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with exact segquences which extends the existing theory of the Grothendieck group in a
natural wﬁy. To describe the approach taken here, let g be an additive category
enbedded as a full subcategory of an abelian csatsgory ﬁ , and assume §' ie closed under
extensione in A . Then one can form & new category Q(g) having the same objectz as M ,
but in which 8 ;orphiam from M' to X is taken %o be an isomorphimm of M' with s )
subquotient Mﬂ/ﬂo of M, where MDCZ'M1 sre subobjects of M such that Mo and M/M1
are objects of E « Assuming the isomorphism clapses of objects of ﬁ form a set, the.
category Q(E) has a classifying space BQ(&) deternined up to homotopy egquivalence,

One can show that the fundamental group of this classifying space is canonicelly isomor-
phic to the Grothendisck group of 2 y ¥hich motivates defining a sequence of K-groups by
the formula ' 7

kM) = =, (2e0),0).

It is the goal of the present paper to show that this definition lesds to an interesting
theory. '

The first part of the paper is ﬁoncerned with the general theory'of these K-groups.
Section 1 contains various tools for working with the classifying spsce of a small
category. It concludes with an important result which identifies the homotopy-theoreiic
fibre of the map of cléssifying spaces induced by a functor. In KX-theory this is used
to obtain long exact sequences of K-groups from the exact homotopy sequenmce of m map.

Section 2 is devoted to the‘definition of the K—groups.and their elementary proper=-
ties. One notes that the category Q(g) dépends only on M -and the family of those
short sequences QO —M' a2 N = M" =0 in M which &re exact in the embient abeliamn
category. In order to have an intrinsic object .of study, it is convenient to introduce
the notion of an gxact category, whieh is en additive category equipped with a family of
_shoTt sequences satisfying some standard conditions (essentially those axiometized in
[Eeller]). For an exact caiegory E with a set of iscmorphism classes one has a Béquence
of X-groups Ki(g) varying functorially with respect to exact functors. Section 2 - also
contains the prool that Ko(g) is isomorphic to the Grothendleck group of M. It should
be mentioned, however, that thers are exemples dve to Gersten and Muxthy showing that in
general K1(§) is not the same as the upiversal determinant grouv of Bass, ' ‘ ‘

The next.three sections contain four basic resulis which might be called tpe
exactness, resolution, devissage, and localization theorems. Each of these generalizes
a well-known result for the Grothendieck group ([Bass, Ch. VIII}), and, as will be

. apparent from the fest of the paper, they enable one to do a lot of X-theory.

The second part of the paper is coricerned with applicetions of the general Fheory to’

rings and schemes. Given a ring (resp. a noetherian ring) A , one defines the groups
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Ki(A) (resp. Ki(A) ) ta be the K-groups of the category of finitely generated projec-

tive A-modules (resp. the abelian category of finitely generated A-modules). There is a
cancnical map Ki(A) - Ki(A) which is an isomorphism for A regular by the resolution

theorem. Because the devissage and localization theorems apply only to mbelian categories,

the interesting results concern the groups Ki(A) . In section 6 we prove the formulas
-1 o
ki(a) = kialt]) , x[sT]D) = g ek (4)

for A noetherian, which entail the corresponding results for K-groups when A is
regular. The first forpula is proved more generally for a claas of rings with increasing
filtration, including soms interesting non-commutative rings such as universal enveloping
algebras. To illustrate the generality, the K-groups of certain skew fields are computed.
For a scheme (resp. noetherian) acheme X, the groups Ki(XJ (resp. Ki(x) ) are
defined using the category of vector bundles (resp. coherent sheaves) on X, and thers is
2 canonical map xi(x) —_ Ki(X) which is an isomorphism for X Tegular. Section 7 is
devoted to the X'-theory. Cspecially interesting is m spectral sequence .
P - _l__j_x 1)) = K (%) B
cod(x) =p .
obtained by filtering the category of coherent sheaves according to the codimension of the '
support. In the case where X is regular and of finite type over a field, we carry out a
program proposed by Gersten at this conference ([Gersten 3]), which leads to & proof of
Bloch's formula

FX) = B, K (gr)

proved by Bloch in particular cases ([Bloch]), where AP(X) is the group of codimension
P cycles modulo linear equivalence., One noteworthy feature of this formula is that the
right side is clearly contravariant in X, which suggesis rather strongly that higher
K-theory might eventually provide a theory of the Chow ring for non-quasi-projective

regular varleties.

Section 8 contains the computation of the K-groups of the projective bundle
associated to a vector bundle over a scheme. This result generalizes the computation of
the Grothendieck groups given in [SGA 6], and it may be viewed as a first step toward &
higher X-theory for‘schemes. as opposed to the K'-theory of the preceding section. The |
proof, different from the one in [SGA 6], is based on the existence of canonical
resolutions for regular sheaves on projective space, which may be of some indspendent
interest., The method alsc permits one to determine the K-groups of a Severi—Brauer”
scheme in terms of the K-groups of the associated Azumays algebra and its powers.

This paper contains proofs of all of the results announced in [huillen 1]. except fvﬂ
Theorem 1 of that paper, which asserts that the groups Ki(A) here agree with those
obtained by making BGL{A) into an H-space (see [Gersten 5]). From a logical point “E@

used there a few times. However, I recently discovered that the ideas involved itBHPioqt
could be applied to prove the expected generalization of the localization theorem and



fundamentsl theorem for non-regular rings [Baas. p.494,663:l. These results will appear
“ 4p the mext installment of this theory.
The proofes of Theorems A and B given in section 1 owe & great deal t{v conversatioms

with Greeme Segal, to whom I am very grateful. Ome can derive these results in at least

two other ways, using cohomology end the Wnitehesd theorem ss in [Friedlender|, emd slso -
by means of the theory of minimal fibrations of eimplicial sets. The present approach,

pased on the Dold=-Thom theory of quasi-fibratione, is quite a bit{ shorter than the others, oy
although it is not as clear as I would have liked, since the main points are in the |
references, OSomeday these ideas will undoubiedly be incorporated into a general homotopy :
theory for topei.

This paper was prepared ;tith the editor's encouragement during the first two mohtha
of 1973. I mention this because the resulis in [7 on Gersten's conjecture and Bloch's
formils, which were discovered at this time, directly affect the papers [Gerstan 2, 4]
and [Bloch] in this procedings, which were prepared earlier,
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Bl« The cia.aaifying space of a mmall category

In the succeeding sections of thie paper K-groups will be defined as the homotopy

groups of the classifying space of & certmin smull category: In-this—rather-long-section
we collect together the various facts about the classifying space functor we will need.
A1l of these are fairly well-known, except for the important Theorem B which identifies
the homotopy-fibre of the map of claeasifying spaces lnduced by & functor under suitable
conditions. It will later be used to derive long exact sequences in K-theory from the

homotopy exact sequence of & map.

Let ¢ be a small category. Its perve, denoted NC , is the (semi-)simplicial set
whose p-simplices are the diagrams in C of the form
xo —rx1 —_— s ),
The i-th face {resp, degeneracy) of this simplex ie obtained by deleting the object X N
(resp. replacing Xy by dd 2 X e xi) in the evident way. The classifying space of C,
denoted I, is the geometric realization of NC. It is a CW -complex whose p-cells are

in one-one correspondence with the p-simplices of the nerve which are nondegenerate, i.e.
such that none of the arrowe is an identity map. (See [Segal 1],[Milnor 1].)

For example, let J be & (pgrtially) crdered set regarded ss & category in the ususl .
wey. Then RJ is the simplicial complex {with the weak topology) whose vertices are the
elements of J and wheose simplices are thé totally ordered non-empty finite subsete of J.
Conversely, if XK is a simlalicié.l complex and if J 1s the ordered set of simplices of
K, then the eimplicinsl complex BJ is the baryceniric subdivision of K. Thus every
simpliciel complex {with the weak topology) is homeomorphic to the classifying space of
some, and in fact many, ordered sets. Furthermore, since it is known that any oW complex
is homotopy equivalent to a simplicial complex, it follows that any.linteresting homotopy
type is realized as thé classifying space of an ordered set. (I am grateful to Graeme '
Segal for bringing these remarks o my attention,)

As anoiher example, let s group G be regarded as & category with one object in the
usugl way. Then BG is a classifying space for the discrete group G in the traditional
sense, It is an Eilenberg-Maclane space of type‘ K(G,1), so few homotopy types oceur in
this way. ‘

let X be an object of C. Using X to denote also the corresponding O-cell of
E;, we have & family of homotopy groups ui(BE,X). 1>0, which will be called the homotopy
groups of ¢ with basepoint X and denoted simply (C , X}, 0Of course, ro(g.}{) is not
a group, tut a pointed set, which can be described as the set AN C of components of the
category C pointed by the component conteining X. Im effect, con.nected components of
B are in one-one correspondence with components of C. :

¥e will see below that m, (C X) and also the hunology groups of EC can be ‘defined
"algebraically"” without the use of spaces or sume cloeely related machine auch a5 semi-~
gimplicial homotopy theory, or simplicial complexes and subdivision. The ezistence of
eimilar descriptions of the higher homotopy groups seems to be unlikely, because so far
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nobody has produced an "algebraic" definition of the homotopy groups of a simpllcia.l

complex.

Coverings of BC and the fundamental group.
Let E be a covering space of EC. For any object X of C, let E(X) denote the

fibre of E over X cnnaidered: as & O-cell of B. If a: X — X' i 2 map in C, it

determines a path from X to X' in BC, and hence gives rise to a bijection E(u): B(X)
=y E(X'). It is easy to see that E{(fg) = E(£)E(g), hence in this way we obtain a functor
X+ E(X) from C to Sets which is morphism-inverting, that is, it cerries arrows into

Sl e

isomorphisms,

Conversely, given F : S_"" Sets, let F\g_- denote the category of pairs (X,x)
with X in ¢ and x € F(X), in which a morphism (X,x) == (X',x') is amap u: X—X'
such that F(u)x = x*, The forgetful functor F\E.‘= -» { induces a map of classifying
spaces B(F\ C) ~>BC having the fibre F(X} over X for each object X. Using
[Gabriel—Zisma.n. App.I, 3.2] it is not difficult to see that when F is morphism—inver-
ting, the map B(F\C)-—rm is locally trivial, and hence B(F\C is a covering space
of BEC. It is clear that the two procedurgs just described are inverse to each other,

seomiigia e g

whence we have an eguivalence of c-ategorias

(Coverings of Bg) = (Morph.-inv, F : C —+ Sets)

where the latter denotes the full subcategory of Fu.nct(c Seta), tha category of functers
from C to Sets, cons:.sting of the moruhmm-—mverting functors.
Let G = ¢ [A:'C} 1] denote the groupoid obtained from C by formally a.daoinmg

the inverssa of all the arrows [Gabriel-Zisman, I, 1.1] » The canonical functor from ¢

to G induces an equivalence of categories .

