') in ~ is

The next four 19l1llllas will be devoted to proving that ths category !V is homotopy

equiValent to ~. To this end "e introduce the following auxiliary categories. Let II

be a given object of ~, and let !N be the category having as objects paire (M,h),

"here h: M-7 N is a mod-B ieomorphism, i.e. a map in A "hose kernel end cokernel are"
" =

one "hich becomes en isomorphism in yB. A'morphism from (K',h) i
- =

by definition a map u: M-7M' in QA such that
"

II : i ; M', .

j ~ 1h'
M ~N

Ker(h) '€'("\;--- Ker(hj) l:>---lo~ Ker(h °)

I
commutee if u - i!j'. To each

of B determined up to canonical
"

by ( *) "e associate the map in

~ 1. The inclusion func tor ~V ~ V\ Qs is a homotopY eguivalence.

Denoting this functor by f. it suffices by Theorem A to eho" the category f/(M,u)

is contractible for eny object (M,u) of V\ \,ls. Let the map u: V -+ eM in Q(~~) be

represented by an ieomorphism V ~ V,IV
o

,,,here (Vo,V,) is a layer in sM. It is

easily seen that the category f/(M,u) is equivalent to the ordered set of layers

(Ko,M,) in M such that (sMo,aM,)" (Vo'V,), with the ordering (Mo,M1)~ (M~,M;) iff

M' eM c: M C Iol' This ordered set is directsd becauseo 0 , ,

(MO,M,) :;; (MoI"\M~ , M,+ Mil ;?: (M~,M;)

It is non-empty because eny subobject V, of &ll is of the form aM, for some M,CM.

In effect, V, = eN ' for some N in ~, end the map V, _ eM cen be represented ae

s(g)e(i)-' "here i N'~ll has its cokernel in ~ end g: N° -+:01 is a map in ~

then one can take M, to be the image of g. Thus f/(M,u) is s filtering category, sO

it is contractible by Prop. 3, Cor. 2, proving the lemme.

determined up to canonical isomorphism. 'o'e prove ~ is a homotopy equivalence in

induced by j end i respectively. It ie easily checked that in this way we

functor

Factoring u into injective end surjective maps. one sses that it suffices to prove a)

"hen u is either injective or surjective. On the other hand, replscing a category by

its dual does not chenge the Q-category (§2,(7»). As surjsctive maps in Q(¥~) become "~

injective in Q((~~)O)" Q(~Olt), it is enough to prove a) "hen' u is injective, say'\

u = i! ' i: V' >-->- V. Finally "e have i!iv o , = iv! ' so it suffices to prove a) for---,I

the injective map iv! for any V in ~~ • \,<t
Let ~V be the full subcategory of V\Qs consisting of pairs (M,u)

u : V~ eM is an isomorphism. Clearly ~ is isomorphic to

results from the following.

)'

•' .. '

.'



stsps.

~ 2. ~ !Ii be the full subcategory of ~ consistiJlg of pairs (M,h) .!!!!:h
.!!l!! hiM -+ 11 is an ep:lmorphi... 'rhen the restriction, J:jj:!Ii -+ ~ ~ ~ :!!..!.
,homotopY' equivalence.

It suffices to prove IeN/T i~ contractible for any '1' in Q!. Put ~ E leN/or j it

is the fibred category over !H ooneistiJlg'of pairs ((M,h)"u), nth (M,h) in !N ' and

whsre u: Ker(h) -+ '1' is a map in Qll 1st 0' be the full subcategory oonsisting of
, ... ,

((iol,ll),u) nth u surjective. Given X = ((M,h),u) in ~,write u = j'i! nth

i : Ker(h) H To ' j I 'r -. To and define (i.M,li) by 'pushout':

Ker(h)~ M h ~ 11

i r r Ii
To~ i.M Ii~ N,

1st X = ((i.M,ii),j!)j it belongs to £' and there is an evident map X...,. X. One

verifies ae in the proof of 'rheorem 3-that X ~X ie a univereal arrow fran X to an

objeot of 0'. Hence the inclueion 0'~ 0 has the 111ft adjoint X ~ I, so we have
= • =

reduced to proving that 0' is contractible. But 0' has the inHial object
I = =

((N,i~), jT)' so this is clear, whence the lllllllllB.

~ 3. The functor ~ : ~ ~ ~ is s homotopy equivalence.

'rhanks to the preceding lemma, it sufficee to show the inclusion ~ -+ ~ is s

hOlllotopy equivalence. 1st I be the ordered set of subobjecu ! of N such that Nil
=

is in ~ • and oonsider the functor f : ~ _,~ sendiJlg (M,h) to Im(h). One verifies'

eaeily that f is fibred, the fibre over I being ~i' and the base change funotor frOID

~i to [j being J "'I? : (M-+> I) h> (J "'I' ~J). Sinoe J :rI ? commutes with kI
and kJ ' it follows frOlll 1amma 2 that J xI? is a homotopy equivalence for every arrow

JC! in !. From Theorem ll, Oor., we conclude ~i is hoolDtopy equivalent to the

homotopy-fibre of f over I. Since I is contractible (it has N for finsl object),
= '

one knows from homotopy theory that the inclusion !i ,-+!hi is a homotopy equivalence

for each I. proviJlg the 18llllllB.

We now want to ehow ~V is homotopy equiValent to ~ when' aN .Qi. V. First we note

a s:lmple consequence of the preceding.

~ 4. ~ g: 11 ~ N' be a IIlBp in ~ whioh is a mod-~ isOlDoryhi.... Then the

functor g. : ~ -+~, ,(M,h) I-? (M,gh) ie a homotopY eguivalenoe.

One verifies easily that by aseociating to (M.h)f ~ the obvious injective map

Ker(h)~ Ker(gh), one obtains a IlBtural transformation from ~ to ~,g.. (Observe:

In 'lower' X-theory one oalculstee nth IIlBtrioee - in 'higher' X-theory nth functors.)

'rhus ~ and ~,g. are hcmotopic,~ since ,~ and ~, are homotopy equivalencee,

so is g. , whence the lemma.

Now given V in ~~. let b be the oategory having as objeots psirs (Ii,,),

where 11 is in ~ and ,: eN .:¥,. V is an isomorphism in ~~, in whioh amorphi...

115
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(N,~) -"J-(N',~') is s map g: N~ N' such that ~'s(g) = ~. It is clear from the

construction of ~» that ~ is a filtering category. For example, given two maps g"

g2 : (N,p) ~ (N',~') we have s(g,-g2). 0, so Im(g,-g2)e~, hence we obtain a map

(N',~') -,I. (N",~") equalizing g"g2 ~_~ N" - N'/Im(g,-g2)'

We have a functor from !v to categories sending (N,1l to !N and g: (N,~) -"J

(N',~') to g*:!N -+~,. Further,for each (N,~) we have a functor

P(N,~) : ~ -+ !V ' (K,h) 1-+ (K, s(h)-' r': V::I;> aN ~ sK)

Since p(I/' ,~, )g* - P(N,~) for any map g: (N,,) - (1/' ,~,) in !V' we obtain a

-i,

functor

(**) lim, {(N,~) f+!x} .=:+ ~v
£V

which we claim is an isomorphism of categories. In effect

!V cv\Qs
1 (iy!)*

~ C o\Qs

(Ker(h), 0 ~ s(Ker(h))

(M, (isK)! : 0 -+ aM) •

To finish the proof of the theorem, 'ie have only to show

is s homotopy equiValence. Choose (N,~) as in LeIlllllS 5 and fo:nn(iy!)* : V\Qs ~ O\Qs
the diagram

(II., e : V~ aK) = P(K,e-')(M,i~)

for any (M,e) in !v ' showing that (**) is surjective on objects. Also given

P(I/,,)(M,h) = P(I/,,l)(M',h'), then M = l!' and s(h, -s(h' j. Letting N' = N/rm(h-h')

wo otain a map g: (N,~) ..,..(N',~') wch tha; g.. (M,h) _ g*(M',h'), showing that (**)

is injective on objects. The verification that (**) is bijective on arrows is similar.

Applying Prop. 3, Cor. 1, we obtain from Lemma 4 and (**) the following.

~ 5. For any ,: aN :;;;,.. V, the functor P(I/,~) is a homototlY equivalence.

The end is now near.

The diagram is not commutative, for the lower-left and upper-right patha are

the functors

'.

However it is easily checked that by associating to (M,h) the obvious injective map ~
:"jY.

Ker(h) -+ K, one obtains a natural transformation between these two functors. Thus the "

diagram is homotopy commutative, and since all the arrows in the diagram sre homotopy "S',
..,oM"

equivalences except possibly (iy!)* by Lemmas 1, 3, and 5, it follows. that (iy!) i8

one slso. The proof of the localization theorem is now complete.



and that there are canonical epimorphisms

1lY.~~;'~'~
'r .,

ll(-p) ilk T (H) ~ F H/F ,H
o p P p-

n)p

n~ p[ T ~H)o n

, n ~0 be a graded ring and put k = B • From now on

1L
. 0

H = H with n>, 0, unless specified otherwiee. Put
II

= Tor~(k,H)

=

T. (H)
1

B = II B, n
B-modulee

Graded rings. Let

we consider only graded

where k is regarded 'as a right B-module by means of the augmentation ll .... k. Then

Ti(H) is a graded k-module in a natural way, e.g; T (H) = N !(A,N 1 + .. + AN).
o n n. n- n 0

Denote by F H the submodule of H generated by H for n ~ p, so that we have
P' n

o K F ,H c: F HC. •• , UF H = H. It is clear that
- 0 p

T (F H)
o p n

Proof. For any k-module, X we have

(3) Tor~(ll,X) =0' for i>O ~ Ti (B ilkX) = ° for i> 0.

In effect,if P. is a k-projective resolution of X, then II ilkP. is a B-projective

resolution of B ilkX • and Ti (B ill = Hi(k illB ikP.) = Hi(P.) = 0 for i> 0. In

particular by the hypothesis on To(N), we have

(4) Ti(B ikTo(N)) ':' ° for i>O

Let RP be the kernel of (2). Since (2) clearly induces an isomorphism aD To' we

obtain from the Tor long exact sequence an exact sequence

T, (B(-p) ikT (H) ) -+ T, (F Hip ,H) 1.. T (HP) -+ O.o pn p p- nOn

The first group is zero by (4), so 0 is an isomorphism.

Fi>: an integer s. We will show that (2) is an isomorphism in degrees It's and

also that T, (F N) = ° for n ~ s by decressing induction on p. For large p, this is
p n

true, becsuse T, (F N) = T, (N) for p~n, and because T
1

(H) = 0 by hypothesis.
p n n .

Assumi:lg T, (p,Hln =° for n:s s, we find from (1) and the exact sequence

where ll(-p) = II
n D-p

~ 1. 1£ T, (H) = ° ~ Tor~(ll,To(N)) = 0 for all i>O, ~ (2) ~
isomorphism for all p.

§6. Filtered rings and the homotopy property for regular rings

This section contains some important applications of tha preceding resul.ts to the

--'-'- ,groupSJiA =Ki(Modf(A)) for A noatherian. If A is regular, we have ~A = Ki;-A_by,,--_~

the resolution theorem (Th. 3, Cor. 2), so we also obtain results about KiA for A

regular. In particular, we prove the homotopy' theorem, K/ =Xi(A[t]) for A regular.

According to [Gerstan 'J, this signifies that the groups KiA are the same as the

X-groups of Karoubi and Vill8lllSYor for A regular (assumi:lg Theorem' of the announcement

[Quillen 1] which aeeerts that the groups KiA are the same as the Quillen K-groups of

[Gerstsn lJ).
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Suppose now that B is (left) noetherian, and let Modfgr(B) be the ebelian

category of finitely generated graded B-modules. Its K-groups are naturally modules

over ~[tJ, where the action of t is induced by the translation functor N f--,t> N(-I).

The ring k is also noetherian, so if B has finite Tor dimeneion as a right' k-module,

we have a homomorphism (ll4, (6))

34

consisting of

ze:ro in degrees

In addition we

DO.

subcetegory F of Modf(k)
=

110

T
I

(F N) -+T
I

(F N/F .N) _ T (F IN) ~ T (F N)
P n P p-' n 0 p- n 0 p n

that T,(F N/F IN) =T (RP) =° for n~ s. It follows :hat RP isp p- non
~ s, showing that (2) is an isomorphism in degrees ~ s as claimed.

find °=T
2

(B(-p) ilkT (N) ) """ T
2

(F N/F ,N) for n,. s, whence from the exa.ct eequenceo pn p p- n

T
2
(FN/F IN) _TI(F ,N) -rT,(FN)pp-n p-n pn

we have T, (Fp-IN)n = ° for n:;;s, completing the induction. Since s is a:rbitrary,

the lemma is proved.

induced by the exact functor B ilk? on the

k-modules F such that Tor~(B,F) ~ ° for

Theorem 6. Suppose B is a graded noetherian ring such that B has finite Tor

dimension as a right k-module, and such that k has finite Tor dimension as a right

B-module. Then (5) extends to a ~[t]-module isomorphism

The following will be uaed in the proof of Theorem 7.

(5)

;z(tJ ila: Kik -'I K
i

(Modfgr(B)) •

(The hypothesis that k be of finite Tor dimension over B is very restrictive.

For example, if k is a field and B is oommutative, then B has to be a pOlynomial

ring over k. In all situations where this theorem is used, it happens that B is flat

over k. Does this follow from the assumpltion that B and k are of finite Tor dimen-;,
,1

sian over each other?) j,
Proof. Let ~' be the full subcategory of Modfgr(B) consisting of N such that.:'i,

Ti(N) = 0 for i)-O, and let ~n be the full subcategory of ~'consisting of N such.'i

that T (N)t F. By the finite Tor dimension hypotheses and the resolution theorem (04);;
o = :'

one has isomorphisms Ki~ =Kik, Ki !!." = K~' =K
i

(Modfgr(B)). Let ~~ be the full '

subcategory of N" consisting of N such that F N = N. We have homOlJlorphi5llls
= n

(Ki~)n = Ki (t)~Ki(~) ~ (KiE)n ..
induced by the exact functors (Fj , 0" j ~ n) ~ .11 B(-j) ill j (this is in ~n by (3:.'
and N H- (T (N).) respectively. Clearly cb = id. On the other hand, by Lemma I

OJ
in N" has an exact charecteristic filtration OCF NC .. CF N = N with F N/F IN

, =II 0 n p p- ,
B(-p) ilkTo(N)p , sa applying Th. 2, Cor. 2, one finda that be = id. Thus b is ~1

isomorphism, sO by passing to the limit over n we have ~tt]il Ki~ .::;. Ki~'" which

the theorem.



~ 2. Suppose B ie noetherian, k is rsgular. and that k has finite Tor

d1IIaI18ion as a right B-module. Then any 1'1 .!!!. Modfgr(B) has a finite reeolution by

~_ finitslY generated projective graded Modules.

0_1'1 _P ,_1'1,_0
.1' r- r-

where P , is p:rojective. We have tc ehow); is prcjective for I' large. Since
r- I'

T (1'1 ) =T
i

,(1'1 ,) for i>O, it follows that Ti(N ) =0 for i>O and r~ d, where
i:r + r- I' .

d is tile Tor ctiJIIell8iOll of k over B. Then for I'>d we have exsct sequences

t'
,t;.,..,

Startillll' with 1'1 .. 1'1, we recursively construct exact sequences in Modfgr(B)
oProof.

o _To(N:r) --+To(Pr-') ~To(Nr_') _0.

As Je is :regular, T (l'I
d

) has finite projective dimension s, so T (1'1) is projective
001'

for r? d+s. It followe from Lemma 1 that Nd+s is projective, whence the lemma.

Filtered riIlll's. Let A be a ring squipped with an increasing filtration by subgroups

O=F,AC.FACF,AC ... suchthat ,eFA,FA'FACF A.and UFA=A. l.et
- 0 0 p q p+q P

B = gr(A) .. Jl F A/F ,A be the ssaociated graded rillll' !llld put Je = FA .. B • By a
P ?- 0 0

filtered A-eodule M we will mean an A-module equipped with an incressing filtration

o .. F tl! C. FMC.. such that F A·F Me F ~l and UF M=M. Then griM) =
- 0 p q p+q p11 F Mil' ,M is a graded Module in a natural way.

p ?-

~ 3. i) If gr(M) is a finitely generated B-module, then M is s finitely

genersted A-module. In particular, if every graded left ideal in B is finitely

generated,~ A is noetherian.

11) .!! griM) is a projective B....odule.~ M ia a projective A-module.

iii) .!! griM) has a resolution by finitely generated projective graded B-modules

of length ~ n, then M~ ~(A)-resolution of length ~ n.

P:roof. lie use the follOWing conetruction. 1;;uppoee given Je-modules Lj and maps

of Je-modulee L. _ F.II for each j >,.0 such that the composition
J J

Lj -..+Fl- grj(M) ---+ To(gr(M»j

ie onto. Let P be the filtered A-module with F P = II F .A IlJeLj and let r/: P..... Mn ""-"j n-J .
be such that r/ restricted to A IilJeLj is the A-linear extension cf the given map from

Lj to FJ.M. Then T (gr(P)j = L .• and r/ is a map of filtered A-modules such thato . J -
To(gr(r/» is onto. It follows that gr(r/) is onto. hence Fn(r/) is ontc for all n,

and so r/ is onto. Thus if K = Ker(r/) • F K =KI'IF M , we have an exact sequence of
n n

A-lIloduJ,es

O_K_P-+M_O

such that

" i-'". }.

are exact for all n.

i): If gr(M) is a finitely generated B-module, then To(gr(M» is a finitely

(6)

0_ FnK _ Frl -+FnM _ 0

O----+grK_grP--+grM--+O
n n n
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~ 4. If B ie noetherian, k is regular, and if k has finite Tor dimension'

as a right E-module,~ A is regular.

This is an immediate consequence of Lemma 2 and Lemma 3 iii).

we can now prove the main result of this section.

to be a free finitely generated k-module

Put k = F A. Since
o ,

B has Tor dimension d

Proof.

sequence

':'i:'.
',;,~~:@

,.,.\t

';Mt
"if~:.llll;

( ( )) ( ( )) ( ( )) ( ( )) riT, gr M _ To gr K -'--Jo To gr P ---,lo'TO gr M ':'.-;'

we conclude that T~ (gr(K)) = O. Then gr(K) = 0, eo K= 0 , M = P and M is ,i;,\,'~,{
projective over A, proving ii). ;"i

iii): We use induction on n, the Case n = 0 . being clear from i) and ~i). ',ijii
':~l

Assuming griM) has a resolution of length S n by finitely generated graded projective ifr\'
E-modules, chooee P as in the proof of i), so that grip) is a free finitely generated 'J

:J" ~B-module. From the exact sequence (6), and the le~ after Th. 3, COr. 1, (or Schanuel'e !~ ~
. ,

lemma), we know that gr(l) has a resolution of length ~ n-I by finitely generated

graded projective E-modules. Applying the induction hypothesis, it follows that l has

a piAl-resolution of length :$ Ii-I, so M has a PiAl-resolution of length ~ n, as was= =

generated k-module, hence we can take L.
J

which is zero for large j. Then P is a free finitely generated A-module, so M ie

finitely generated, proving the first part of i). The second part follows by taking M

to be a left ideal of A and endowing it with the induced filtration FnM =M1'1 FnA •

ii): If gr(M) is projective over B, then T (gr(M)) is proJective over k, ando
we can take L, =T (gr(M))j' Then T (gr(~)) is an isomorphism, so from the exact

J 0 0

Also if

to be shown.

B is noetherian, we know A is also by Lemma 3 i). ;i'
~'J

over k, then FnAIFn-I A has Tor dimension ,.: d for:t.

each n, so the same is true for FA., and hence also for A. Thus the map K'k ~ K' •nil.
is defined, and we have only to prove that it is an isomorphism. Indeed, the last as

tion of the theorem results from Lemma 4 and the fact that KiA =KiA for regular

the resolution theorem (Th. 3, Cor. 2).

Let z be an indeterminate and let AI be the subring Jl(F A)zn of A[Z].
n

show the graded ring A' astisfies the hypotheses of Theorem 6. The fsct that A'

·finite Tor dimenaion over k is clear from the preceding paragrsph. Since

central non-zero-divisor in A', we have that B =A'/zA' is of Tor dimension one

A', As k has finite Tor dimension over B, it follows that k has finite Tor dime ,.,.

Theorem 7. Let A be a ring equiooed with an increasing filtration

. 0 = F_1A C FaA C F,AC ... such that I EF A • F A'F A C F A ,and UF A = A. Supposea pq p+q-p
B = gr(A) is noetherian and that B is of finite Tor dimension as a right module over

B = F A, (hence F A and A are noetherian and A is of finite Tor dimension as aa 0 -.- 0 --

right FA-module). Suppose also that F A is of finite Tor dimension as a right
0-0

B-module. Then the inclusion F ACA. induces isomorphisms K: (F A) .z. Ki'A
0' -],0

F A is regular, then so is A, and we have isomorohisms Ki(F A) ..::+ K.A •o . 0 1.

i··,



j : Modfgr(A') --+ Modf(A) • M~ M/(z-1)M

consisting of modules on which

j* , K'A-~
f i ----.

catsgory y~ with Modf(A). (Compare
-1 - -

SA' .is the Laurent polynomial ring

same as a module over A" A'/(z-1 )A'.)

(8)

i : Modfgr(B) -+ Modfgr(A')

2Z.[t) j K4 ....., K
i

(Modfgr(B)) i x

·:lLLt Jj K4 J:>4. K
i

(Modfgr(A' )). j x

Let B be the Serre subcategory of A" Modfgr(A')
" -

110 is nilpotent. The functor

is exact and induces en squivalsnoe of the quotient

[swan, p.114, 130J; note that if S" [lIOn}, then

A[z,z-'J, end a graded module over A[z,z-1J ie the

Since A'/zA'" B, we have en embedding

identifying the former with the full subcatsgory of the latter consisting of modules

killed by z. The devissage theorem implies that Ki(Modfgr(B))" K.B. Thus the exact
~"

sequenoe of the localization thorem for the pair (A,B) takes the form
" "i

~ K
i

(Modfgr(B)) *} K
i

(Modfgr(A ~))

We next compute i* with respect to the isomorphisms (7). Associating to F in ~

ths exact .aequenoe

0_ A'(-1) fiJ.l-=-'A' fill ~B fi.l ~o
we obtain en exact eequence of exact functors from F to Modfgr(A'). Applying Th. 2,

=
Cor. 1. we conclude that the square of 2Z.[t]-module homomorphisms

over J. ' • Finally to show A' is noetherian. we fil ter A' by letting F J.' coneist of
p

those polynCllllials whoee ooefficients sre in F"A' The ring

gr(J.') " JJ..<gr J.)zn
:;;y:+,, ~---------- p·~-n-P'-----_.-------------------

is isomorphic to gr(J.)[z], which is noetherian, hence J.' is noetherian by L_ :;; i).