Funct(g, Sets) = (Morph.-inv. F : ¢ — Seta)
(loc.cit., I, 1.2). Let X be an object of C and let G, be the group of its suto- ;
merphisms as an object of E_ When C is connected, the inclusion functor GX. -G is

an equivalence of categories, hence one has an egquivalence
Fu.uct(g», Sets) s F‘\mct(GI, Sets) = (Gx-sets)._
Therefore by combining the above equivalences, we obtain an equivelence of categories of
the category of coverings of BG with the category of Gx—aets given by the functor
E t» E(X). By the theory of covering spaces this implies that there is a canonical iso—
morphism? 1(2,1) - Cix The same concluaion holds when g is not connected, as both
groups depend only on the component of E, containing X. Thus we have established 1_1110
following. . ‘
Propogition 1, The category of covering ng spaces of BC is canonicslly equivalsnt %o
the category of morphism-inverting functors F : C — Sets, or what amounts to the ‘samé ‘
thing, the category Funct(G, Sets), where G c [(m) ‘_] is the groupoid obtained.'!.
formally inverting the arrows of C. The fundamental group =, (C,X) is canopically’ . il
iscmorphic to the group of automorphisms of X as an object of the groupcid G.

may be identified with the morphism-inverting functor X =» L(X) from  to abelian EZV7 ]

.1
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The homology of 2
It is well-known that the homology and cohomology of the classifying apece of a dis-

cnuﬁgmup,coincide_ui:th_;_hg_bo_m;gg and cohomology of the group in the sense of homo-

logical algebra. We nowv describe the generalizetion of this fact for an erbitrary smsll
category. ;

Let A be a functor from C to Ab, the category of sbelian groups, and let
np(g ,A) denote the homclogy of the simpliciel abelian group

e eh) = L1 ax)

F Xgmr. Xy
of chaing on Ng vith coefficients in A. (By the homology we mean the homology of the
zasociated normalized chein cmplex.)c Then there mre canonical isomorphisms
. By(C4) = Lz (4)
wheTe ]_'H: denotes the left derived functors of the right exact functor iim from
I'\mct(g,Ab) to Ab. This is proved by showing that 4 - H,(E.A) ig an exact D=functor
which coincides with '.1_._13 in degree zero and ie effaceable in positive degrees. (See
[Gabriel-zisman, App.1I, 3.3].)
Lat ZE,(B{;..L) denote the singular homology of EC with coefficients in a local
cosfficient system L. Then there are canonical isomorphisms
B(2C,1) = H(C,I) | |
where we identify L with a worphism-inverting funcior as sbove., This mey be proved by
filtering the CW complex Bg by means-of its skelets and considering the associmted
1 . 0 for g# 0 and Elo = the normalized chain com—
plex ssaccisted to C,(E,L). (Compare [_Segal 1, 5.1].) The spectral sequence degenerates
yielding the desé.red iscmorphism.
.Thus we have e
(1) B,(3,1) = lm (1)

gpectral sequence., One haa "E

and similarly we have & canonical isomorphism for cohomology
P ‘= mP
(2) . #P(xc,1) }_i_gxg(la)

where l:Lma denotes the right derived functors of the left exact functor lim from
q_—_ . e

I'\mct(g,u) to  Ab.

ProErtiea of the claaéifx:_u_tﬁ' space functor.

From now on we use the letters g, g ', etz, to denote small categories. If
f: g-h-g__‘ is & functer, it induces a cell_ular map Bf : Ké '*BE"' In this way we
obtain B feithful functor from the category of small categories to the category of CW
conplexes and cellular maps. This functor is of course not fully faithful. As a particu-
larly interesting exsmple, we note that there is an obvious canomicel cellular homeo-
morphism l l
(3) K = x°

-where go is the dual category, which is not realized by s functor from g to ED

‘'except in very special cases, e.g. groups,
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- valence of classifying apaces, and that a category is contractible if its classifying

indexed by I.

By the compaetibility of geometric realization with products [Milnor 1] y One knows {.
that the canonical map , ,:
(4) B(E x _g_') —> B x . i
is a homeomorphism if either B¢ or BC' is a finite complex, and also if the
product is given the compa.ctljr ;enerated topology. As pointed out in [Saga.l 1], this
implies the following. '

. Proposition 2, A natural transformation ® ¢ f =3 g of functors from C to C
induces a homotopy Bg rl —~ Bg' between Bf and Bg.

In effect, the tripla (f,2,8) can be viewed as a functor C=: 1l — g'. whera 1
is the ordered set {0<1}, and BT is the unit interval.

We will say that a functor is a homotopy equivelence if it induces a homotopy equi-

space is,
Corollary 1. If a functor f{ has sither a left or a right adjoint, then f is a
homotopy equivalence.
For if f£' 4ia say laft.adjoint to f, then there mre natural transformsationa
f'f = id, id == ff', whence Bf' is a homotopy inverse for Bf. .]‘
Corollary 2. 4 catggory having either an initial or a final object is contractible,
For then the functor from the category to the punctual category has an sdjoint.

let I Dbe a small category which is filtering (= non-empty + directsd E Bass, p.4-1])
and let i C be a functor from I to =small categories. Let C _he the inductive _
limit of the Ci, because filtered inductive limits commute with finite projective limits,
we have ObC = lim Obf,, ATC = lim ArC., and more geperally NC = lm HC . Let X, &

= — =1 = — =i i
Obg_i be a family of objecta such that for every arrow i —1' in I tha induced
functeor 51 - g_i, carries xi to Xi, , whence we have an inductive system ™, i’x )

Propogition 3. If X 4isg the common image of the Xi in C_!, then
iz = (C ) = (C X). ’
Proof. Because I im filtanng and NC = lim NC s it follows that any aimplicial
subset of NC with a finite number of nondegenerate simplices lifts to NC 4 for some
i, and meoreover the lifting ig unique up to enlarging the index i in the evideni aenu-‘:
As every compact subset of a CW complex is contained in a finite subcomplex, we sec thl
every compact subset of B 1ifts to Bgi for some i, uniquely up to enlarging i-
propesition follows easily from this. _
Corollary 1. Suppose in addition that for every arrow 1 — i' in I _El_a_Lin__é___
funetor C - Gy is a homotopy eguivalence. Then the functor gi -ig is & hamotb. _
equiva.lence for each i. '

Proof. Replacing I by the cofinal category i\I of objects under i, we can
suppose 1 is the initial object of I. It then follows from the proposition thatw
map of CW complexes Bg_i =~ BC induces isomorphisms on homotopy. Hence it is a

'

homotopy equivalence by a well-known theorem of Whitehead.



Corollary 2. Any filtering category is contractible,
In effect, I is the inductive limit of the functor 1 j» I/i , and the category
I/4 of objects over i hms s final object, hence is contractible.

_Sﬁ‘ficiént conditions for & functor to be 5 homotopy equivalence-

Let f :C —»C' be a functor and denote objects of E w X, X;. etc, and objects of
E,' by Y, ¥, ete. If Y 3im a fixed object of g'. let I\ { depote the category con-
giBting of pairs (X,v) with v : Y == fX, in vhich a worphism from (X,'v) to (X',v')
isamap w: X —X' puch that f{w)v = v'. In particular, when f is the identity
functor of C', we obtain the category Y\C' of objects under Y. Similarly ome defines
the category £/Y consisting of pairs (X,u) with u : fX =Y, .

Theorsm-A. If the category Y\f 4is contractible for every object I of C', then
the functor { is & homotopy equivalence.

In view of (3), this result admits a dual formulation to the effect that f is a
homotopy equivalence when all of the categories i‘/‘i gre contraciible.

Example. let g : K =» K' be s simplicisl map of simplicial complexss, and let
f:J—J' be the induced map of ordered sets of simplices in K and X', 8o that ¢
is homeomorphic to Bf, If & denotes the element of J' corresponding to a simpler o
of K', then f£/T is the ordered set of simplices in 3—1(0'). ‘In this situation the
theorem szyse that a simplicizl map is & homotopy equivalence when the inverse image of
each (closed) simplex is contractible.

Befors proving the theorem we derive a coxollary. First-we recell the definition of
fibred and cofibred categories [SGA 1, Exp. VI] in a suitable form. let f '(Y) denote
the fibre of f over Y, that is, the subcategory of g whose arrows are those mapped to
the identity of Y by f: It is easily seen thet f makes C a prefibrad c&tegcgr over
C* in the sense of Joc.cit. if and only if for every object Y of C' the functor

£ (1) — T\T , X (%, 14)) |
hee & right adjoint. Denoting the adjoint gy (X,v) b= v*X, we obtain for any map
v:Ye=Y ufunctor : '
o vt f"(!") —— f'1(Y)
determined up to canonical isomorphism, called base-change by v, The prefibred category
C over C' is a fibred category if for every pair u,v of composable arrows in C's the
canonical morphism of functors urvE - (w.)* is an isomorphism, We will eall such
functors f prefibred and fibred respectively. _ '

Dually, f makes C into a precofibred category over (' when the functors
f"'“(!) — /Y have lef: adjoints (X,v) F>-v,X. In this case the functor v,: f-1(Y) —
f-1 (¥') induced by v.: Y = Y' is called cobase-change by v, and € ie a cofibred
category when (vu), S»v,u, for all composable u,v. Such functors f will be celled

precofibred and cofibred reaspectively.
Corollary. Suppose that f i either prefibred or precofibred, and that f-‘(Y) is

contractible for every Y. Then f is s homotopy equivalence,
This follows from Prop. 2, Cor. 1. .
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which a morphiem from u ¢ X — Y to u': X' = ¥' isapair v: X' =X, wt Y ~T1

86 10 .j

Example. Let S(g) be the category whose objects are the arrows of C , and in

such that u' = wuv. (Thus S(g) is the cofibred category over gﬁxg with diacrete
fibres defined by the fumctor (X,Y) }—» Hom(X,Y).) Ome has functors
20 «—2— 5(g) ——>¢

given by sourca and target, and it ie easay to see that these functors are cofibred. The
categories 5-1(x) = X\g__ and £ (¥) = (g/Y)O have initial objects, hence are contrac-
tible. Thereforse s and t are homotopy equivalences by the corollary. This conatrue-
tion provides the simplest way of realizing by meana of functors the homotopy eﬁu.iva.lence
{3). .

We now turn to the proof of Theorem A. We will need a standard fact about the
reaiization of biaimplicial spacea which we now derive.

Let Ord be the category of ordered sets p ={0<1< ..<’p} pelﬂ so that by
definition simplicial -ohjects are functors with domain Ord » The realization functor

(PraX) b 2o |

from simplicial spaces to spaces ([Segal 1]) may be defined as the functor left adjoint
to the functor which associates to a space Y the simplicial space p -+ Hom(APF, 1},
;there Hom denotes function space and AP is the simplex having P a8 its set of
vertices. In particular the realization functor commitea with induective limita.

Let T:p,q }-—)-‘I‘Pq be a bisimpliciml space, i.e. a functor from 0;@%9_55°
to apaces. Realizing with respect to 4q keeping p fixed, we cobtain a simplicial space
P lq = qu] which may then be realized with respect to p . Also, we may realize
first in the p-direction and than in the gedirection, or we may realize the diagonal
simplicial space phsT . . It is well-known (e.g. [ Tornenave] ) that these three
procedures yield the same result:

Lomma, Thers are homeomorphisma ¢

IPHTPPI = ]pl-*lqi-r qun - ]al-c»]m-)'rpqll '
which are functorial in the aimplicial space T. '

Proof, Suppose first that T 1is of the fom

by |

h 3 : (p,a) b= Hom(p,r) x Hom(q,s) x 3

woerea 3 is a given space., Then .
Ip}-—-r- Hon(p,x) z Hom(p,s) x S) = A" A%zs.
(This is the basic homeomorphism used to prove thet geometric realization commutes vith
producta [lenor ‘l] ) On the other hand, we bave
lpwquHm(p.r)zHM(q--)rsn , It
=’p|—).ch(p,r :Sl = A ASZS i
and similarly for the double raaliza.tion taken in the other order. Thus the required
functorial homeomorphisms exist on the full subcategory of bisimplicial speces of this
form.




But eny T hses a canonical preaenta.tion

:_;_U_hx'r — T

(rv-) —’-(l",l.') (rv')

vhich i exast inthe~sense thatthe right-arrow-ie—the-cokernel-of—the-pair-of-arrows,
Since the three functors from bieimplicisl spaces to spaces wnder consideration commute
with inductive limits , the lemms follows.

Proof of Theorem A. Let S(f) be the category whose objecta are triples (I,Y,v)
with X an object of C and v :Y -3 fX amspin C', and in which a morphism from
(X,Y,v) to (X',Y¥',v') is a pair of arrowse u : X => X', v ¢ ¥' =Y such that
v' = flu)vw. (Thus S(f) 18 the cofibrelcategory over C x C'C defined by the i‘unctnr
(x,Y} > Hom(Y,fX),) Ve have functors

P2 Py
£'0 ¢—5— 5(f) ———>C
given by p,(X,Y,v) = x, pz(x Y,v) =Y.
Let T{f) be the bisimplicial set such that an element of T(f) is a pair of
diagrans - '
(Yp ﬁ--. "‘-’Yo —r HD ¥ xn _’ ars -‘*xq)
in E' and E respectively, and such that the j-th face in the p-(resp. g-)direction
deletes the object Yi in the obvious way. Forgetting the first component gives

a pap of bisimpliciml sets
*) T(f NC
() (£), —>

(resp Xi)

where the latter is constant in the p-direction, Since the dimgonal simplicial set of

T(f) is the nerve of the category 5(f), it is clear thet the realization of (*) is the
map Bp, 1 BS(f) —» K . (By the realization of a bisimplicisl set we mean the space
described in the above lemms, where the bisimpliciasl met is regarded as a bisimplicial
space in the obvious way.) On the other hand,'raalizing (*) with respect to p gives
a map of simplicisl spaces

1l BgY/1x )0 —— _LL pt = M

X -+..-,xq - X -h..—rx

which is a homotopy equivalence for each q because the category C'/fX has & finsl
object. Applying & basic result of May and Tornehave [Tornehave, A. 3] , or the lemma
below (Th. B), we see the reslization of (*) is a homotopﬁ equivalence. Thus the
-fun;tor Py ia a homotopy equivalence.

SimilaTly there is a map of bisimplicial sets T(f) - - H(g'°)p whose realization
is the map sz : BS(f) —p BC'O . Reslizing with respect to g, we obfain & map of
simplicial spaces

(»+) _U_ B(r\f) — Al o - g,

XD"— . -Q"‘Yp . o"_ . .‘-YP —

vhich is a bomotopy equivalence for each p, because the categories Y‘\f are contrac-
tible by hypothesis. Thus we conclude that the functor P, i= & homotopy eguivalence,
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But we have a commutative diagram of categories

P P

/
L il lt" lr
| P; Py

gio‘-_____ S(idc.) -—-_"E'

R

P,

T e

e A

wvhere £'(X,Y¥,v) = (£X,¥,v). The horizontal arrows are homotopy equivalences by what has
been proved, (note that Y\ 1d.c, = Y\E ' 4is contractible as it has an initial object).
= . !

Tmms f is a homotopy equivelence, whence the theorem.

The exact homotugl sequence.

Let g : E~+B be amap of topological spaces and let b be a poinf of B, The

SRy

O TR et
RAE ISt i el

o

e

homotopy-fibre of £ over b is the space
I
Mgb) = Exgp zbe} |
consisting of pairs (e,p) with e a point of E and p a path joining g(e) eand b,
For any & in 5'1(‘9) one has the exact homotopy séguence of g with basepoint e
(B,b) — =, (F(g,b), 8) — =, (E,a) —E =, (B,b) —..

L

gL

Bt o =L T e

ﬂi+1

where & = {e,b), D denoting the constant path at b. _

Let f :C ~>C' be a functor and Y an object of C'. If § : YNf —+C is the }
functor sending (X,v : Y =» fX) %o X, then (X,v)}>v : ¥~ £X 4is a natural trans- ¥l
formation from the constant functor with value Y to fj. Hence by Prop. 2 the compeosite ?
B(Y\f) -5 BC = BC' contracts canonically to the constant map with image Y, and so we

obtain a canonical map 1
B(Y\f) —a P(Bf, Y).

We want to know when this map is a hqmotof:y aquivalence, for then we have an exact
sequence relating the homotopy groups of the categories Y\f, C and ('. Since the
homotopy~{ibres of a map over points comnnected by a path are homotépy e;uivalant, it is
clearly necessary in order for the above map to be a homotopy equivalenmce for all Y, that
the functor Y'\ f = T\f , (X,7) j>(X,vu) induced by u : Y —Y' be a homotopy
equivalence for every map u in C'. We are going to show the converse is true.
Because homotopy~fibres are not classifying spaceas of categories, and hance are some—
what removed from what we ultimately will work with, it is convenient to formulate things

in terma of hmotapy-carte_aia.n squarea, Recall that a commutative square of spaces

s'l lg
B! _..-}l-——p B

is called homotopy-cartesian if the map
: B! e—n B I3 BI s E, 9"‘—1" (g'(e'), Bg™(HVJ, n'(a'))

1 from E' +to the homotopy-fibre-product of h and g is e homotopy equivalence.




woen B' is cortractible, the ma.p F(g'yb') —» E' is a homotopy equivslence for any b’
in 3B', hence one has & map E' —» Fg,b (! )) unique up to homotopy. In thie case the
square is easily seen to be homotoPy-cartesian if and only if B'— F(g. hib')) is e

homotopy egquivalenoe,
4 commutative square of categories will be called homotopy—cartesian if the corres-
. ponding square of classifying spaces is. With this terminology we have the following
generaligation of Theorem A. ,
Theorem B, let £ :( —+ 9__‘ be a functor such that for every arrow ¥ — Y' in

', the induced functor Y'\f —s Y\ 4is = homotopy equivalence. Then for any object

c
=
Y of C' the cartesian eguare of categories

T\t —2— ¢ Xy = X
f'l . f £ (X,v) = (fX,v)
T\g' —b— T $1(x,v) =

is homotopy—cartesian. Consequently for any X in £ Y) we have an exsct sequence

— 80 T) ——r (x\f, X) --—H: (€,x) _----,w (Cr1) —>

where X = (x,id.!).
As with Theorem A, this result admits a dual formulation with the categories £/Y.
Corollary. Suppose f : C — C' is prefibred (resp. precofibred) and that for every

7/ -
aTTOW U : ¥ —» Y' the ‘baae—change functor u*: § 1(Y' — i‘ (Y (resp. the cobase-
change functor wu,: ) (Y) — £ Yy )} ie & homotopy equivalence. Then for any Y in

E‘. the cutegory fil(Y) is homotopy ecuivalent to the homotopy~fibre of £ over VY.

{Precisely, the sguars

=y —2 ¢
l It
rt —Y——)' cr

where i is the inclusion functor, is bomotopy-cartesian.) Conseguently for any X

15

£ (Y¥) we have an exact homotopy seguence

-

(€0 1) — = (THD,E) R () T = (5 T) —

i+1'=
This is clear, since I~ (Y) — Y\i‘ is = homotopy equivalence for prefi’bred T.
‘For the proof of the theorem we willl need = lemmﬁ. based on the theory of quasi-fibre-
tions [_Dold—Laahoi‘_] , which is a specisl case of a general result about the realization
of a map of eimplicial spaeces [Sega.l 2 J 4 quasi-fibration is amap g : E —=B of
apaces such that the canonical map g (b) ~a P{g,b) induces isomorphisms on homotopy
for all b in B. When E, B are in the class ¥ of spaces having the homotopy type of
a CW complex, cne knows from [Hilnor 2] that P(g,b ) is in ¥. Thus if 5-1 (p) is
elso in ¥, and g is a quasi—fihration,we have that g (b) - F(g,b) is a homotopy

equivelence, i.e. the aquare

e

57

&

o



g (b) —tr &

__is homgtopy-certesian,
Llemma. Let 1l X be a functor from a amall cate_go::y I to to;:olggica.l spaces,

and let g : XI -3 BI be the space over BI obtained by realizing the simplicial apace

pes Xi - Xi, is a homotopy equivalence for every arrow i — 4' in I, then g is s

guasi-fibration.

Proof. It suffices by Lemms 1.5 of LDold.-—La.shof] to show thatthe restriction of g
to the p-skeleton FP of BI is & quasi-fibratiom for all p. We have a map: of

cocartesian squares

oy = o 11z, < IAP C_U_xixAP .

o ]
| Lo A
P, o< F EE ) < &)
where the dlsjoint unions are taken over the nondegenerated p-simplices i’o T :Lp of -
NI. Let U be the open set of FP obtained by removing the barycenters of the p-cellas,
and let V = Fp - Fp_.l + It suffices by Lemma 1.4 of loc. cif. to show the restrictions
of g %o U,V and UnV are quasi-fibrations, This is clear for.V and UAY, since
over each p-cell g 4is a product map.- ‘
We will apply Lemma 1..3 of loc. git. to g|U, assuming as we may by inductlion that
g]F is a quagi~-fibration, and using the evident fibre-preszerving deformation D of
IU into glFP_ provided by the radial deformation of AP minus barycenter onto 9 Ap. ;
¥We have only %o check that if D carries xEU into x' er 1 then the map g-1(x) - B
1(: ') induced by D dinduces isomorphisms of homotopy groups. Supposing x ¢ F as
we may, let x come from an interior point z of the copy of AP corrasp’onding to the
simpler s = (4 -b..—-a-ip). and let the radiml deformation push z into the open face of . 3‘
b

Ap with vertices _} < ..(J « Then it is easy to see that g (x) = Xi and g—i(x') "‘
o b

Xk s £ = id , and that the map in question is the one Ii -;-xk induced by the face
-] o :

10..-,. k of s. As these induced paps are homotopy equivalences by }&pothesis, the px'ci'i_!_fﬂT
of the lemma ia complete. '

ia a homotopy equivalence aa befors, but not necessarily the functor Pye The map ' %
Bp, ¢ BS(f)} = B(C'®) is the realization of the map (**), Thus applying the prece ot
lemma to the functor Y p+ B(Y\f) from c '® %o spaces, we see that Bp, is a quaai-
fibration, and hence the cartesian square o
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Y\f ————y 5(f)

e

Q
pt ——— '

& homotopy~cartesisn;—Consider-asow—the—diagram

T\r > 5(f) —D—n C
L @ e @ e

T\g'—5(idy ) —— ¢!

IO R

R e
in which the squares are cartesisn, and in which the eign '~~ ' denotes & homotopy
equivalence. Since the square (1) + {3) im homotopy-cartesian, it follows that (1) is
bomotopy-cartesian, hence (1) + (2) is also, whence the theorem.