Let ~ be tha full subcategory of Modf(k) consisting of F such that Tor~(B.F)

,,0 for i>O, whence Ki~" Kik by the resolution theorsm (Th.}, Cor. }). Apply:ing

Theorem 6 to B and J. " we obtain 2Z.[tJ....odule isomorphisms

t-> (B i k? )*x

1-+ (A 'ik? )*%

K.F • we conclude from the emct
~

is commutative. Since 1-t is injective with cokernsl

aequence (a) that the oomposition

Ki~ --7" K
i

(MOclfgr(A' )). j*> KiA

induced by F I-? A' fi.l 1-+ A ikF is an isomorphism. SiiiCe Ki~ ,,' Kik , this proves

the theorem.

"+
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'o,l
J

".;.

~.'A '-P+, K' ( r -1J)
"1 • i A - Ki Ap'Lt,t - Ki_1 A - •-(9)

,.-
.j~

We finish thia sec tion by showing how the preceding results can be used to computee
the K-groups of certain skew-fielde. Keith Dennis points out that this has some intS' .
already in the case of K2 , since a non-commutative generalization of Matsumoto's the~'I,

is not known. (Ilere and in the computation to follow, we will be assuming Theorem L,
the announcement [Quillen 11 , which implies that the K~ here is the same as Milnor"

and that the groups Kilrq are the same ss the ones computed in lQuillen 2J.) :''-,'

K.~ ~ K!(A[tJ) ---,.. K!(Alt,t-'])
1_ 1 t •
~L ~!A~

1 1

where the first vertical isomorphism results from applyiDg the devisssge theorem to the

embeddiDgModf(A) =Modf(A[t]/tA[tJ ) C ~. The homomorphism ALt, t-'] --;. A sending t

to 1 makes A a right module of Tor dimension one over AIt,t-1J, so it induces a map

Ki(A[t,t-'])_KiA left inverse to the oblique arrow, Thus the exact sequence breaks

up into split short exact sequences prov1r~ ii).

""ereise. Let ~ be an automorphism of a noetherian ring A; and let Ap'(t).

A~lt.t-'] be the associated twisted polynomial and Laurent polynomial riDgs in which :~

t.a = p'(a). t ,([Farrell-Hsiang]). 3how that KiA = Ki (A~[,t)) and that there is a long

exact sequence

The precediDg theorem enables one to compute the K-groups of eome interestiDg

non-commutative riDgs.

E%amples. Let t1' be a finite dimensional Lie algebra over a field k, and let

U(~) be its ~rersal enveloping algebra. The Poincare-Birkhoff-Witt theorem asserts

that u(er) is a filtered algrebra such that gr(U(OJ)) is a poJ,ynomial ring over k.

Thus Theorem 7 implies that Kik = KiU(Oj). Similsrlr if Iln is the Heisenberg-Weyl

algebra over k with generators Pi' ~, 1~i"n, subject to the relations [Pi,Pj] =
[~,qj1 = 0 , [Pi,qj 1 = 8ij • then we have Kik = KiHn '

Theorem B. If A ie noetherian, then there are canonical isol:lorphisms

i) Ki(A.[t)) ~ KiA

ii) K
i
',(A(t,t-'lJ.:=: j('A EiI K' A

i i-1

Proof. i) followe immediately from the precediDg thecrem.

ii), ApplyiDg the localization theorem to the Serre subcategory B of Modf(A[t])=
consisting of modules on which t is nilpotent, we get a long exact sequence

Corollary. (FUndamental theorem for regular rings) If A is regular, then there

are canonical isomorphisms Ki(A[t]) = KiA 2 Ki(A[t.t-']) = KiA@ Ki_,A •

This is clear from Th. 3. Cor. 2. since A[t] and A[t,t-'J are regular if A ie.

Example 1. Let k be the algebraic closure of the finite field lr • and let /l..}

J P d
be the twisted polynomial riDg k~ [F with Fx = xqF for x in k, where q = p •

,-.
.i:



subfield IF
q

Applying Th. 2, Cor. I, to these

k~\I. --.. °
q

I - po. K k °
v 1 ---

we obtain the formulas

_ A~\I ~

q
~ a(F-I) .....

U Modf(A,!AF") x' Modf(lP') •
n q

KOD = ~ • KI D = ~ 6J ~

K
2i

D = (K
2i

_
I
F

q
) 2 = (~(qi_I)~)2

K2i+1D= (~iFq)2 ~ 0

B ;;;;.
=

sequences, one easily deduces that the composite

~
_::...)~. KiA = Kik

I - Po on K
i
k. From [Quillen 2] one has

° -

0--+ KiF
q

__ Kik

Comb1n1ng this with (10)

of k

where

exact sequence of A-modules

(1\ )

Kik 6l K
i lP'q = Ki~

is zero on the factor KiF
q

lllld the map

exac t sequences

for 1>0.

where F acts on the cokernel by F(x II w) = xq II w

"characteristic"

°~ A lIi(V) . _ A II
k
V _ V - °

a lI(x II v) I-r axF II v

Apply1ng the devissage theorem to the first factor, we obtain KiB ~ Kik Gl K.lF •
= ~ q

1st p: k -. k be ths Frobenius automorphism: p(x) = xq, and let plY) denote the

base extension of the k-vector spsce V with respect to p, i.s. ply) = k IIkV, whsre

k is regarded as s right k-module via p. If V is regarded as an A-module killed by

F, ~e have an exact sequence of A-modules

On the othsr hand, if \I is a finite .dimensional vector space over lP' , we have an
q

.,;
r~1tJ\,';;,,' ~lIen A is a non-cOllllllutativs doma1n in wll1ch sveJ"Y lsft ideal is principal. 1st D be

tile quotient ske....field of A, whence Modf(D) K Modf(A)/~, where ~ ia the Serre sub-

category cOl1llist1ng of A-modules wll1ch are torsion, or equivalently, wll1ch are finite

--t,. _ .,," iIDeIla:l;onal-over-k.----'l'be-local-iza-t1on-theoI'8Ill-gives-BIl-exac't-sequence---------
,14- , ~I,.t:: ,'"
:'~.,~,,~ .. i .
~." (10)' ----+ Ki~ o. KiA _ KiD --+- Ki_l~ _

(A and D are regular). B1ld we have KiA. Kik by Theorem 7.

An object of B is a f1nite diJIlensional vector space V over k equipped rith llll
K

additive map F: V~ V 8UCh that F(xv) ~ Xqy(v) for x in k lllld v in V. It is

well-know that V splits canonically: V = V0 ES VI' where F is nilpotent on V0 and

bijective OIl Vl' lllld moreover that

kip" ""') VI
q

., • [v€V I Fv = vJ is a f1nite diJIlensiollB.1 vector space over the

with q. elements. Thus we have an equivalence of categories

123 ,.
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Example 2. Let a be the aeisenberg-~eyl algebra with generators p,~ such that

pq - qp = lover an algebraically clcsed field k, and let D be the quotient skew-field

of H. In this case, one can prove that the localization exact sequence associated to

Modf(R) and the Serre subcategory of torsion mcdules breaks up intc short exact sequences

o - Ki k ---... KiD -- 11 Ki _1k --+- 0

where the direct sum is taken over the set of isomorphism claeses of simple H-modules.

The proof is similar to the preceding, the essential points being a) torsion finitely

genersted H-modules are of finite length, because H has no modules finite dimensional

over k, and b) k is the ring of endomorphisms of any simple H-module ([\iUillen 3]). ,,
§7. K'-theory for schemes

~I..
·.,l

the
:~.
;

is exact, it induces a homomorphism

rest of this section we will a9~e all

stated otherwise.

f4(X)
=

is the abelian category of coherent sheaves on X.M(X)=where

concerns pr~rily the groups' KIX, so for the
q

schemes to be noetherian and seuarated, unless

As the inclusion functor from ~(X) to

1. If X is a scheme, we put K X = K P(X), where p(X) is the category of vector .}.
q q= = ""

bundles over X (= locally free sheaves of £X-modules of finite rank) e~uipped with

usual notion of exact sequence. If X is a noetheriac scheme, we put K'X =K M(X),
q ~=

The following theory

K X -+ K'X
~ q

is exact, hence it induces a homomorphism of

itself, hence as in §3, (I), we obtain pairings

f : X -+ Y is a morphism of schemes (resp. a flat

f* : E(Y) -+ ~(X) (resp. f*: ~(Y) -+ ~(X);
K-groups which will be denoted

inverse image functor

behavior.

f* : K Y -t K X (resp. f* : K'Y -+ K'X )
q q ~ ~

this way K becomes a contravariant functor from schemes
q

is a contravariant functor on the subcategory of schemes andK'
q

K X tQ K'X ~ K'X
o q q

K'X a module over the ring K X. (In a later paper I plan to extend this
q 0

a graded anti-commutative ring structure on K*X such that K~X ia a grsded

over K*X.)

2. Functorial

morphism), then the

groups, and that

morphisms.

making

define

It is clear that in

When X is regular this is an isomoruhism. In effect, one knows that any coherent sheaf

F is a quotient of a vector bundle [SGA 6 II 2.2.3 - 2.2.7.1] , hence it has a resolution

by vector bundles, in fact a finite resolution as X is regular and quaSi-compact .(see l'

LSGA 2 VIII 2.4]). Thus 1.1 is an isomorphism by the resolution theorem (Th. 3, Cor. 1).4"
.{

If E is a vector bundle on X, then F 1-1' E tQ F is an exact functor frolll M(X) to
=

module



f' : K'Y --+ K'Xq q

The assumption holds if either f is flat (whence P(Y,f) = M(Y) ), or if every coherent= -
aheaf on Y is the quotient of a veotor bundle (e.g. if Y has an ample line bundle).

In both of these cases the formula (fg)* = ~f' is easily verified.

(2.6)

liJD(i I-; P.) _ p(X)r- =1 =

such tr~t a sequence is exact in p(X) if and only if it comes from an exact sequence in
= '

some -_Pi' Thus from 82 (9) we have K P(X) =lim K Pi ' proving 2.3. The proof of 2.4q= ~ q=
is similar.

2.5. Suppose tr~t f: X ~ Y is a morphism of finite Tor dimension (i.e. £X is

of finite Tor dimension ss a module over f-'(~y) ), and let ~(y,f) be the full sub

oategory of M(Y) oonsisting of sheaves F suoh that
= 2y

Tori - (£:x,F) = ° for i>O

Assuming that every F in M(Y) is a quotient of a member of P(Y,f), the resolution
= =

theorem (Th. 3, Cor. 3) iJDplies that the inolusion P(Y,f) ..... M(Y) induoes isomorphisms
= =

on K-groups. Combining this isomorphism with the homomorphism induced by the exaot

funotor f* : P(Y,f) ~ M(X), we obtain a homomorphism which will be denoted
=. =

K'X = liJD X'Xq ~ q i

Proof. We wish to apply §2 (9), using the fset that ~(X) is essentially the

'1nduetive limit of the ~(Xi) by [EGA IV 8.5]. In order t~ obta1n an honest inductive

system of categories, we replsca ~(Xi) by an equivalent category using Giraud's method

as follows. Let I be the index category of the system. Xi ' and let I' be the

category obtained by adjoining an initial objeetl/ to I. 'We extend the system Xi to

I I by putting Xp = X, and let E be the fibred category over I I having the fibre

E(X
i

) over i. Let ~i be the category of cartesian sections of ~ over I'/i. (An

object of Ei is _a family of paira (Ej I Q) with Ej " E(Xj ) and ej an isomorphism

(j +i)*E
i

==t E
j

for each object j +i of I'/i.) Clearly E
i

is equivalent to ~(Xi)

and i ~ t is a 'functor from I
O

to ca;tegories. Using [EGA IV B. 5J it is not hard

to see that we have an equivalence of categories

2.7. Let, f : X ~ Y be a proper morphism, so that the higher direct image functors

Rif* carry coherent sheaves on_lC_ to coherent sheaves on Y. Let F(X,f) denote the

full subcategory of ~(X) consisting of F such'thst Rif.(F) = ° ~or i>O. Since

. Rif* .. ° for i large [EGA III ,.4.12J, we can apply Th. 3, Cor. 3 to the inclusion

F(X,f)o-+ I>I(X)O to get an isomorphism K F(X,f) -==?-K'X, provi,ded we assume that every
.. = q= q

"

r:!f}[!#t.. proposition 2.2. Let i ~ Xi ..:b:::e~a_f:;;i=l~t::::e::r.::e::d_p~r~o"JL::'e::e"t.::iv.::.e~s~y~s:.:t:::em::::...::of~s~e:.::h:::e=m:es=--,5::::u::e:;:h:...t~ha~t

~I~._·_·--'~"2:.::",:-,-~r_:_~_i_:_:_:_:_:_~_~_ran_lIIIl_s_·,-t-:-::'X~~-o-:-j-h-'~'-:~"'';~-=f~:-:-'~_,_:_h_:_:_t_X_=_t_iJD__X_i_'_T_h_en :



coherent eheaf on X can be embedded in a member of F(X,f). Composing this isomorphism
=

with the homomorphism of K-groups induced by the ""ect functor f .. : ~(X,f) _ ~(Y), we

obtain a homomorphism which will be denoted

f····
'I

118 42

!

f .. : K'X _ K'Y •
q ',q

The assumption is satisfied in the following cases:

i) '«hen f is finite, in particular, when f is a closed immersion. In this case

Rif.. =° for i>O [EGA III 1.3.2] , so' ~(X,f) = !'l(X),

ii) \/hen X has an ample line bundle [EGA II 4.5.3]. In effect if L is ample

on X, then it is ample when restricted to any open subeet, and in particular, it is

ample reletive to f. Replacing L by a high tensor power, we can suppose L is very ":"f.':

ample relative to f, and further that L is generated by its globel sections. Then for

any n we have an epimorphism (2x.) rn_ Lb, hence dualizing and tensoring wi th L'm1, we }'
."obtain an exact sequence of vector bundles ~ ,

such

to

n
o
F

above, one sees

i>O •

where F(n) = F ~ L'm1. But by Serre's theorem [EOA III 2.2.,J, there is an
i' .

that R f ..(F(n)) =0 for i>O, n~ no' so F(n) '" ~(X,f) for n>-.no ' Thus

embedded in a member of F(X,f) as asserted.
=

The verification of the formula (fg) .. =f ..g,. in cases i) and ii) is straight-

forward and "ill be omitted.

!lence for any coherent sheaf F on X we have an exact sequence Hl
~i

t

t
'#
·~i

can bel
:~.,''II'
"0,

1~:

11
,;(,

J{o'!
Proposition 2.10. (Projection formula) 'Suppose f : X ~ Y proper and of finite ~

Tor dimension, and assume X ~ Y have ample line bundles so that 2.6 ~ 2.8 !::!,}
defined. Then for x ~ K X and v 0; K'Y we have f .. (x.f.y) = f .. (x),y in K'Y, where:;'0-' q -q----":I
f.(x) is the imego of x by the homomorphism f .. : KoX -+ KoY ££ [SGA 6 2.12.3].,:.

.,~

E, then f .. (x)

such that

By the 'reeolution theorem we have K L = K'Y. Moreover, applying Th. 2, Cor. 3
, ~ q

° - Pn'i. F _ _ Pollil F _ f ..E ~ F _ °
for F ,"~, one sees that y ~ f .. (x).j' is the endomorphism of K'Y induced

(
. q

exact functor F ~ f ..E i F from ~ to ~ Yl.

From the projection formula in the derived category:

(see [SOA 6 III 2.1J), we find for F in ~ that

Proof. We recall that if x = (E] is the class of a vector bundle

is the class of the .perfect complex Rf. (E). Arguing as in case ii)

that K X is generated by the elements [E] such that Rif.. (E) =0
o i

Rf..(E) ~ f ..E ,and f .. (x) =1:(-1) (Pile KoX , where ip.} is a finite

by vector bundles on r. Let L denote the full subcategory of M(Y). = -



3. Closed subschemas. Let Z be a closed subscheme of X, let i: Z ~X be the

Wff'i@~;,!~';'lf>'t·

;: "" ..

In

The

q =0

KI Z -+- KI X is an i aomorphism.
'1 '1

j". K'U __
'1

j* : N(X) _ M(U) induces en equivalence
= =

whereB is the Serre SUbcategory oonsis-
=

Theorem 4 implies that i*: M(Z) -+ B= =

== fl. gl*

(3.3) ----to X' U --1- K'Z i ... X'X
'1+1 '1 '1

Proof. One knows [Gabriel, Ch, Vn thet

of ~(U) with the quotient category N(X)/B,
- = =

ting of coherent sheaves with support in Z.

Propoaition 3.1. l! I is nilpotent, then i.

particular, X' eX d)"=::'" X'Xq re q

This is en i:mmediate consequence of Theorem 4.

canonical i:mmersion, end let I be the coherent sheaf of ideals in £X defining Z.
functor i .. : ~(Z) -+ ~(X) allowe ue to identify coherent sheavee on Z with coherent

sheavee on X killed by I.

be a cartesien square of schemes heving ample line bundles. Asaume f is proper, g i!
of finite Tor dimension, end th&t Y' S!! X are Tor independent over Y, (.L.!..

o
Tori=Y'Y(Qy, "Qv ) = 0 for i)oO_ ,1 =.n.,x

for B!!Y xEX, yO, Y', YEY such thet f(x) = Y = g(y').) ~

K'X --;.. XI!' •
q q

Sketch of proof. Set ~ = ~(X.g')()~(X.f). From t,he formula 19*Rf.. = Rf' ..!.g'"

in the derived category [SGA 6 IV 3.1.0], one deduces th&t for FE~ we h&ve that

f..F € f(Y,g), g'''F £ E(X',f'), end that there is en isomorphism g*f.. (F) = f' ..g'''(F).

Thus everything comes to showing that X 1~ X'X. :;ince X p(X,g')':::::"X'X , We heve
'1= q '1= q

only to check that the inclusion ~ _ ~\X,g') induces isomorphisms on X-groups; But

this follows from the resolution theorem, because the exact sequence 2.9 shows that the

functors Rif.. on the category ~(X,g') are effaceable for i >0.

Propodtion 3.2. ~ U be the complement of Z in X, S!! j U _ X. ~

canonical open immersion. Then there is a. long exact sequenc.e

_ "i-'__TIlue_UJ:!F is in ~_(X,J:.L,~l' the definition of 2.6 end 2.8, we have th&t

y f+ f .. (xo1"'y) is the endomorphiSlll of X~Y induced by the BUct functor F 1-+ f'O(.E 1lf*F)

fran 1.' to M(Y). Sirlce we h&ve en isomorphiSlll f .. (E II f"F) :::: f ..E II F , the projection• =
formula follows.
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:1

!, induces isomorphisms on
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K-groups, so ths desirsd sxact ssquence results from Theorsm 5.

~,

j'."

-,'

f

::~

'I

flat map whose fibres ;!~
vector bundle).

U," then becausewith complement

~...... K' X-, -n

--.. K'(UwV) _ K'U Iil K'V _ K'(Un V) _
q q q q

and V of X. Starting essentially from this point,

in this procedings) construct a spectral sequence

is a closed Buoset of X

Affine and orajectiv8 space bundles.

__ K' ,(UnV)
q+

two open sets U

(see their paper

4.

iil;l\M(Z) ) - B~(M(X) ) _ BQ(M(U))
= = =

For example, if Z' is a closed subscheme of X containing Z, then there is a IIlap from

the exact sequence of (X,Z) to the one for (X,Z'). Also a flat map f : X'_X
.\

induces a IIlap from the exact sequence for (X,Z) to ths one for (X' ,f-\).

for any

Gersten

we have a IIlap of exact sequences

- X'Z - K'X - K'U --q q q
.j, .j, J,- K'P - K'P ---... K'P -q Z q q U

a certain sense. In connection with this, we mention that Gersten has proposed defining

higher K-groups for regular schemes by piecing together the Xaroubi-Villemayor theories

belonging to the open affine subschemes (see [~ersten 2J). Using the above Mayer-Vietoris

sequence and the fact that Karoubi-Villalllayor X-theory coincides with ours for regular

rings, ~ersten has shown that his method leads to the groups K X =K'X studied here.
q q

which reflects the fact that K'-theory is a sheaf of generalized cohomology theories in

Proposition 4.1. (Homotopr property) Let f: P~ X be a

are affine spaces (for example, a vector bundle or a tersor under a

f* : K'X ~ K'P is an isomorphism.
q q

Proof. If Z

Remark 3.5. From 3.3 one dsduces in a well-known fashion a Mayer-Vietoris sequence

Rsmark 3.4. The exact sequsnce 3.3 has some svidsnt naturality propsrties which

follow from the fact that it is the homotopy exact sequencs of ths "fibration"

By tha five lemllla, the proposition is true for one of X, Z, and U if it is true

other two. Using noetherian induction we can assume the proposition holds for all clO~,

subsets Z';' X. tie can suppose X is irreducible, for if X = Z, U Z2 with Z, ,Z2 ~ of
then the prOposition holds for Z, and X - Z, = Z2 - (Z,nZ2), hence also for X. V~

can also suppose X reduced by 3.'.
Now take the inductive limit in the above diagram as Z runs over all closed

,;. X. Then by 2.4, lim K'U = iC'(k(x)) and lim K'BU = K'(k(x) "Xp), where-....q q --q q
residue field at x, and where " is the generic point of X.

the case where X =Spec(k), k a field, and we want to prove

But this follows from §6 Th. 8 so the proof is complete.



Thieto M(PE).=

is the class of the canonical

o~ i -< r from Modf( k)

K' (PE)
q

h rendering the above squere commutative is

Thus i* is injective. so from 4.6 we

1. ! K (Modfgr(SE»)

q II
h ~ 7l[t) II K'k

q

K (Modfgr(k»

q is
7l[t] II K'k

q

4.2. Jouanolou's device. Jouanolou has shown·thst at least for a quasi-projective

x (PE) IL X X'X "-'j X'(PE)o ""Xo q q

given by y II x t- y·f*x. Equivalently, if zf Ko(PE)

line bundle 2( -1). then we have an isomorphism

11 t i II K'k ~
O~ i< r q

induced by the functors M~ 2(-1 )lIi ilkM

gives the desired isomorphism 4.5.