. §2. The K_—Ernugs of an exact cnbégog

Eract categﬂc'aa Let X be an additive category which is embedded as & full sub-
category of an abelian category 4, and suppose that M is closed under extensions in A
in the sense that if an object ‘A of A has e subobject A' such that A' and A/A'
are isomorphic to objects of M, then A is iscmorphic to an object of M. let E be
the class of sequences B ' i .

1y 0 N VLI SN PR BT v

in E w.hich are exact in the sbelisn catégo:y é. We call a map in ¥ an admissible
monomorphism (resp. sdmissible epimorphism) if it occurs as the map i (resp. j) of some
member (1) of E. hdmissible monomorphisms and epimorphisms will sometimes be denoted
B jmp- B BNd M~y K", respectively.

The class E clearly enjoys the following properties:

a) Any sequence in M isomorphic to & sequence in E is in =F._:_ For any N',M" in
E, the segquence

(14,0) PTo

(2) 0 > N' >N e K"

- MM = O

is in E, For any ueqﬁonca (1) 40 E, i is & kernel for j and J is a cokernel for
i 4in the additive cetegory g.

b) The class of admissible epimorphisms is closed under composition and under bese--
change by arbitrary maps in ‘E. Dually, the clasas of mdmisaible monomorphisﬁs is closed
under composition and under c;bass-change by erbitrary mps in K.

¢) Let M ~»M" be a map possessing s kernel in M. If there exists a map K -p X
in Li such that N - M == M" is mn admigsible apmﬁfphism, then M — M" is an
admissible apimorphim.' Dually for admissible monomorphisms. '

For example, suppose given a sequence (i) in E andamsp £ : N -»N" in M,
Forn the disgram in 4

929
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where P is a fibre product of f and j in A, Because M is closed under exten-

i
i
J

g
3

¥

sions in A, we can suppose P 32 an object of E. Hence the basechangs of J by f

£

exists in M enditis an admissible epimorphism.

Definition. An exact category is an additive category E equipped with a family E
of sequences of the form (1), called the{short) exact sequences of M, such that the
properties &), b), ¢) hold. An exsct functor F : ﬁ—-’- fl_.:' between exact categories is
an additive functor carrying exasct sequences in !’4[l into exact sequences in ﬂ'.

Examples. Any abelian category is an exact category in an evident way. Any additive
category can be nade inte an exact category in at least one way by taking E to be the

R B et b i

family of split exact sequences (2). A category which is 'abelian' in the sense of

[{Beiler] is an exact category which is XKaroubian (i.e. every prbjector has an image), and

conversely. ' 2
Now sﬁppose given an axact category é.' Lat & be the additive category of additive

contravariant functors from M to abelian groups which are left exact, i.e. carry (1) to

an exact sequence

0 — F(M") ——» F(M} ——> F(M') .
(Precisaly, choose a universe containing Ll, and let A be the category of left exact
functora whosa values are abelian groups in the univars.) Following wll—hom ldeas
(e.g. [Gabrial] ), cne can prove A is an abelian category. that the Yoneda functor h

o s ALY, ol i

embeds M as a full subcategory of é closed under extansions, and finally that a
sequence (1) da in E if and only if h carries it into an exact sequence in é. The
details will be omitted, as they are not really imporiant for the sequel.

The catagog QLI .

i 1;1 is an exact category, we form a new category Qg having the same objects as
M but with morphisms defined in the following way. Let X and M be objects in ¥

and consider all diagrams

(3) N e Nt
vhere j d1is an admissible epimorphism and 4 i3 an admisaible monomorphism, We conaid.eri;
iscmorphisms of these diagrams which induce the identity on ¥ and M', such isomorphisms’

definition an iscmorphism class of these diagrams. Given a morphism from M' to M"
represented by the diagram |

Hl«_ J' Nl)_ii'js__uﬂ

the composition of this mbrphiam with the morphism from M +to M' represented by (3}
is the morphism represented by the pair ,]'-pr.l v :1.'-pr2 in the diagram



1/

Pr i
2 i . Mn

NzM,N": -y N

pr1i | _ is'
H)—-—i—'—"nl

2}

M
It is clear that composition is well-defined and amsocistive. Thus when the iscmorphism
clesses of d.iagré.ms (3) form & set (e.g. if every object of E has a met of pubobjects)
then QM i& & vell~defined category, We assume this to be the case from now on,

It is useful to describe the‘p-recding construction using admissible sub- and
. guotient objecte. By an admissible subobject of M we will mean an ismorpﬁim class of
admiesible monomorphisms N'j=—p N, iaomorﬁhiam ‘being understocd as isomorphism of objects
over M. Admissible subobjectz are in one-one correspondence with sdmissible guotient
objects defined in the analogous way. The admizsible subobjects of M form an ordersd set
with the ordering: H1( M2 if the unique map M1 -¢-M2 over M is an admissible mono-
morphism. ¥When !11s MZ' vwe call (H1 ..Mz) an admissible layer of M, and we call the
cokernel le,/l'l1 an admissible subquotient of M.

With this terminology, it is clear that & morphism from M to MN' in QM may be
jdentified with a peir '((m1,m2)
ilpmorphiam @ : N !'12/1\'1.j . Composition is the obvicus way of combining an isomorphism
of M with &an mdmissivle subquotient of M' and an isomorphism of M' with an sdmis-

, 8) consisting of an admissible layer in M' &nd an

sible subgquotient of - M" 1o get an isomorphism of M with an sdmissible subquotient of
A

For example, thé morphisms from O t0 ¥ in Qj;l are in one-one correspondence with
the admissible subobjects of ). Isomorphisms from M to M' in le are the same as
iscmorphisms from M to MN' in l;i .

If 1 : K >=p ¥ is an admissible monomorphism, then it gives rise to a morphiamm
from M' to M in QM which will be denocted

i, : B ~—= M.

Such morphisms will be called injective. Similarly, an admissible epimorphism j.: H—3#N"

gives rige to a morphiam
1

JP N M
and these marphisms will be called surjective., By definition, any morphism u in QM
' e S ————— ==
can be factored u = i,j', and this factorizamtion is unique up to unigque isomorphism.

If we form the bicartesian aquare

(4) 3 . l o -

N .
ther u = J''i';, , and this injective-Tollowed-by-surjective factorization is also unique
up to unigue isomorphiesm, A map whiech is both injective and surjective is an isomorphism,

101
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and it is of thé form @ = (9-1)! for a unique isomorphism & in M. 4
Injective and surjective maps in Qg should not be confused with monowmorphisms and

. _ epimorphisma in the categorical semse, Indeed, every morphism in QN ia a monomorphiam. 'i
' In fact, the category QI__@ / K a8 easily seen to be equivalent to the ordered set of ad-
"~ miseible layers in M with the ordering: ‘(no,n1) é'(u‘;,n{) i MISM SM cHI.
We can use the operations i +i, aud j k> J to characterize the category QM
by a universal property. First we not; that these aperations have the following
properties: " . '
a) If i and 4i' are composabla admissible moncmorphisms, then (i'i)z =1'4, .

Dually, if j and Jj' are composable admissible epimorphisms than
(13 =33t mso (1a), = (44,) = 4a, .

) If (4) ie a bicartesian square in woich the horizental {resp. vertical)maps
are admissible moncmorphiams (resp. epimorphisma), than ;L,j! = ;j'!i', .

Now suppose given a cétegory g and for mach object .H of E an object hM of
C,and for each % : M' =+ M (reep. j : M —»H¥") amap i, s IM' — hH
(reap. j! : hM* — hM) such that the properties a), b) hold. Then it is clear that
this data induces a unique functor Q¥ —C , M >rIM compatible with the operations
i ippdi, and j tr j' in the two categories. ' '
' I::z particular, an exact functor F : ¥ —rM' betweun exact categories induces a
functor QM-+ QU', N =>PH, 4, H(Fi), v 3 ;-;-(F,;) . We note also that if MO is
the dua! exact category, then we have an isomorphism of categories

:“';..;.
il
E
1
o'
ol
)
b
1
diy
g
L
iH
Gl
i
4t
"
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(5) Q(Ho) = oM

such that the injective arrows in the former correspond to surjective arrows in the latter
and conversely. . .
The funda.mental_group of Qﬂ. Suppose now that is a small exact category, =0

that the clasaifying space B(Qg} is 4efined, Let O be a glven zZero object of Ii .
Theorem 1, The fundamental group n1(B(Q§), 0) is canomically isomorphic to the

Grothendieck group K I'l .
, Proof, The Grothendiecl: group is by definition the abella.n group with opne generator ;
: [M] for each object M of M and one relation [M] [M ”M"] for each exact sequenca i

: ' (1} in M . Ve note that it could alsoc be defined as the not-necessarily-abelian group
"with the same genergtors and relations, because the relations LH _][l‘l"] = [M' @ Ny =
LM"][M] force the group to be abelian,
According to Prop. 1, the category of covering spaces of B(Qﬂ) is equivalent to the
category F of morphimm-inverting functors F : QM - Sets. It suffices therefore to
~show the group KGE acts naturally on F(Q) for F in F‘ ., and that the resulting fune-"
tor from E to KOI’{[ - 8sts is an eguivalence of categories. j
Let 4, : O>—4 M and $y ¢ M —»0 denote the obvious maps, and let F' be the p
full subcategory of ¥ consisting of F such that F(¥) = 7(0) and F{im) = idp(4)
for all M. Clearly any F is isomorphic to an object of g_'. so it suffices to show : :

[}
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F' i=s equivalent to KOE = petn.
Given & Kolj ~ set, 5, let FS : QM —» Sets be the functor defined by
= = t
FS(M) =5, Fs(i.) = idg FS(J') = matiplication by [Ker j] en 8,

using the universel property of QM . Clearly S h+-F5 is & functer from Koﬁ - sets to
F'. On the other hand if Fég'. then giver i ¢ M'y>=»M we have i-:LM, = iM » hence
F(i,) = idF(O)' Given the exact segquence

(NG S T R Y
we have J'!im! = 1!:;KE, , hence F(j') = F(JH!.) € aut(F(0}). Also
Fay') = Pl3'age) = P30 )R(50)

so by the universal property of KQE y there ie s unique group‘homomorphism from KOE to
Aut(?{0)} such that [MJ|-+ F(jé). Thus we have & natural action of KK on F{0) for
any F 4n F'. In fact, it is clear that the resulting functor F |} PF(0) from F' to
KDE - sets 18 an isomorphiem of categories with inverse 3 F#-FS + 80 the proof of the
theorem is-complete.

Eéﬁgzz K'EEEEE-' The sbove theorem offers some motivation for the following
definition of K-groups for a small exact category § .

Definition. KX = um(n(qg__l),o) .

Note first of all that the K«groups are independent of the choice of the zero object
0. Indeed, given another zerec object O', there ie & unigue map 0 —+ 0' in Qﬂ , hence
there is a caponical path from O to 0' in the classifying space.