Using the Koszul rssolution

and Th. 2, Cor, 3, one shows that the map

multiplication by A_t(E) = L (_t)i[AiE]

get an isomorphism

_ K (MOdfgr(k))~ K (Modfgr(SE))
q . q

o~ SE(-r) II ArE fI\ M __ ... ,. --+ SE II M --+- M~ 0

Sketch of proof. The equivalence of 4.4 and 4.5 results from the fact that

Ko(PE) is a free KoX-module with basis 1•••• zr-1 I [SGA 6 VI 1.U. Using the sxact

sequence 3.3 as in the proof of 4.1, one reduces to the cass where X=Spec(k), k •

field. By the standard correspondence between coherent sheaves on PE and finitely

generated graded SE-modulee. one knows that M(PE) is equivalent to the quotient of
=

MOdfgr(SE) by the subcategory of ~l such that M = 0 for n large. This subcategory
n ,

has the SBl:le K-groups as the category Modfgr(k) by Thsorem 4, where we view k-modules as

SE-modulee killed by the augmentation ideal. Thus from the localiZation theorem we have

an exact sequence

-where i is the inclusion and j sssociates to a module M the assoc1ated sheaf lIon

PE. From Theorem 6 we hevs the vertical isomorphisms ill the squere

acbome X over a field. there is a torsor P over X with group a vector bundle such

tIlat P is an affine scheme. He defines higher K-groups for smooth X by taking the
:.1.,..,/:.-

,. --Xaroubi-Villamayor K-groups of the coordinate ring of P and showing that theBe do not
"'-/ '''. -._-.-

'-'-deplmd on the choice of P. From 4.1 it is cleer that his method yields the groups
;,T.1;~:

'",," X X ~ X'X considered here.
q q

Proposition 4.3. ~ E be a vector bundle of rank r ~ X• .!!! PE = Proj(SE)

be the associated projective bundle,~ SE is the symmetric algebra of E. and let

f , PE ~ X be the structural IIlap. Then we have a K
o

(PE)-module isomorphism
"
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,>0. ',_" _.~.••••

The following generalizes 3.1.

Proposition 4.7. ~ f : X' ~ X be a finite morphism which is radicial and

surjective (i.e. for each x ja X' the fibre r-1(x) has exactly one point x' ~

the residue field extension k(x' )/k(x) is purelY inseparable). .h!:!:. S be the mul ti

plicative system in 7Z generated by the degrees [k(X') :k(x)] for all x .!ll x. ~
f. : K'(X') _ K'X induces an isomorphism S-1 K,(X') -=4 S-'K'X •

'l q 'l 'l

Proof. If Z is a closed subscheme of X with complement a, and if Z' and U'

are the respective inverse images of Z and a in X', then we have a map of exact

sequences

.•.
'-~

K k !E£ f·f. =multiplication by
q

a purelY inseoarable finite extension of
d

p on

Since k'/k is purely inseparable, the eugmentation ideal

Filtering by powers of 1, one obtains a filtration of the a

K (M (x)) = lim K'~
q=p - q

Localizing with respect to S and using the five lemma, we see that if the proposition
;'.;

holds for two of fZ' f, fa it holds for the third. Thus arguing as in the proof of 4.1

we can reduce to the case where X = Spec(k). k a field. By 3.1 we can suppose if
~::~

x' = Spec (k' ), where k' is a purely inseparable finite extension of k. Thus we have . fc,..•..

reducsd to the following. ,
~·I':

J~
'Ii!
~\

;/
;{~)

v f-+ k'~V = (k'.~k')~,V

Proposition· 4.8. ~ f : k...,. 1<' be

degree pd. !l!!!l f.f. = multiolication by

pd on K (k').
- q

Proof. The fact that f.f* = multiplication by [k':I<:] is an immediate consequence

of the projection formula §4 (5) and does not use the purely inseparable hypothesis.

The homomorphism f*f. is induced by the exact functor

(5. , )

from P(k') to itself.
=

k' ~ k' is nilpotent.

functor with

But because the two k'-module structures

isomorphic to the func tor V 1-+ yr. where

Cor. 2 to this filtration. We find f*f*

gr( (k' ~ k') ~,V) = 11 (1n/1n+1
) ~, V

n
n/ n+1on 1 1 coincide, this graded

r = d~,(gr(k' ~ k')) -l. Applying on..;
d ~

= mul tiplication by p, completing the p .," '
.... '\0;

5. Filtration by support. Gersten's conjecture, and the Chow rillg. Let ~p(X)o?

denote the Serre subcategory of ~(X) consisting of those coherent sheaves whose au

is of codimension ~ p. (The codimension of a closed subSet

the dimensions of the. local rings ~ z where z runs aver the generic pOints,
From §2(9) and 3.', it is clear that we have



is flat.:1"'('" (X)) c M (X I)=p =p

In vie., of 5.' this reduces to showing that any Z of codimension p in X is of the

fom f~' (Zi) for some i, where Zi is of codimensiOll p in Xi • end where

f
i

: X - Xi denotes ths canonical map. But for i large enough, one has Z = f~' (Zi)

with Zi = ths closure of fi(Z). Hence any generic point Zl of Zi is the image of a

generic point z of Z, so the local rings at z· and z have the ssme dimension by the

rssult about dimensiOll used above. Thus Zi also has codimension p, proving 5.3.

Theorem 5.4. Let X be the set of points of codimsnsiOll p ~ X. There is e
p

spectral sequence

(5.3) .

(5.5) EPq(X) = 11 K k(x) ~ K' X
, -p-q -n

x", X
p

which is cOllvergent when X has finite (Krull) dimension. This spectral sequence is

contravarient for flat morphiems. Furthermore, if .X = lim X. ,.,here i t-+ Xi is a- -~-- --
filtered projective eystem with affine flat transition morphisms, then the spectral

sequence for X is the inductive limit of the epectral sequences for the Xi

In this spectral sequence we interpret K
n

as zero for ll" O. Thus the spectral

sequence is concentrated in the range P~O. p+q" O.

Proof. We consider the filtration

~(X) = ~o (X) ::;,. ~, (X) :::>

of M(X) by Serre subcategories. There is an equivalenoe
=

M (X)/~ , (X) ::=. II U Modf(~ !red(~ in)
=P -p+ xE: X . n ' ,x

p

eo from Th. 4. Cor. " one has an ieomorphism

Ki (~p (X)/~p+' (X) ::::. 11 Kik(x)
xcX

p

where k(x) is the residue field et x. From Th. 5 .,e get exeot sequences

- Ki(~P+'(X)) -+ Ki(~(X) - llKik(x) --+ Ki_'(~P+'(X) 
xt;;X

p

If X =~ Xi ..here i 10+ Xi is a filtered projective system with affine flat

transition morphisms,then we have isomorphisms

..here Z runs over the closed subsete of oodimeneion ~ p. We also have

:::.".....
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which give rise to ths desired spectrel sequence in a standard way. The fWlctorality

assertions of the theorem follow immediately from 5.2 and 5.3.

This follows immediatsly from the spectral sequence 5.5 and its construction.

. .1

; .~,

'i,'

satisfies the equivalent conditions of

isomorphism

denote the shsaf on X associated to the(Gersten) Let K'-- =n
Assume that Spec(~,x)

Then there is a canonical

Preposition 5.8.

presheaf U ~ K~U

for all x in X.

We will now take up a line of investigation initiated by Gersten in his talk at this

conference lGersten 3].

Proposition 5.6. The fcllowing conditions are equivalent:

i) Fer every p~ 0, the inclusion !:!p+1 (X) -+ !:!p(X) induces zero on K...groups.

11) For all q, E~q(X) =0 g p';' 0 and the edge homomor-ohism K~l ~ E~"(X)

is an isomorphism.

iii) For evsry n the seguencs

(5.7) 0 _ K~X ~ II Knle(x) d,~ il Kn_,Ie(%) d1 )
%10 Xo xO:: X1

is e%act•.~ d, is the differential on E1(X) .!!!!! e is the maD obtained by

pulling-bacle with raspect to the canonical mor-ohisms Spec Ie(%) -*X.

Actually, it seems reasonable to conjecture that the conditions of 5.6,

generally for semi-local regular rings, for in the cases where the conjecture

Proof. We view the sequences 5.7 for the different open subsets of X as a sequence

of presheaves, and we sheafify to get a sequence o~ sheaves

where i%

sequence

as asserted.

o .....,. ~~ - l.L (i).. (Knle(x)) ~.ll (i]) .. (Kn_11e(x)) ''-+ ..
XEXo %EX1

: Spec Ie(x) -+ X denotes the canonical map. The stalle of 5.9 over %

5.7 for Spec()v ), because Spec(CL ) = lim U ,where U rWlS over the :=.n.,x ~tX ~ '/

affine open neighborhoods of x, and becsuse the spectral sequence '5.5 commutes with'

such projective limits. By hypothesis, 5.9 is exsct, hence it is a flasle resolution or
Kl so
=n '

The following conjecture has been verified by Gersten in certain cases

Conjecture 5.10. (Gersten) The conditions of 5.6 are satisfied for the

of a regular local ring.

(5.9)



proved, the arguments also apply to the corresponding semi-local s1 tuB tion. On the other

band there are sxamples suggesting that it is unreasonable to expect the conditions of

5.6 to hold for any general class of local rings bssidss ths regular local rings.

Ws will now prove Gersten '-s conJecturll""iil some-importmt-equi-charactetist:i:c-cases-.--

Theorem 5.11. ~ R be a finite type algebra over a field k, ~ S be s finite

set of priJDes in R such that Rp is regular for each p E:. S, and let A be the

retp!J.ar semi-local ring obtained by localizing R with respect to S. !!!!E. Spec A

satisfies the conditions of .5.6.

Proof. We first reduce to the case where R is smooth over k. There exi.sts a

subfield k' of k finitely generated over the priJDe field, a finite typs k'-algebra

R', end a finite subset S' of Spec R' such that R = k Iik,R' and such that the priJDes

in S are the base extensions of the primes in S'. If A' is the localization of R'

. with respect to S', then A = k e.c,A' and A' is regular. Letting k
i

run over the

subfields of·k containing k' and finitely generated over the priJDe field, we heve

A= lim kililk,A' and K*(1'1 (A)) = lim K*(M (kililk,A')) by 5.3, where here and in the
---; =p - =10

following we write 1'1 (A) instead of M (Spec A). Thus it suffices to prove the theorem
=p =p

when k is finitely generated over the priJDe field. In this Case A is a localization

of a finite type algebra over the prime field, so by changing R, we can suppose k is

the prime field. As prime fields are perfect, it follows that R is smooth over k at

the points of S, hence also in an open neighborhood of S. Replacing R by R
f

for

some f not vaniehing at the points in S·, we can suppose R is smooth over k as

ass'srted.

induces zero onthe inclusion 1'1 ,(A) ~ 1'1 (A)
=p+ =p

We wish to prove thet for any p ~O

K-groups. By 5.3 we heve

6

K. (~P+l (A)) = l~ K. (~p+, (Rf ))

where f runs over elements not vaniehing at the points of S, hence replacing R by Rf ,

we reduce to ehowing thet the functor !'lp+l (R) ~ !:!p(A) induces zero on K-groups. As

K*(~P+l(R)) = e K*(!'lp(R/tR))

ne

where t

element·

runs over the regular elemen'ts of R, it suffices to show that given a regular

t, there exists an f, not vanishing at the points of S, such that the functor

from M (R/tR) to M (R) induces zero on K-groups.
=p =p

will need the follOwing variant of the normalization lemma.