Secondly we note that the precediqg,definitibn extends to exact categories having a
set of isomorphism c¢lmsses of ubjecfs. We define K. M to be 'Kig', where M' is & emall

i=
subcategory equivalent to E , the choice of H' being irrelevant by Prop. 2. From now on

we will only consider exsct categories whose isomorphism classes form e set, except when
mentiocoed otherwise. In addition, when we apply the results of g1, it will be taditly

agsaumed that we have raplaced any large exact category by an equivalent small one,

Elementary properties of"K—ErouE » An exact functor I : § - E' induces a functor
M = QM', and hence a homomorphiem of K-groups which will be denoted

(6) f, t KM K H .
In this way Ki becomes s functor from exact categories and exact functors to abelismn

groups, MNoreover, isomorphic functors induce the same map on K-groups by Prop. 2. From
(5) we have C

. . ' o
(7) K (¥°) = KX,
The product ﬂ x g' of two exact categories is an exact category in which a sequence

is exmct when its projections in M end M' are. Clearly QM x ﬂ') = Q¥x Q'. Since
thq clasai:ying epace functor is compatible with products (§1. (4)), we have

(&) KMxk) & LEOKMN , x> prlx) + pro(x) .

3
7
A
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;
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The functor @ : l;lz ﬁ ->§ , (M,M') 9 M@ H' 1is exact, so it induces a homomorphism
' @
KFeKy = K0zl —Sto K.
This map coincides with the zum in the abelian group Kiﬁ because the functors M =
0@K , Mks M®0 are iscmorphic to the identity. '
Let J kq»ﬂj be a functor from a amsll filtering category to exact'categorjes and

functors, and let Eiﬂ.gj be the inductive 1imi% of the Ej in the sense of Prop. 3.
Then E&E gj i8 an exact category in g natural wa?. and, Q(L&Q‘EJ) = lin QEJ ,

hence from Prop. 3 we obtaln an isomorphiam

() o KmE) = Ln KK,
Example. Let A be a ring with 1 and let E(A)' denote the additive category of

finitely generated projective (left) A-modules. We regard g(k) as an exact category in

which the exact sequences are those sequences which are exact in the category of‘all

A-modules, and we define the KX-groups of the ring 4 by

KA = Ki(g(a)).

A ring homomorphism A=~ A' induces an é;agt functor A‘GDA? : E(A)-qi E(A') which 1is

defined up to canonical isomorphism, hence it induces a well-defined homomorphism

e F

' T T e ‘
(10) (a'®, ?), : K,a =3 KA. 7
making KiA a covariant functor of A. From (8) we have 5%
. b

- F '

(11) Ki(AxA) = KA @ KA.

If jp=> Aj is a filtered inductive system of rings, we have from {9) an isomorphism
(12) : Ki(]_._ig Aj) = lin K4, . '
(To apply (9}, one replaces g(kj) by the equivalent category E(A )' whose objects are
the idempotent matrices over A, , so that P(lip Aj)"-: lin =P(AJ)‘. ) Finally we note ;
that P h»-HomA(P.A) i3 an equivalence of g(A) with the dual) category to E(Aop), whers,
A°? i the opposed ring to A, hence from (7) we get a canonical isomorphism

(13) Kk (4) = K (a%P) .

Remarks. It can be proved that the groups KiA defined here agree with those
defined by making BGL(A) into an H-gspace and taeking homotopy groups (see for example
[Geraten 5]). In particular, they coincide for i =1 , 2 with the groups defined vy
by Bass and Milnor, and with the K-groups computed for a finite field in [Quillen 2]
On the other hand, for a general exact category M , the group K1(§) i3 not the same as
the universal determinant group defined in [Basa, p.389]. There is a canonical homomo
phism from the universal determinant group to K1(§), but Gersten and Murthy have i
produced examples showing that it is neither surjective nor injective in general.




§3. Characterietic exact seguences and filtrations

Le‘t'_ I;l be an exact cstegory and regard the family E of short exact Bequences in M
as an additive category in the obvim way. We denote objects of E by E, E', etc, and
le¢t =&, tB, gf denote the sub-, to‘bai.'a.nd quotient objects of E, whence we have an

exact seguence

o) -+ ab » tE — qE > 0

in ¥ associated to each object E of E . A sequence in E will be cé.lled exact if it
gives rise to ihree exact sequences in 5 on applying s, t, and g. With this notion of
exactness, it is clear that E ip an exact category, and that B, t, and g are exsct
functors from E to Ll '

Theorem 2, The functor (B,q; @ QE —> Q¥ I Q¥ is & homotopy eguivslence,

(8,q)/(M,N} is contractible
for any given pa.ir M,N of objects of ﬂ «» Put E = (8,q)/(M,N); it 18 the fibred
category over QE consisting of triples (E,u,v), where u : 8E > M, v i qgE » N are
maps in QX . Let C' be the full subcategory of C consisting of the triples (E,u,v)
such thaet u is surjective, and let E.‘__“ be the full subcategory of triples such thet u

is gurjective and v imB injective.

Proof, 1t suffices by Theorem A to show the category

Lemma, The inclusion functors C' —»C mnd C"—aC' have left adjoints.

Consider first the inclusion of C'in C. let X = {E,u,v)€ C} it suffices to show
that there is & universel arrow X =+ X in C with X in C'.

1 i
let u=j'i, where i : gE>— M', j : X —» M', and define the exact sequence iE ?
by 'pushout': é
E : 0 - BE + tE - QE =——wp O ;
J0 1
i,E : 0 —— N » T » QE =—ms O . ’

t -
Let X = (i,E,) ,v); it belonge to C' and there is a canonical arrow X — X given by
the evident injective map E — 1 E .
|
Now suppose given X — X' with X' = (E',j' ,v'} in C'. Represent the map E—-E' ¥
by the pair E »— Eo’ E' e Eo . Since 8
‘N
8E y—p s <é— £E ' et X
represents u, we can suppose Eo chosen 8o that sE »—» sEo is the map i, and
M—-»an is J. Py the universal property of pushouts, the map E)— Eo factors
uniquely E > i,E)—> E_, so it is clesr that we have a map T~ X' 4in C' such that
X = X = X' is the given mep X =+ X',

It remains to show the uniqueness of the map X —» X*. Consider factorizations
X = X" —+ X' of X ~+ X' such that X" is in C'. FNote that /X' = QE/E' is equi-
valent to the ordered set of admissible layers in —E'. Let (Eo , E1) be the layer
correaponding to X =+ X' and (E; ,E;‘) the layer corresponding to X" ~» X' s0 that

o s TR TR
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'y }E4 (E" E") and sEY = sE'. There is a least such layer (Eg . E'{) given by.
tE; = tEo ' tE1 = sE' + t:E1  which is charscterized by the fact that the map E1/Eo -
Efl'/Eg is injective mnd induces an isomorphism on guotient objects. Thus among the
factorizations X — X" — X' __thers is a least one, unique up to cenonical isomorphism,
and characterized by the condition that E —4 E" should be injective and induce an isc-
morphism gF =3 gE". Since the factorization X — ¥ — X' has this property, it is
clear that the map X —+ X' is uniquely detarmined. Thus C' — C haa the left adjoint
L= X

Next consider the inclusion of C" in C', and let (E,u,v)EC'. Represent
vi:gE e N by the pair J : N' —ap gqE, 1 : N' »=3> N , and define -j*E by pull-baci:

0 ——bp 88 =——t T et X' e O

b

0 ==t ZE wmmey tE e QE = D,

One verifies by an argument essentially dual to the preceding cne that (E,u,v) p—
(j*E u.i ) is lef%t adjoint to the ineclusion of C" in E_:__'. This finishes the lemma,
By Prop. 2, Cor. 1, the categories C and C" are homotopy equivalent. Let '
(B,4 ,i Ve C", and lat jM M —%0 and :I.N O}-—-’N be the obvious maps. A map from
(0, Ju :,N,) to (:.,:J A, ) may be identified with an sdmissible subobaect E' of B &
such that sE' = 8B and QE' = 0. Clearly E' is unique, se (O ,JH :.N,) is an initial
object of g“. Thus (=2“. and hence g is contractible, which finishes the proof of the

theaorem.

Corollary 1. t M' and M Dbe exact categories and let

S R R B

Q0 m——i F' - F > > O

be an exact sequence of 8xact functors from M' to M. Then

Fo=m P+ F" Ki!;l' —_ Kig .
Proof. It clearly suffices to treat the case of the exact seguence
0 > 3 > & » q — 0
of functors from B to M. Let £ : Mx X ~»E De the exact functor sending (M M)

to the split exact sequence
O v M! wemmp M' B K" e M e
The functors tf and @ (s,q)f are isomorphic, hence

t i, = @*(Et'q&)r& = (8, + q,)f, ¢ (Kié)z‘—* K'i,!, .

But f, is a section of (s,,q,) : K,E —» (£,%)? which is an isomorphimm by the theores.
Thus t, = s, + q,, proving the corollary. '

Note that the category of functors from a category E to an exact category 5 is
an exact category in which a sequence of functors ia exact if it is pointwise exact, We
thus have the notion of an admissible filtratien O = Foc F1c ..c!‘n = F of a functor

F. This means that Fp-1 (X) = Fp(x) is an admissible monomorphimm in X for every ‘Iﬁ




4n C, and it implies that there exist quoﬂant functors F }:’/IE‘&1 for q¢p, determined up
-
to canonjcal isomorphism. It ia easily seen that if  is an exact cetegory, and if the

fibotors r;/rp_1 &7e exact for 1g psn, then all the quotients rp/rq are eract,

Corollary 2. (Additivity for 'characteristic' filtrations) let F: 1-4:' -» ¥ Dbe an
exsct functor betwsen exact cetegories equipped with an sdmisasible filtration O = Foc: .

CFn = F asuch that the quotient functors FP/FP“ are exact for 1¢p{e. Than

n .
=’ ' .
P, p (FP/FH), KM —— KM
p=i
Corollary 3. (Additivity for 'characteristic' exact sequences) If

0-—-—)-Fo—-~—)- ...'———)-Fn_—-—+0

ie an exact seguence of exact functors from Ig' to X, then

n
-1)F = : ' .
go( 1) (Fp)* q B — KN
These result from Cor. 1 by induction.

Azelications. Ve givé two simple examplee to illustrate the preceding results.

Let X be a ringed space, and put KX = xig(x). where P(X) is the category of
vector bundles on X, ({i.e. sheaves of gx-modulea which are locally direct factora of gxn)
equipped with the usual notion of exset sequence, Given E in P(X), we have an exact
functor E®? : P(X) — P(X) which induces a homoworphimm of K-groups (E&7),: KX >

xix. If Q=+ E' =3 E=p E" =3 0 is an exact sequence of vector bundles, then

Cor. 1 implies (E®?), = (E'®?), + (E"®7), . Thus we obtein products
(1) kX@QEX —> KX, [ex > (B87),x

which clearly make Kix into a medule over KOX. . { Products xix ®K jx - K iﬂ.x can

also be defined, but this requires more machinary, )

Graded rings. let 4 = 4 @4 & .. be a graded ring and denote by Egr(A) the
category of graded finitely generated projective A-modules P = @ P ,n€Z. The
group Ki(gsr(A)) is & Z[t.t-1]-module, where mﬁltiplication by t ds the automorphism
induced by the transiation functor P f» P(-1), P(~1 ).n =P -

Proposition, There is a Z [.t,t"U -module iscmorphism

-4
(7@, k4 % x(BexA) , 16x > (A@AO?)*:: .
 Proof. Given P in Pgr{a), let FP be the A-submodule of P generated by P
for n<k, and let gq be the full subcategory of ggr(A) consisting of those P for
which F_q_.lP = 0 and I"qP = P, We bave an exact funetor
T : Per(d) —> Per(4)) , ME) = 4@, P

vwhere Jto is considered as & graded ring cone'entra.ted in degree zero. It is kmown
([Ba.ss]. p.637) that P is non-canomically isomorphic to

4@, 7M7) = Ll aw)®, 2@, .