~ 5.' 2. ~ R be a smooth finite tyye algebra of dimension r over a field

k, let t be a rsgular element of R, and let S be a finite subset of Spec R ~

there exist elements x
1

, •• ,xr-l £[ R algebraically independent over k such that if

B = k[x, , •• ,xr-l] C. R, 1b!!!l i) R/tR· is finite over B,. and ii) R is smooth over B

at the points of S.

Granting this for the moment, put B' =: RltR and R' = R ~B' so the't we have

arrows

133

co":, •

·:l~i~C.'



126 50

.; ,

it! \

~.

:~",' .

'..

R' ,'_ R

UUI iu

B' ~ B

where the horizontal arrows"are finite. Let S' be the finite set of points of' Spec R'

lying over the paints in S. As u is smooth of relative dimension one at the pointa of

S, u' is smooth of rslative dimension ons at the points of S'. One knows then

[SOA 1 II 4"5] that the ideal I = Ker (R' .... B') is principal at the points of S',

hence principal in a neighborhood. of S I • Since R'/R ia finite, this neighborhood.

contains the inverse image of a neighborhood. of S in Spec R. Thus we can find f in

R not vanishing at the points of S ouch that If is isomorphic to RIf ..s an R' f

module. We can &lso suppose f chosen so that Rl
f

is smooth, hence fl..t, over B'.

Then for any B'-module ~ we heve an ex"ct sequence of Rf-modules

(.. ) 0 -+ I~B,M -+ RI~BIM -;0 Mf -+ 0 •

Since Rl f is flat over B', if M is in ~p(BI), then RI~BIM is in ~p(Rlf)' so

viewed as an Rf-module, we have R'~B ,M is in ~(Rf ). Thus (.. ) is an exact sequence ,iii
of exact functors from ~p(B') to ~p(Rf)' Applying Th. 2, Cor. 1, and using the isomor- ';~

phism If ~ Rl f I we conclude thet the functor from ~p(B') to ~p(Rf) induces the '1,',
zero map on K-groups, as was to be shown. ',!

" ;

s maximal ide&l containing it, wa

Let It be the module of Kahler

Proof of the lemme.. ,Choosing for each prime in S

can suppose S is a finite set of maximal ide&ls of R.

differentials of Rover k. It is a projective R-moduls of rank r, and for R to be,
smooth over B = k[x, .. ,xr_,J at the points of S means that the differentials" dxiE 12.
are independent at the points of S. Let J be the intersection of the ideals in S. As,"

R/:fi a TI R/mn , mE: S, is finite dimensione.l over k, we can find a finite dimensione.l

k-subepace y' of R such thet for each m in S, there exists v
1

, •• ,v in Y whose
, r

differenti&ls form a b..sis for.f2 at m vanishing, at the other points of S.

suppose &lso that Y generates R as an algebra over k.

Define an increasing filtration of Rita by letting Fn(R/tR) be the subspacs

spanned by the monomiala of degree ~ n in the elements of Y. Then the asaociated

graded ring gr(R/tR) is of dimension r-1. To see this, note thet Proj(llF (R/ta)):'
n .j(_

is the closure in projective spacs of the subschema Spec (R/ta) of the e.ffine space )'

Spec SlY). Sines R/ta hes dimension r-', the part of this Proj at infinity, name]J:-"

Proj (gr(R/tR)), is of dimension r-2. so gr(R/tR) hes dimension r-' aa asserted.

Let ",," ,zr_, be a system of pe.rameters for gr(R/tR) such that each zi is ,',

homogeneous of degree ~ 2. Then gr(R/tR) is finite over k[z" .. ,z ,1, ao if the:~'
r- ,~~

are lifted to elements xi. of R, then R/tR is finite over k[X;, .. ,x~,1 ',,.':

By the choice of V, we can choose v1' •••v 1 in Y such that Xi a x! + vi •r- 4 ,
1~ i< r, have independent differentiala at the points of S, whence condition ti) of

lemma is satisfied. On the other hand, the Xi heve the leading terms "i in gr(1.Iii
so R/tR is finits over k[x"",xr-11. The proof of the lemma and Theorem 5.1' is'

now complete.
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the

Then the

imAge of

Proof. Let P' be the projective line over the ground field, and let t denote the

oanonical rational function on P'. Let Cp(X) denote the group of codimension p

cycles. The subgroup of cycles linearly equivalent to zero is generated by cycles of the

form W - Ii ,where Ii is an irreducible subvariety of X x pI of codimension p sucha CD

that the intersections Ii = 11,,(1. x 0) and 11 = W,..,(1. x CD) are proper. We need a
a CD

known formula for Ii - 11 which we now recall.
a CD ,

Let Y be the image of Ii under the projection X x P -+ X, so that dim(Y) =
dim(W) or dim(W) - , • In the latter case we have 11 =Y x P' and Ii - Ii = 0, so

a CD

we may assume dim(W) = dim(Y), whence Y hae codimension p -, in X. Let Y be the

generic point of Y and w the generic point of W, so that k(w) ie a finite extension

of k(y). Let t I be the non-zero element of k( II) obtained by pulling t beck to Ii,

and let x be a point of codimensl.on one in Y, whence £Y,x is a local domain Of

dimension one with quotient field k(y);, Then the formula we want is

d, : 11' K1k(X) --+ il Kok(x) = 1L z:
xex , xGX xGX

~ p. p
in the spectral seguence 5.5 is the SUbgrOUp of codimension p cycles IIhich are

linearly equivalent to zero. ConsequentlY E~'-P(X) is canonically isomorphic to

~ AP(X) of cycles of oodimension p modulo linear equivalence.

The proof is analogous to the precedi.n8. Indeed, given 0 i- tEA. k[X", ,X
D

] ,

then after a change of coordinates, A/tA becomes finite ever :B = kl[x" ",xr-,l) by the

Weierstrass preparation thsorem. Further, if lie put A' = A lil:aA!tA, then Ker(A' -+- A/tA)

i s principal, so arguing a.s before, lie can conclude that M (A/tA) ~ M (A) induces zero
=p =p

on X-groups. The argument also lIorks for convergent power series, since the preparation

theorem is still available.

Proposition 5.'4. b!l X be a regular sohems of finite type over a field.

We nOli want to give an application of 5. " to the Chow ring. lie will assume known

the fact that the K, A defined here is canonically isomorphic to the :Bass K, , and in

particular that K, A is canonically isomorphic to the group of units A', when A is a

local ring or a Euclidean domain.

T·

Theorem 5,'3. The oonditions of 5.6 hold for Spec A ~ A is the ring of

formal power series k[[X" •• 'Xn] over. field k, and when A i. the ring of convergent

pover series in x" .. 'Xn IIith coefficients i.D a field complete IIi th respec t to a
, ··s
'.... non_trivial----ralllll'tion.

'It-~.l

where ordyx

(multiplicity of x in lio - WCD ) = Ordyx(NO~(w)/k(y)

key)' _2Z is the unique homomorphism such that

t' )

ordyx(f) = length(2y,/f2y,x)

for fG9-- • fi-O. For a proof of 5.15 see [Chevalley. p. 2-12J.=1",1
From 5.'5 it is clear that the subgroup of cycles linearly equivalent to zero is

135

!



128 52

r:
!
,I

;,,

so all that

Fix y in

M.(Y) to
=J
5.5 for Y

cIty)

\ multiplicity
~ of x
7L

k(y)' =K,k(y) --+ Kok(X) =7L

for y in Xp-' and x in Xp We want to show that (d,)yx = ordyx

X , and let Y be its closure. The closed immersion Y .... X carries

MP- lex) for all j, hence it induces a map from the spectral sequence
=J+P-
the one for X augmenting the filtration· by p-'. Thus we get a commutative diagram

, d,
liP- ,-p(X) ~ EP,-P(X) = Cp(X), t 1 i

Klk(y) = E~'-'(Y) d,) E:'-'(Y) = C'(Y)

which shows that (d,)yx =° unless x is in Y. On the other hand, if x is of

codimension one in Y, then the nat map spec(~y,x) ~Y induces a map of spectral

sequences, so we get a commutative diagram

K'~I(Y) = E~'-t) d,) E~ 'I (Y) =

K,k(y) = Eo,-I(O )~ E"-'(O ) =
1 =Ytx 1 =Y,x

which show. that (d,)yx ie the map d, in the spectral sequence for °=Y,x
the equality (d,)yx = ordyx ie a consequence of the following.

~ 5,'6. ~ A be an eQui-characteristic local noetherian domain

one with Quotient field F and residue field k, and let

<J
~ K'A _ K,F --+ K k _ K'A --+ K F _ °

, 0 0 0

be the exact seguence 3.3 associated to the closed set Spec k 2!. Spec A. ~

d : K, F _ Kok is isomorphic to ord: F' ... 7L ,~ ord is tha homomorphism su~h\

that ord(x) = length(A/xA) ~ x .!!!. A, x ¥ 0,

Proof. We have isomorphisms K, F =F' and K, A =A' since A and F are

rings. We wish to show d (x) = ord(x) for x in A, x ;1 0, If x is in A', this

clear, as d (xl = 0 since ,x is in the image of the map K, A ... K; A ...,.. K, F ThUS,

can suppose x is not a Wlit. By hypothesis A is an algebra. ovsr the prime subfisld),
k

o
Cif k. If x were algebrs.ic over k

o
' it would be a. unit in A. Thus x ia not,'

algebraic, so we have a~ homomorphism ko[t] ~A sending the indeterminate t

x. By naturality of the exact sequence 3.3 for nat maps, we get a commutative

the image of the homomorphism

~ : II k(y)' - n7Lx =
yGX 1 x"XP- p

where if fGk(y)', then ~(f) = Lord (f)'x and we put ord =° if

K,k(y) = k(y)', we see ~ is a map f;"om Er-1,-P(x) to YXEj'-P(X),

remains to prove the proposition is to show that ~ =d,

Let d
1

have the components

;j.

',.. ,

',-I",.....



Combining 5.B, 5.", and 5.14 we obtain the following.

Theorem 5.'9. For a regular scheme X of finite type over a field, there is a

canonical isomorphism

."'.,;.c, -.
K,kO[t] --... K,kor~t-1]

a Kk- --.--.. -0 0

(I" • 1 i v

--- KjA , -KF C
) K-k---_-

1 0

The homomorphism v ie induced by sending a k -vectcr space V tc
o

B(Aut(V) -+ BQ(P(k)=(5. , B)

such that u(t) =1.

the A-module

A~ott]V = A/xAik/

and using devissage to identify the K-groups of the category of A-modules of fini te

length with those of p( k) • Thus with respsc t tc the iscmorphisms K k = K k =z:, v= 000
is multiplication by length(A/xA) = ord(x). Therefcre it suffices to show that in the

top row of the above diagram, one has '0 (t) = ± ,. But this is easily verified by

explicitly computing the top row, using the fact that KoR =Z and K,R =R' for a

Euclidean domain. q.e.d.

Remark 5.17. In another paper, along with the proof -of Theorem 1 of [Quillen' ],

I plan to justify the following description of the boundary map il: K F -+- K 1k for an n-
local noetherian domain A of dimension one with quotient field F and residue field

k. By the universal property of the K-theory of a ring, such a map is defined by giving

for every finite dimensional vector space V over F a homotopy class of maps

compatible with direct sums. To do this consider the set of A-lattices in V, i.e.

finitely generated A-aubmodulea 1 auch that F eA1 = V. Let xlv) be the ordered set

of layers (1
0
,1,) such that 1,/1

0
is killed by the maximal ideal of A, and put

G = Aut(V). Then G acts on X(V), so we can form a cofibred category X(V)G over G

with fibre xlv). One can show that X(V) is contractible (it is essentially a

'building'), hence the functor X(V)G ~ G - is a homotopy equivalence. On the other hand

there is a functor X(V)G --+- Q(~(k) sending (1
0
,1,) to 1,/1

0
, hence we obtain the

deeired map 5. , 8.

It can be deduced from this description that the 1emma 5.16 is valid without the

equi-characteristic hypothesis.

HP(X,~p) = AP(X)

For p = 0 and , this amounts to the trivial formulaa- HO(X,Z) =CO(X) and

a'(X'2i) = Pic(X). For p = 2 this fo.rmula has been established by Spencer Bloch in

certain cases (see-his paper in this procedings).

One noteworthy feature about the formula 5.'9 is that the left side is manifestly

contravariant in X, which suggeets that higher X-theory will eventually prOVide the tool

for a theory of -the Chow ring for non-projective nonsingular varieties.
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Projective fibre bundles

.!h!::!. "..., II denotes the dual vector bwldle.

d) l!. F ~ X-moduls of finite type (e.g. a vector bundle), end if S 1!!.
affine, ~.F is a quotient of (£X(-1)~)k for some n, k.

= 0 for q>Oj".,
is regular for/

qf,O,r-I

q = 0

q = r-

the cohomology of proj
is a direc t sum of ,(.'1

R~*(F(-q))

£X (n) "1-

b) For any X-module F and vector bundle E' on S, one has

R~*(F) liSE' = R~*(F liSE')

c) For any S-module N, one has

R~*(£X(n) IIs N) = I SnEl ~sN
(sr_nElr lisAr El IIs H

The main result of this section is the computation of the K-groups of the projective

bundle associatsd to a vsctor bundle over a scheme. It generalizss the thsorem about

Grothendisck groups in [SGA 6 VI} and may be considered as- ·..... first step toward a higher

I-theory for schemes (as opposed to the K'-theory developed in the preceding section).

The method of proof differs from that of [SGA 6J in that it uses the existence at
canonical resolutions for sheaves on projective space which are regular in the eense of

[MlJIllford, Lecture 14J. We also discuss two variants of this result proved by the same

method. The first concerns the 'projective line' over a (not necessarily commutative)

ring; it is one of the ingredients for a higher K generalization of the 'Fundamental

Thsorem' of Bass to be presented in a later paper. The second is a formula relating

the K-groups of a Severi-Brauer scheme with thoee of the aseociated Azumaya algebra

end its powers, which was inspired by a calculation of Roberts.

q-?;r.

1. The canonical resolution of a regular sheaf on FE. Let S be a scheme

(not necessarily noetherian or separated), let E be a vector bundle of rank rover

S, and let X =PE =Proj(SE) be the asscciated prcjective bundle, where SE is the

symmetric algebra of E over £S. Let £X (1) be the canonical line bundle on X and

f : X _ S the structural map. We will use the term "X-module" to mean a quasi-coherent

sheaf of £x-modules, unless specified otherwise.

The following lemma summarizes some standard facts about the higher direct image

functors R~* we will need.

~ 1. 1. a) For any X-module F, R~*(F) is an S-module which is zero for

Following Mumfcrd, we call an X-module F regular if

where as usual, F(n) = £X(1)ilnilxF • For example, we have

n~O by c).

Parts a).c) result from the standard eech caloulations of

tive space [EGA III 2]. Part b) is obvious sincs lccally E'

finitsly many copies of £s' For d), see IEGA II 2.7.10].



sO we get an sxact sequence of vector bundles on X

y,'i"'
r ~.

"

55131

SE iSf.. (F) ~ 11 f ..(F(n)
n?;O

is surjective. The lSllllllS follows by taking associated sheavee.

(1.6) 0 -... F(-r) isArE _ ••• _F(-') iSE _ F _ 0 •

Assuming F to be regular, then (F(-phI\PE)(p) is seen tc be regular us:l.ni 1.1 b).

Thus if 1.6 :l.s split :!.nto short exact sequencss

o _ Zp __ F(-p) isAPE -+ Zp-l ~ 0

we CM use 1.2 b) tc show by decreasing :l.nduction on p that Z (p+') is regular.
p

Thus Zo(,) =F(1) is regular, so the lSllllllS follows by :!.nduction on n.

~ 1.7. l! F is regular, then the canonical map Ox i;.. (F)_F :I.e sur.iective.

Proof. From the preceding proof one has an exact sequence

(1.5) 0 __ £X(-r) igl\rE _ ••• __ £J;(-I) iSE --+- ~ _ 0

by taking the exterior algebra of £J;(-I) liSE w:Lthdifferential the intsrior product by

1.4. Tensoring w:L th F we obta:Ln M exact sequence

~ 1.3. l! F is regular.~ F(n) is regular for all n~O.

Proof. From ,the canonical epimorphism £X isE -+ ~(I) one has an epimorphism

(1.4)

The :l'0110w:Lng two lemmas appear:!.n [Kum:fOrd. l.ecture 14] and:!.n rSGA 6 XIII 1.3J,

but the proof Biven here is slightly different.

Proof. This follows :Lmmediately from the long sxact sequsnce

R~.,(r'(n-q))_R~.. (F(n-q)) _ R~.. (F"(n-q») _ Rq+1f .. (F'(n_q)) --+-Rq+1f .. (F(n_q))

0 __ ZI - F(-l)i
s

E __ F_O

where' ZI(2) ie regular. Thus R'r..(Z,(n») =0 for nlol, eo we f:!.nd that the canonical

map f ..(F(n-l )igE"':"" f .. (F(n)) ie eurjective for n~l. Hence the cMonical map of

SE-modules

'd"'~l -
:J~;:' Lemma 1.2. Let 0 ~ F' -+0 F -+ F" -... 0 be an exact seouence of X-modules.
~~""~,f~ - - - - -
-.~.,' a) l! F'(n) ~ F"(n) are regular,!2..!! F(n).

~.;~'-:·__b)_l!_F.(n)_.2-~(n+..l-)-are-1'8i'\1la!'rS"-1-S-F"(n')-'-----------------

':1J'I~' c) 1! F(n+l) !:!!!l.F"(n) are regular, and if f ..(F(n))~ f .. (F"(n)) :l.s onto,~

." " (n+l) is regular.

.., ?

Suppose now that F is an X-module which admits a resolution

o - ~(-r+1 )igTr-1 -+ ... - £XiSTo _ F _ 0

where the ,T
i

are modules on S. Breaking this sequence up :!.nto short exact sequences
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;

is regular,that Z (n+l)
n

S E 1
S

T _ f ..(F(n)) ..... 0
n 0

regular, we show by induction

We have an exact sequence

which can be used to show recursively thet the moduies T are
nfor n = 0, .•. , r-1

determined by F up to canonical isomorphism.

Conversely, given an X-module F, we inductively define a sequence of X-modules

Zn = Zn(F) and a sequence of 5-modules Tn = Tn(F) ss follows. Starting with Z_1 = ..;

let Tn = f"(Zn_l (n)), and let Zn be the kernel of the canonical map 2x(-n)lD;n - Zn-i:

It is clear that Z and T are additive functors' of F.
n n

Supposing now that . F is

this being clear for n = -I.

for each n'!: O. In particular, we heve exact sequences

ProlJosition 1.11. Any regular X-module F has a resolution of the form

.'

and applying 1.2 b), on~ seBS as in the proof of 1.3 that F has to be regular.
,/.

Moreover, the above exact sequence c~_be( viewed as a resolution of the zero module bTYhUS .... :.,~,~.;..
acyclic objects for the g-functor R "1".. 7(n)), where n is any fixed integer ~ O. .

I
on applying f~ we get an exact sequence

where the canonical map c is surjective by 1.7 and the induction hypothesis. By 1.3,"

1.2 c) we find that Zn(n+') is regular, so the induction works. Insddition we have

(1.10) f .. (Z (n)) = 0 for n~O
n

because c induces an isomorphism after applying f* •

From I •9 and the f aC t that f.. is exact on the category of regular X-modules,

one concludes by induction that F )-+.Tn(F) is an sxact functor from reguJ.ar

to 5-modules.

We next show that Zr-l =O. From 1.9 we 'get exact sequences

R'1-'f.. (Z l(n))...J:- R'lr.. (Z (n)) ---.- R'lr.. (Ov(-'1)1 T )
n+'1- n+q' "" S'n+q

which allow one to prove by induction on q, 'starting from 1.10, that R'lr,,(Zn+q(n)) ~

for q,n~O. This shows that Zr-l(r-I) is regulsr, since R'lr.. is zero for q~r•. ,

1.10 and 1.7 we have Z ,(r-l) =0, so Z , =0 as waS tobs shown.
l"- r- '

Combining the exact sequences 1.9 we obtain a canonical resolution of the

Sheaf F of length r - I. Thus we have proved the following.

o _ 2x(-r+1 )1D;r-1 (F) .......... - 2xlDsTo(F) _ F _ 0

where the Ti(F) .2!. 5-modules determined up to unique isomorphism by F.

F l-+ Ti (F) is an exact functor from the category of regular X-modules to the

~ 5-modules.

The next three lellllll&s are conoerned with the situation when F is a vector

on X.



O_F'_L __ I"_ 0

Then for any vector bundle F .2!:. X,

S-modulee N end n ~ n , one has
, - 0

R~*(L(n)liaN) -+ R~*(F(n)y) __ RCl+1f*(FI(n)liaN)

so pert a) cen be proved by decreasing induction on Cl, as in the proof of Serre's

theorem [EGA III 2.2.1). Using a) we have a diagrsm with exact rows

f*(FI(n»li
s

N ~ f.(L(n»liaN _ f.(F(n»Ii! _ 0

U'i ~ u!
o _ f*(F'(n)IisN) -+ f.(L(n)IisN) -+ f.(F(n)Ii!) _ 0

o -or f.(F(n» _ ••• _ f*(F(n+r»is/YE ~ 0 •

Therefore one can show f.(F(n» is a vector bundle for all n~O by decreasing

induction on n.

for n ~ some no and all N. lience u is surjective; applying this to the vector

bundle F', we see that U' is surjective, hence U is bijective for n ~ some no
end all N, whence b). By a), f*(F(n)y) is exact as a functor,of N for sufficient-

ly large n, whence using b) we see f.(F(n» is a flat ~S-module. ,On the other hand,

f.(F(n» is a quotient of f*(L(n» for n ~ some ~,so f*(F(ri» is of finite type.
o

Applying this to . F' we see that f.(F(n» is of finite presentation for all sufficiently

large n. But a flat module of finite presentation is a vector bundle, whence c) •

is sxact, we have an exsct seqUence

.!!!!!!!!!. I.". .!f. F is a vector bundla on X such that RClr.(F(n». 0 !E:: Cl~O,

n ~O. ~ f* (F(n» is a vector bundle on S for all n) O.