4] o o
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It follows that P HFkP is an exsct functor from gg'r(A) to itself, and that there is

a canonical isomorphism of exact functors

FnP/F P = A(-n)@AOT(P)n .

L

n=1

B
5

'-gi-.""

Applying Cor. 2 to the identity functor of _Pq and the f:i.l_tration 0= F—q—1C"CFq = id,
one sees that the homomorphism “ l%i'
f f t"®KA — KP , t"°®x > (4(-n)®, 7).z ke
1%0 T Migq . A L
-q¥ngq . [«] 'l‘-:-E
is an jsomorphism with inverse given by the map with components (Tn) «+ =4§0gq . Since
iy
&

Pgr(4) is the union of the gq , the proposition results from §2, (9).

§4. Reduction by resolution

~In this section M denctes an exact category with a set of isomorphism classes, and

P a full subcatagory cloged under extepsions in M in the senae that P contains a zero |

object and for any exsct sequence in M

1) O i ' e > M ——y O

if X' eand M" are isomorphic %0 objects of P, s0 is M. Sucha P is an exact
category where a sequence is exact if and only if it is exact in 5 . The category Qg is
a subcategory of QM which is not usually a full subcategery, as I;l-admisibla MONomOr-
phisms and epimorph:_Lsms need not be P-admissible. :

In the following, letters P, P', etc., will denote objects of _2 , and the symbols
>, => , £ will always refer to MN-admissible monomorphisms, epimorphisms and
subobjects, respectively. The corresponding P-admissible notions will be specified

P e o T e L e T i todad i
s SRR s D LR N i s e e T

explicitly. For example, P > P' denotes an M=-admissible monomorphism between twe
objects of P ; it is zﬂadmissible iff the cokernal is isomorphic to an object of 2 .
We are interested in showing that the inclusion of P in M induces lsomorphisms

LP = KM when every object M of M has a fimite P-rasolution:

(2) 0 > P P veree > P > M » 0 .
n : [+]

The standard proof for Ko consists in defining an inverse map K oﬂ — Kog by showing
Z (=1 )n[Pn]E Kog depends only on [M] » By Cor., 3 of the preceding mection, this method-_
works when thers exist resolutions (2) depending on M in an exact functorial fashiom.
However, thia situation cceurs rarely, sc we must proceed differently.

The following theorem handles the case where resolutions of length one exist,. As i
example, think of M as modules of .projective dimension £n, and £ as the subcategery ol '
modules of projective dimension < n. The general case follows by induction (see Cor. 1)

Theorem 3. Let{ g be a full subcatagory of an exact category M which is closed

under extensions and is such that

i) For any exact sequence (1), if M is in P, then M' is in P.
ii) For sny M" in M, there exists an exact sequence (1) with

M
Then the inclusion functor QF —» QM is s homotopy equivalence, so Kig = KM .




Proof. We factor QP —» QM into two inclusion functors
¢ —€+ ¢ ~F oy

T uliere "CTTie the full” subcategory of ~ QN ~with the same-objects-as-—WP-i— We-will- prove— -——--

Z and I are bomotopy equivalences.

To show g is & homotopy equivelence, it suffices by Theorem A to prove &/P is
contraétible for any object P in g . The category g/P ia emsily seen to be equi-
valent to the ordered set J of N-admissible layers (M_,M,) in P such that M,/M_€P,

t ] ] 1 1
vith the ordering (no.n1)-< {M!,!) 1ff M!SM <M <M} and mo/no . n1/n1 €P. By

1
nypothesis 1), one knows that ¥, end M are in P for every (MU,M1) in J. Hence
in J we have arrows

(M%) < (0,M,) ¥ (0,0)

vhich can be viewed ms natural transformations of functors frow J to J Jjoining the
funetor (MD.H1) > (O,H1) to the identity and to the constant functor with value (0,0).
Using Prop. 2, we see that J, hence g/P , is contractible, so g is a homotopy
equivalence, | ‘

To.prove I is a homotopy equivalence, we Bhow M\i‘ is contractible for any M in
QK. Put E = M\i‘ 1 it is the cofibred category over g consisting of pairs (P,u) with
ui¥~>P BmDapin QE. Let E' be the full subcategory consisting of (P,u) with u
surjective. Givem X = (P,u) in P, write u= i,j! with j:P—» M, i :F P,
By nypothesis i), P is in 'l: a8 the notation su.égests. Thue X = (ﬁ,:j!) is an object
of F', end 1 defines a map ¥ — X. One verifies easily that X —» X is & universal
sTrow from an object of __F_' to X, hence X I—yJ_{ is right adjoint to the inclusion of
£' in F . By Prop. 2, Cor. 1, we have only to j:n;rove that F' is contractible.

The dusal category £’° is the category whose objects are maps P —m K , and in
which & morphism from P —»M to P' wmM is amap P —» P' such that the obvious
triangle commutes. By hypothesis 4i), there is at least one such object Po_*H .

Given snother P - ¥ , the fibre product P x‘MPo is an object of E , 88 it is an
extension of P by Ker (P M) which is in P Ly hypothesis i). Hence in F'O we
beve arrows . ‘

| (P> M) «— (Pxp —» M) —> (P —»H)
which may be viewed as natural transformations from the functor (P~ M) b (P zHPoA -HM)
to the constant functor with value Po--a-} ¥ and to the identity functor. Using Prop. 2,
we conclude that F' is contractible, finishing the proof of the theorem.

Corollary 1, Assume P is closed under extensions in ¥ and further that

a) For every exact sequence (1), if M, M" are in £ , then so i8 M',

b) Given J : M =9 P, there exists j': P'e=tp P gnd { : P' —>¥ such that
=3 {(This bolds, for example, if for every M there exists Pl M o)
Let l_?n be the full subcategory of M consisting of ¥ having g-resolutions of length
§n, i, e, such that there exists an exact sequence (2), and put zoo =U£n . Then

2

~—

KP = KPS ... = KP .
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That zn ia closed under extensions in M , and hence the groups K:‘.=P n 8Te defined . %
results from the following standard facts (compare [Bass, p.39]).

Lemma, For any exsct segquence (1) and integer n3 0, we have
- 1 -
1) Hsg_n,M“Ezn_H =#M€£n :
2) MY, M €£n+1 - ME£n+1
3) M, KGR =F MECE ., .
Assuming thias, we apply Theorem 3 to the pair sl-:nc.-lznﬂ . Hypothesis ii} is satis-

fied, for given MEP ., , there exists en M-admissible epimorphism P—» M with PEP ;
and by 1) it ia =_lfm_,l--a«.'h:z:i.asib].e. The other hypotheses are clear, so Kistn = Kign "
for each n. The caese of Em follows by passage to the limit (§2. ( 9)).

To prove the lemma, it suffices by a simple induction to treat the case n = 0.

1): Since M"E§1 , there exists a short exact sequence P'—3 F —»¥", s0 we can

form the diagram on the left with short exact rowse and columna

Q0 =~———p P' — P! R'—~——m R —-— R"

Ll !

M' e F —a P P!'— P'® P" ——pP"

| B

M' ——p ¥ —— N ¥'—— N ——— ¥"

and with F =M TP - Since P', M are in P and P 1is closed under extensiocns, we

have FEP . Since F, P &P we have from a) that- M'€P , proving 1).
2): Since M"(;‘L‘l there exists P —=w»- ", =0 a.pplyin; b) to pry : P ::.M,,M - P ,

we can enlarge P and find P" —p» M factoring into P" —3 M —-M", Thus we can form

the above diagram on the right with short exact rows and ecolumns, and with P', R'¢ P as

- Applying 1} we see _that R"Eg » 80 REP and M€-£1 y proving 2).

%): Sinca Mg 1;1, we can form the diagram with short exact rows and columna

M'GP

Pte=——P'e—(

Lo

K—P co—sp ¥

L

M e M — - M
4s M"EE 1) implies KE&P, so M'€ P, » proving 3). The lemma and

As an erample of the corollary, take E_ = z(k) and § = Mod(A), the category of .
(Left) A-modules. (Better, so that ¥ has a set of iscmorphiem classes, take N to be
the abelian category of sll A-modules of cardinality <«, where « is =zcme infinite
cardinal > card{4).) LlLet P (4) be the category of A-modules having P-resolutions 0
length < n, and gm(k) = [ gn(k). Then %(A): P as in the corollary, so we obts

- Corollary 2. For 0gn§®, we have KA =»K (P (A)). In particular if 4 is,
regular, then KA =4 Ki(Modi‘(A)), where Modf(A) is the category of finitaly gens

A-modules.



! L
We recall that & regular ring is a noetherian ring such that every (left) module has
finite projective dimension. For such a ring 4 we have gm(A) = nou(a).
Similerly, Cor. | implies that for a regular noetherian sepsrated scheme the K-groups
of the category of coharent sheaves and the category of vector bundles are ihe same, since
every coherent sheaf has a finite resolution by vector bundles [SGA 6, II, 2.2].

Transfer maps. Let f : A — B Dbe a ring homomorphiem such that as ax A-module B
is in g m(k) « Then reetriction of acalars defines an exact funcior from gm(B) to
Pm(L), hence by Cor. 2 it induces a homomorphism of K-groups which we will denote

(3) fot KB —rKd

and ¢all the transfer map with respect to f., Clearly given enother homomorphism

g:B-»C with CEP_(B), we have

(4) (8f)y = f,8, : K0 —> K4 .

We suppose now for simplicity that A and B are comutaﬁve, so that we have functors
P(a) x B (&) —> R (&) . (2M) > POX.

for Osnegm, which induce a product K A8K.4 — KiA , [P]@z > (P@A?)*z , and

similarly for B. Then if £* = (B 31'?)* : K4 —>X.B, we have the projection formula

(5) ‘ f*(i‘*x cy) = x-fy

for x¢ Kn.& and y€K.B . Thie results immediztely from the fact that for X 4n E(A)
there is an isomorphiam of exmct functors

Y.L--y- (BGAX)®BY = X8
(A).

Corollary 3. let T = {Til ' 121} be an exact connected sequence of functors from

from gm(B) to P

an exact category to an abelian category 4 (i.e. for every exact sequence (1), we

have B long exact aeguence

o " w [ ] Y o
> TN > T.M > T M = T K ).

Let P be the ful) subcategory of T-scyclic objects (TM =0 for all nz1), and
agsume for each M in ! that there exists P —w M with P in z , and that TnM =0
for n sufficiently large. Then Kiz -'-"-}Kig .

This results either from Cor. }, or better by applying Thecrem 3 directly to the
inclusion gnc gm-‘l y Where En consists of M such th.at' THE=0 for jon.