Proof. The assertion being local on S, one can suppose S affine, whence f.(F(n)

is a vector bundle on S for large n by 1.12 c): Consider the exact sequence

0.-. F(n) _ F(n+l)IisE"- ••• _ F(n+r)Iis/'{E"--..o

obtained by tensoring F(n) with the dual of the sequence 1.5. For n ~ O. this is a

, resolution of the zero module by acyclic modules for the 0 -functor RClr•• hence one

koows that on applying f. one gets an exact sequence

Proof. Becauss S is the union of finitely many open affinss, it suffices to prove

the llllllllla when S is aff:lJ1e. In this case F is the quotient of L· £X(-n)k for some

n and k by 1.1 d). Thus for any vector bundle F on S, there is an euct sequence

of vector bundles

such thet the lSllllll& is trus for L by 1.1 • S:IJ1ce

Lemma 1.12. Assume S is quasi-compsct.-·.~i.. ,'·'· .
:~':'" there exists an :IJ1teger no such that for sll
~,:, a) R~*(F(n)Ii~) • 0 ~ q> 0

'- .~~"-'-'L_"-'-----b~-,-f.'F-'n)-)lisH- ..... -f..(F'(-n)lisHl---------------

",'it' c) f*(I"(n» is a vector bundls on S.

,
, ,

3,

,0

Iy

., .
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fOa
i

consisting of vector bundlee"

R denote the full subcatego'
=n .

Ea.c:h of these subcategoriee i,s(

r-1 iE z •
i=O

~(-1)

K (R )::::. K (p ).!::::. K (p(X))
q=n q=n q=

is an e:mct functor from P to
=0

K (p(S))r ~ K (p )
q = q =0

u:

v : K (p) ~ K (P(S)
q =0 q =

induced by V. Since
n

VnUm(li) = fo(~(n....)~) =

134

This fallows by induction an i, using the e:mct sequences 1.8 and the

~ 1.14. .!! r is a regular vector bundle an X,~ Ti (r) is a vector

bundle an S for' each i •

~ 2.2. For all n, one hae isomorphi'sms:

induced by the inclusions ~nerne ~(X).

isomorphisms

(K s)" "'. K Xq q

where z 6. K X is the class of the canonical line bundle
- 0
structural maD.

Proof. Let P denote the full aubcategory of p(X)
~ =

F such that R~o(r(k» =° for q f- 0 and k~n. Let

of p(X) consisting of r such that F(n) is regular.
=

closed under extensions, so its K-groups are defined.

To prove the lemma, we consider the exact sequence

2. The projective bundle theorem. Recall that the K-groups of a Bcheme are
ne.turally modules over Ko by §'3 (1). The following reault generalizee [SGA 6 VI 1.1].,

Theorem 2.1. ~ E be a vector bundle of renk r over a scheme S ~ X =

Proj(SE) the associated projective scheme. !r. S is quasi-compact, then one has

(2.3) O---,loF_F(1)IgE __ •• _F(r)e/\rE _0.

For each p>O, F r+ F(p)IgI\PE is an exact functor from ~n to ~n-1 ' hence it

induces a homomorphism u : K (p ) -l- K (p 1)' From Th. 2, Cor. 3 it is
1 p q=n q=n-r: ",(-1)P- u ia an inverse to the map induced by the incluaion of E..-

1
in P .",

p"", p -' _u. =n ~\.

Thus ve have Kq(~n-l) ..... K
q
(~) for all n. By 1.12 a), ~(X) is the union of thei

P ,so by §2 (9) we have K (p ) = K (p(X») for all n. The proof that K (R ),-
=n q =n q = q =11'
K (p(X)) ia similar, whence the leCllll&. . ;'
q=

Put U (N) =Qv(-n)1i N for N in p(S). For O~n<r. U is an sxact functor,n =.n. --S--" =r. n
from P(S) to P by 1.lc),henceitinducesahomomorphism u :K(P(S))o+K(P'

= =0 n q = Q.
In view of 2.2, it suffices for the proof of the theorem to show that the homomorp

r-l
(an)O<n<:r 1-+ z: un(an )

- n=O

is an isomorphism.

From 1.13 ve know that Vn(F) = to(r(n))

for n~0, hence we have a homomorphism

where v
n

ie

',',

i_ O,.'

..'"
,',

.'1

,\

i

j +



3. The projective line ovsr a ring. Let A be a (not necessarily commutative) ring

let t be an indeterminate; and let

A[t]
i,

1 A(t,e']
i 2 Aft-'],,

for all n.

end the relations

corresponding to '.6, which leads to the relations 3.2. Also using the fact that Rqf.
\ I

can be computed by means to the standard open affine covering of P, we can define

R~.(F) in the non-cOlDlDutative ca~e'to be the homology of the complex concentrated in

degrees 0,' given by the map d: M+ x M- ~ i~(M-), d(x,y) = e(lillx) - lilly •

One therefore hes available all of the tools used in the proof of 2.' in the non-commu

tative case; the rest is straightforward checking which will be omitted.

lIhen A is commutative, this follows from 2.1, once one notices thet hn(P) is the

module ~x(n)~p. For the non-collllIlUtative case, one modifies the proof of 2.1 in a

straightforward way. For eXSlDple, if F = (M+,M-,e). we put F(n) = (M+,M-,t-ne), and let
. () ( ) + -I -Xo,X, : F n-I -:l> F n be the homomorphisms given by X = 1 on M and t on M ,

+ 0
X, = t on II and 1 on }I-). Then we heve an exact sequence

(XI ,-X ) 2 X pr, + X,pr2o~ F(n-2) 0 ;J F(n-') 0 J F(n) --+ 0

59

vhere t is induced by T. Applying Th. 2, Cor. 3 to the eiact ssquence 1.1', ve
n n

see that the composition ut is the map K (R ) _ K (p) induced by the inclusion of
q.=o q =0

R in P • :By 2.2, ut is an isomorphism, so u is surjective', concluding the proof...., =0

t : K (R) ~ K (p(S»r
q =c q =

by 1.1 c), it follows that the composition w i. dsscribed by a triangular matrix with

onss on the diagonal, Therefore w is an ieomorphism, so u is injective.

On the otherhend, ...T . is an euct....functor from R .. to P(S) .by .1.Lt ..and ..1.14,... . . .. n· . =0 =
bence we have a homomorphism

denote the canonical homomorphisms. lIhen A is cOlDIDutative, a quasi-coherent sheaf on

pl = p;rOj(A[Xo'X,) may be identified with a triple F = (M+,M-,e), where Io\+€ Mod (A [t),

lo\-iOlo\od(A(t-IJ) and e : i;(Io\+) ~ i~(Io\-) is an isomorphism of A[t,t-I]-modules. Fol

lowing [Bass XII §9J, we define MOd(P~) for A non-commutative to be the abelian

category of such triples, end we define the category of vector bundles on P: ' denoted

~(pl), to be the full subcategory consisting of triples with M+~ ~(ALt]), 10\- E ~(Alt-'j ).
1 . .

Theorsm 3.1. ~ hn : ~(A) ~ ~(PA) be the exact functor ssnding P to the

triple consisting of pLt] = A(t]illAP , p(t-'], end multiplication by en .2!!. p[t,t-
1J,

Then one has isomorphisme

, .
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4. Severi-Brauer schemes and Azumaya algebrss, Let S be a scheme and let X be

s Severi-Brauer echeme over S of relative dimension r-l. By definition X ie an

S-scheme locally isomorphic to the projective spaco p~-1 for the etale topology on S.

(see LGrothendieck]), and it is essentJ,ally the sam'!! thing as an AzumaYa al~ebra of rank:

r2 over S. We propose now to generalize 2.1 to this situstion~

When there exists a line bundle L en X which restricts to 0(-1) on each
v

geometric fibre, one has X = PE, where E is the vector bundle f+L on 5, f : X -+ S

being the structural map of X. In general such a line bundle L exista only locally

the etale topology on X. However, we shall ncw show that there is a canonical vector

bundle of rsnlt r on X which reatricta to O(_l)r on each geometric fibre.
r r-l

Let the group scheme GLr S act on ~ in the standard way, and put Y = Ps =
Proj(s(~)). The induced acti~n on Y factors through the projective group

PGL S = GL S/G S. Since G 5 acts trivially on the vect,or bundle Qy(_1)m'Q~,r, r, m, ml _ ""S=w
the group PGL S operates on this vector bundle compatibly with its action on Y. Asr,
X is locally isomorphic to Y for the etale topology on S and PGL 5 is the groupr,
of automorphisms of Y over S, one knows that X is the bundle over 5 with fibre Y

associated to a torsor T under PGL S locally trivial for the etale topology. Thusr,
by faithfully flat descent, the bundle ~y(-I)Is~~ on Y gives rise to a vector

bundle J on X of ranlt r.

It is clear that the construction of J is compatibls with bass change, and that

J ~ ~(-I)IsE if X =PE. In the general case there is a cartesian squars

g'+(J) = ~,(-I)Is,E

Let A be the sheaf of (non-commutative) ~S-algsbras given by

A = f*(Endx(J))Op

where g is faithfully flat (e.g. an etale surjective map over which T becomes

such that X' = PE for some vector bundle E of ranlt r on 5', and further

hence A

where 'op' denotes the opposed ring structure. As g is flat, we have g"f*

lienee we have

as one verifies by pulling back to X'.

Let I n (resp. An) be the n-fold tensor product of J on X (resp. A on

that An is an Azumsya algebra of rank: (rn)2 such that

",

,!i
~;.:

;t,

0:
f'

(' 11'
,:':

0: ,
.,
~
~J
".
k,,
.-
", :1-
~.

...,



one has isomornhisms
r-l

(xn) ~ E (In'!'A ?).. (xn )
n=O n

P(A) __ p(X)
= n =.

Theorem 4.1.
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and hence an induced map of K-groups.

on X correaponding to 1.5. Therefore it should be clear that all of the tools used in

the proof of 2.1 are available in the situation under consideration; the rest of the

proof of 4.1 will be left to the reader.

recursively by

constructs a sequence

Let E(A
n

) denote the category of vector bundles on S which are left modules for An

Si.JlceJ
n

. is a right. f":(AII)-module,.which locally on X is·adirect summand·of-··f*(A;;),

we have an exact functor

Example: Let X be e complete non-singular curve of genus zero over the field

k =HO(X,2x) , and suppose X has no rational point. Then X is a Severi-Brauer scheme

over k of relative dimension one, and J is the unique indecomposable vector bundle of

rank 2 over X with degree -2. Ths above theorem .says

If S is guasi-ecmpact,
r-1JJ.. K

i
(An) ......., K

i
(X)

n=O

This is actually a generalization of 2.1 because if two Azumaya algebras A, B

represent the same element of the Brauer group of S, then the cstegories P(A). P(B) are
= =

equivalent, and hence have isomorphic K-groups. Thus Ki (~(An» = Ki (S) for all n if

X is the projective bundle associsted to some vector bundle.

The proof of 4.1 ie a modification of the proof of 2.1. One defines an X-module

F to be regular if its inverse image on X' = PE is regular. For a regular F one

Tn(F) = f*(~Omx(Jn,Zn_l(F»)) ; Zn(F) = Ker [Jn~A Tn(F) ~ Zn_l (F)}
n

starting with Z_1 (F) = F. It is easy to see th~s sequenoe whsn lifted to X' coincidss

the the oanonioal resolution 1.11 for the inverse image of F on X'. Since X' is

faithfully flat over X, 4.2 is a resolution of F.

We note also that there is a canonical epimorphism J~ ~ obtained by descending

'.4, and hence a c~onical vector bundle exact sequence

Ki (X) = K
i

(k) e Xi(A)

where A is the skew-field of endomorphisms of J. This formula in low dimensions has

. been proved by Leslis Roberts ([Roberte ] ).

..... ,

r
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