Here is an application of this result., Put KA = Ki(Modf(A)) for A noetherian,
and let f : A -3 B be s homomorphism of noetherian rings. If B is flat as a right

A-poduie, then we cbtein & homomorphism of K-groups

(6) (88,7), : KJ4 = KB

because BQA? is exact. But more geherally if B is of finite Tor-dimension =s & right
A-module, then epplying Cor. 3 to M = Modf(4) and TH= Torﬁ(B,M) .
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we find that K,P 2 KiA, where P is the full subcategory of Modf(A) consisting of

é._v oY i '

¥ such that Tnﬂ = 0 for n%>0. Since B@A? is exact on 3 » we obirin a homomorphism
(6) in this more general situstion, &
- . ,
-
5. Devissage and localization in abelian categories
85. Devissage agories x

In this section LL will denote an abelian category having a set of lsomorphism
classes of objects, and E will be a2 non-empty full subcategory closed under taking i
subobjects, quotient objects, and finite products in A. (learly B is an abelian cats-

i

[

gory and the inclusion functor 2 —>& is exact. We regard A and =13 as exact cate-
gories in the obvicus way, so that all monomorphisms and epimorphiams are admissible.
Then QB is the full subcategory of QA consisting of those objects which are also
abjects-of B. )

Theorem 4, (Devissage) 3uppose that avery object M of A has a finite filtration

C..CMns M such that Mj/mj-‘l ig in B for esch Jj. Then the inclusion

0= HOC 1‘11
functor QE -+ QA is a homotopy equivaleoce, so K.ig - Kié .

Proof. Danéting the . inclusion functor by [, it suffices by Theorem A %o prove
that f£/¥ 4is contractible for any object M of A The category £/M is the fibred
category over Q;l; consisting of pairs (N,u), where HNg Qg and u ! N —-M is a map in -{g
Q__,&. By sssocia.ting to u what might be called its image, that is,the layer (Mo'mi) of }
K such that u 4ig given by an isomorphism K = M1/Ho , it is clear that we obtain an - 1‘%
equivalence of f/M with the ordered set J(M) consisting of layers (HO'MI) in M s
such that Mt/MDEE. with the ordering (MO,M1)5(1~15,M1') iff MicHK CH,CHS .

By virtue of the hypothesis that M has a finite filtration with quotients in 3,
it will suffice to show the inclusion i :VJ(M') — J(M) is a homotopy egulvalence
whenever M'C K is such that M/M'EB. We define functors

r 2 J{K) - J(H) (M M) b (K AN, K AKY)
s JH) — I, (MD.Mi) b (M AN, H1) N

These are well-defined because

) t 1
BN /Mor\M < K /uonu < n1/1¢° x M/M

and becauge B is closed under subobjecta and products by assumption. Note that ri= .
- N.}

id’J(M') and that there are natural transformations ir —» 5 & idJ(M) representad by
1 1 . '
(M oM KAN) € (M AN, K) 2 (M, H) .
Hence by Prop. 2, r is a homotopy inverse for i, 80 the proof is complete,

Corollary 1. Let ﬁ be an abelian category (with a set of isomorphism classes
that svery object has finite length. Then
XA = l ] K.D,
) i= jeI 173
where {Xj. Je J} is s get of representatives for the isomorphism classes of aimpl

objects of A , and D, is the sfield End(X_)°P,
A ; is the sfie (J)



Proof. From the theorem we have Ki§ = Kié » Where E ie the subcategory of semi-

sizple objects, so we reduce to the case where every object of A is semi-simple. Using
the fact thet K-groups commute with products and filtered inductive limits (§2, (8),(9))

we reduce to the case where é has & single gimpple object X up to isomorphimm. Bui
ther M v Hom{X,M) is an equivalence of 4 with E(D), D = End(%)%, so the corollary
follows.

Corollary 2, If I is B nilpotent two-sided ideal in a noetherian ri A, then
Ki(A/I) = KA (notation as in 84,(6)).

This results by applying the theorem to the inclusion Modf(4/I) < Modf{a).

Theorem 5, {Localization) Let' B be a Serre subcategory of 4 , let A/B be the
associated guotient abelian category (Bae for example [Gabriel], [Swan] and let

e i E - 4,B: 4= __5/2 denote the canonicsl functors. Then there is a long exact

sequence . . ., 8,
cores e K (4/B) >K B > KA ———t K (A/B) ~— O..

(It will be clear from the proof that this exact sequence is funmctorial for exact
functors (é.l_:'lJ — (é'.g'). Unfortunately the proof does not shed much light on the
nature of the—boundary pap O : A/B —> K (B) , and further work remsins to be done
in this direction.) ‘

Before teking up the proof of the theorem, we give an example.

i+1

Cofollary. If A is g Dedekind domain with quotient field F, there is a long exact
seguence '

— B F — .Ll_m X, (4/n) —> KA — X P — ..
where m ru.na cver the marimel ideals of A.

This follows by applying the theorem to A = Modf(4), with B the subcategory of
torsior modules, whence é/g is equivalent to Modf(F) = P(FJ, (compare [ Swan, p. 115]
We have X.A = K.A by Cor. 2 of Theorem 3, end K 3B "'LLKi A/m) by Theorem 4, Cor. 1.
Note that the map Ki.a — KiF in the eract sequence is the one induced by the homomor-
phism A —+F a3 in §2, (10), and the map Ki()\,/m) — K,A is the transfer map associ-
ated to the hommorph:l'sm A — A/m in the sense of the preceding section.

Proof of Theorem 5. PFix a zero object © in ’ Qnd let O also denote its image
in A/B. One knows that B ia the full subcategory of A consisting of M such that
sd = 0, Hence the composite of Qe : B Q4 with Qs : QA — Q(é/g) is isomorphic to
the constant functor with value 0O, sc Qe factors

QB —— . 0\ Qs ———— Q4
Mp= (M, 02 aM), (Nyou) b N .

In view of Theorem B, §1, it suffices to establish the following assertions.

a) For every u: V'V in Q4/B), u*: V\@s ~» V\Qs is a homotopy equivalence.

‘b) The functor QB —> 0\ Qs is 8 homotopy eguivelénce.
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u=41,, 1:V'>»V. Finally we have 4,i,,, =iy, , so it suffices to prove &) for

Factoring u into injective and surjective maps, one sees that it suffices to prove a)
when u is either injective or surjective. On the other hand, replacing a category by
its dual does not change the Q-category (52,(7))- Ag surjective maps in Q(é/g) become
injective i Q((g/é)o) = Q(éo/go). it is enough %o prave a) whem u is injecti.ve, say

the injective map LV' for any ¥ in Q/E .

Let EV be the full subcategory of V\Qs conaisting of pairs (M,u) such that

u iV~ M is an isomorphism. Clearly F=0 is isomorphic to QB , so sasertion b)

results from the following.

Lemms 1. The inclusion functor ljv — V\Qs is a homotopy equivalence.

Depoting this functor by f, it suffices by Theorem A4 to show the cetegory f/(H,u)
is contractible for any object (M,u) of V\Ws. Let themap u: V— aM in Q(;A/E) be
represented by an isomorphism V = Vi/vo » where (VD.V,I) . is n l.iyer in aM. ‘It is
easily seen that the category f/(M,u) is eguivalent to the ordered set of layers
(R ,8,) in M such thav (aM ,sM,) = (V,V,), with the ordering (X ,M,)< (M},%/) iff

M;,CMOC M1C i'l.l' +« This ordered set is directed because

(MM ) € (B AN, Hos K1) 2 (M1,100) o

It is non-empty because any subobject V,I of =M is of the form z~1l'£1 for_ scme M1CH-

In affect, V1 = sl for some N in A, and the map V,l ~» M cen be represented as
g)a(i}-1 where i : N'> K hss its cokermel in B and g : N' «» M is amapin 4

then one can take M, to be the image of g. Thus f/{M,u) is & filtering categoury, =0

i
it is contractible by Prop. 3, Cor. 2, proving the lemma.

The next four lemmas will be devoted to proving that the category E‘J is homotopy
equivalent to QB. To this end we introduce the following auxiliary categoriea. let XN
be a given object of A, and let E  be the category having as objecta pairs (M,n),
where h : M —= N isa mod--B isomorphism, i.s8. a map in A whose kernel and cokernel a.re
in g y Or equivalently one which becomes an iscmorphism in é/g A morphism from (H h} 2
to (M',h') in E, i3 by definition amap u: XK —>M' in Q4 such that

(*) 3

! _.
coumutes if w=4,j°. To each (M,h) in Ey ve associate Ker(h), which is an obaect

by (*) we associate the map in QB represented by the maps

Ker(h) chommmmm Kor(hj) Semmmmasp Kér(n' )

induced by Jj and 1 respectively. It is easily checked that in this way we obtain 8

functor

ky t By —+ @& , (M,h) > Ker(n)
determined up to canonical isomorphism. We prove Iy is a homotopy equivalence in W“’

W
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houotopy-eguivalence

- In 'lower' K-theory one calculates with matrices - in 'higher' K-theory with functors,)

" where N iz in A amd g el %YV is an isomorphism in yg,inwhichamarphim

functor g, : EN '*‘:'N' , (M,h) > (M,gh) is a homotopy eguivalence.

steps.
Lesma 2. Let E\ be the full subcategory of Ell congieting of pairs (M,h) such

o———

tbat bt M —>§ is an epimorphimm, Then the restriotion ki : Bt —> QB of k, isa

It suffices to prove k;,/w is contractible for any T in Q8 . Put C = KI/T; it
i the fibred cetegory over 'El‘i consisting of pairs ({M,n),u), with (¥,h) in E! , and
where u : Ker(h) =T is amapin QB Llet C' be the full subcategory consisting of
((,h),u) with u surjective. Given X = ((¥,h),u) in C , write u=;j’.tI with
i:Ker(h) =>1T ,J:T-~»7 anddefine (1¥B) by 'pusbout':

Ear{h) Sue——p ¥ |

AN

Let = ((L*M,H),,j"); it belongs to C' and there is an evident map X = X. Onme
verifies ag in the proof of Theorem ';that X —X is & universal arrow from X +to an
object of c'. Hence the inclusion c ‘= C has the left adjoint X > X, 80 we have
reduced to proving that C' is cantractibl;. But C' hes the initial object

((N idli)’ jT), 50 this is clear, whence the lemma. ' '

Lemma 3. The functor kN : EN - QB is a homotopy eguive.lence.

.'I‘ha.uka to the preceding lemmm, it suffices to show the inclusion Eﬁ "’EN is g
homotopy equivalence. Let _E. be the ordered set of subobjects I of N such that N/I-
isin P, and consider the functor f : E ~+ 1 sending (M,h) to Im(h). One verifies
easily that § is fibrad the fitre over I- bemg E! , and the base change functor from

=1

ot 1]
El to E} being JzI? i (M~ 1) = (J :r.IF -#J). BSince J x,? commtes with k;

and kJ , it follows from Lemma 2 that J I'I'? ie & homotopy egquivalence for every arrow

JCI in ;. From Theorem B, Cor., we conclude . Ei is homotopy equivelent to the
homotopy-fibre of f over I. Since I is contractible {it has ¥ for final object),
one knows {rom howotopy theory that the inclusion Ei s E‘N is a homotopy eguivalence
for sach I, proving the lemma.

We now want to show I:V is homotbpy equivalent to E.N when ' sN &£ V., First we note

a aimple consequence of the preceding.

Lemma 4. Let g¢: N —=N' be amapin A which is 8 mod-} isomorphism. Then the

One verifies essily that by associsting to (M,h)€ E, the obvious injective map
Ker(h)—y Kar(gh) one obtains a natural transformation from ky to kg, . {Cbserve:

Thus kN ang ku.g. are homotopic, end since kN and }:N,' are homotopy equivelences,
a0 is g, , whence the lemma. T '
Now given V in é,/g  let L be the category heving ss objects pairs (N,¢),

- e R R e e R
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(N,d) = (N',f") iaamap g : N — N' such that ¢'s(g) = . It is clear from the :
construction of 5/3 that 1, s a filtering category. For example, given two maps g, jﬁ

: (N,8) = (N',d') we have 5(31-52) = 0, 80 Im(g1—52)EB hence we obtain a map kL
N',p{ ~» {N*,g") equalizing 8 +8, with N" = N'/In( 51—52)

We have a functor from L. to categories sending (N,d) to E, and g : (N,d) -
(Nt dY) to g, * By —-)&, . Further, for sach (X,#) we have a functor

Piy,d) P By — By + (6B) B (& s(n)”' ¢ v 2% e = a)

Since Py, 4" )8 = Py, d) for any map g ! (N,f) — (N',d') in Iy + we obtaina

functor

(+) Lin, {(N,8) > B} == F

which we claim is an isomorphism of catagories. In effect
(M, 8 s V = ad) = p(M,e-1)(M,idn)

for sny (M,8) in Fy » showing that {#*) is surjective on objects. Almo given

P(x, ﬂ{)(ﬁ h) = P(x, 5)(?4' h'), then H = ¥' and s(h} = a{h') . Letting N' = N/Im(h-h')
we otain a map g : (N,#) ~» (¥',¢') such that g,(M,h) = g, (M',h*), showing that (=)
is injective on objects. The verification that (**) 4is bijective on arrows is similar,

Applying Prop. 3, Cor. 1, we obtain from Lemma 4 and (**} the following.

Lemms S5, For any p’ : aN &V, the functor P(x,4) is a homofonz equivalence.
[ ]

The end is now near. To finiah the proof of the theorem, we have only to show
“‘V! e v\Qs - 0\ Qs is a homotopy equivalence. Choose (N,f) as in Lemma 5 and fom &

the diagram
B ———}‘J”—-» B, <V\Qs
| )
@ —==—» F C 0\

The disgram is not commutative, for the lower-left and upper—nght paths are reapectively
the functors ‘
(M,n) +—» (Ker(h), 0 & s(Ker(n}) )
(M,h) = (M, (1), 2 0 = 8H) .

However it i3 easlly checked that by associating %o (M,h) the obvious injective map
XKer{h) - M, one obtains a natural transformation between these two functors. Thus the..
diagram is homotopy computative, and since all the arrows in the diagram are homotopy‘ —.J:
equivalences except possibly (:L,“)* by Lemmas 1, 3, and 5, it follows that (iﬂ)“ ia %
one alsc. The proof of the localization theorem is now completa.
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g6. Filtered rings and the homotopy property for regular rings

This section contains some :meortant applications of the preceding results to the
groups_KjA = K, (Modf(4)) for A noetherian., If A is regular, we have K.A= Kia by

the resolution theorem (Th., 3, Cor. 2), 8o we also obtain results about KA for A
regular. In particulsr, we prove the homotopy theorem: I{iA = :L A[t]) for A regular,
According ‘to [ Gersten 1:]. this signifies that the groups KiA are the same as the
X-groups of Karoubi and Villamsyor for A regular (assuming Theorem 1 of the announcement
[Quillan 1] which aagérts that the groups Ki.k are the same as the Quillen K-groups of

[Geraten 1])

Graded rings. let B =_U_ B y D20 Dbe & graded ring and put k = Bo » From now on
we consider only graded B—modu.les N = _u N with n>0, unless specified otherwise. Put
T, (¥) = Tori(k,ﬂ)

where k is regarded as a right B-module by means of the augmsntation B —» k., Then
Ti(N) is & graded k-module in & natural way, e.g. To(N)n = N / AN et AnNo).
Denote by F N the submodule of N generated by Nn for n¢p, 8o that we have

O=P NCFNC .., PN =N It is clear that

o n>p
m To(Fp}_&)n B {Tofﬂ)n ngp

and that there are canonical epimorphiams
(2 B(-p) 8, T,(N), —s> FN/F N
where B(—p)n = Bn_p .
Lemma 1. If T, (N) =0 and Tor (B T, ( )) =0 forall 1i)0, then (2) 4is an
isomorphism for all p. '

Proof. For any k-module X ‘we have

(3)  Torf(B,X) =0 for i>0 ==> T,(BX) =0 for i>O0.

In effect if P. iE & k—pfojective resoglution of X, then B ﬁkP. is a B-projective
resolution of B @X , and 'ri(n nkx) - Hi(k 8B B, F.) = Hi(P.) =0 for i»0. In
particular by the hypothesis on TO(N), we have

{4) ¢ 8.7 (N)) = 0 for i>0. |
Let RP be the kernel of (2). Since (2) clearly induces an isomorphism on T, we
obtair from the Tor long exact sequence an exact sequence
d
- P
T1(B( p) akTo(N)p)n -— T, (rpxw/ﬁ‘p_1n)n-+ T (R )n—-a- 0.

The first group is zero by (4), so O is an isomorphism,

Fix an integer s. We will show that (2) 1is an isomorphi_sm in degrees ¢ B and
also that ‘1‘1(1"‘1:}\!)]:1 =0 for ngs by decrsasing induction on p. For large p, this ie
true, becauss T1(FpN)n = T‘I(N}n for pzn , and because T, (N) = 0 by hypothesis.
Assuming T, (FI')N)R =0 for n<s, we find from (1) and the exact sequence
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T, (Fpﬂ)n —> T, (FPN/FP_,IN)n. — TO(FP_,lN)n —_ TD(FPN)D

that T1(FpN/Fp—1N)n = To(Rp)n =0 for ng<s. It follows that RP is zero in degrees
&£s, showing that (2) ie an iscmorphism in degrees Ss as claimed. In addition we

= - =L
find 0 = TE(B( p) ﬂkTo(N)P)n Tz(i‘p}i/i‘p__.lbl)n for ngs, whence from the exact sequence

_TE(FPN/FP_1N)n — I, (1»*13_1n)n -1, (FpN)n

we have Ti(Fp-1H)n =0 for ngs, completing the induction., Since s is arbitrary,

the lemma is proved.

Suppose now that B is (left) noetherian, and let Modfgr(B) be the abelian
category of finitely generated graded B-modules. ' Its K-groups are paturally modules
over Z[t}, where the action of t is induced by the translation functor N HN(—U.
The ring k is also noetherian, so if B has finite Tor dimension as a right k-module,
we have a homomorphism (g§4,(6))

(5) (Be7), + Kjk —> K (Moafgr(s))

? on the subcategory F of Modf{k) comrsisting of

induced by the exact functor B ﬁk
k-modules F such that Torlz(B,F) =0 for i%0.

Theorem 6, BSuppose B is a graded noetherian ring such that B has finite Tor
dimension as a right k-module, and such that k has finife Tor dimension as a right
B-module. Then (5} extends to a E[t]-module isomorphism

2] &, Kk = K, (Modtgr(B)) .

{The hypothesis that k be of finite Tor dimension over B 1is very restrictive.

For example, if k dis a field and B 1is commutative, then B has to be a polynomial
ring over k. In all situations where this theorem is used, it happens that B is flat
over k. Does this follow from the assumpltion that B and k are of finite Tor dimen-

sion over each other?) ‘ :
Proof, Let l‘i ' be the full subcategory of Modfgr(B) consisting of N such that
Ti(N) =0 for i»0, and let N" be the full subcategory of K' consisting of N such
that TD(N)EE . By the finite Tor dimension hypotheses and the resclution theorem (g4);
one has isomorphisms X.F = Kik, KX = kXN ' = Ki(Mod.fg-:(B)). Let K" be the full
subcategory of E" consisting of N such that FnN = N, We ha‘ve nhomomoxrphi sma

(KD = & (F) ~2 K (47) —S (K F)°
induced by the exact functors (Fj , 0€jgn} b _u B(-j3) aij (this is in N" by (3)
and N\ (Tu(N)‘j) respectively. Clearly cb = id. On the other hand, by Lemma 1 2
in 5; has an exact characteristic filtration OCFONC..CFnN =N with FPN/FP_1N %
B{~-p} ﬂkTO(N)P » S0 applying Th. 2, Cor. 2, one finds that bc = id. Thus b is a0
isomorphism, so by passing o the limit over n we have Z[t]ﬁ Kig = Kig“. which p
the theorem.

LR S

The following will be used in the proof of Theorem 7. ' B




Lemms 2, Suppose E is noetherian, k is regular, and that k hse finite Tor

. dimension as 8 ht B-module. Then sny N in Modfgr(B) has s finite resolution by

¥ finitely &rst@d projective graded B-modules,

Proof. Starting with No = N, we recursively comstruct exact sequences in Modfgr(E)
Q=N ~aF y —3V 40
where Pr-1 is projective. We have itc show Nr is projective for r large. Since

m () = T () for 150, 1t follows that 7,(N) =0 for 1>0 and r2d, where
4 4is the Tor dimension of k over B. Then for r>d we have exact sequences

0 s T (N ) wmrd (B ) e T (H_,) ==emp- O .

As k is regular, To(Nd) has finite projective dimension s, 80 Tu(Nr)‘ is projective
for r» d+s . It follows from Lemma 1 that Nd+s is projective, whence the lemma,

Filtered rings. let A be a ring equipped with an incraasing filtration by subgroups
0=F ACFACFAC... suchthat 16F A, FAFACE 4, and UFp=a Let
B=gr(a) =11 FPA/FP_1A be the associsted graded ring snd put ¥ =FA =3 . By a
filtered A-module M we will mean an 4A-module egquipped with an increasing filtration
o=F MCFMC.. such that PAFNCE N and UFPH =M . Then gr{M)=
_LL FPWPP_1H is a graded B-module in a natural way.

Lemms 3. i) ir gr(M) is & finitely generated B-module, then ¥ is & finitely
generated A-module. In particulgr, if every graded left ideal jn B is finitely

generated, then A is noetherian.

ii) _I_i_‘ gr(M) is & projective B-module, then M is a projective A-module.

iii) pey gr(M) bas g resolution by finitely generated projective graded B-modules

of length €n, then ¥ has s P(A)-resolution of length < n.

Proof, We use the following consiruction. BSuppose given k-modules Lj and maps
of ke-modules Lj—a- FJ.H for each j>0 suchthat the composition

Ly —>F K —> grj(M) —_— 'I‘o(g:‘(!ﬂJ‘).j

is onto. let P be the filtered A-module with FnP = Fn-jA QkL 3 and let p’ tP—M
be such that 9’ restricted to & ﬁij is the A-linear extension of the gj.ven wap from
L, to FM. Then To(gr(P) ):j = L,,and ¢ iaa map of filtered A-modules such that
'I‘o(gr(p’)) is onto. It follows tha't:. gr(¢) is onto, hence F'n(pf) is onto for all =,
‘and s0 ¢ is onto. Thus if K = Ker(g) , FK=XnFM, we have an exact sequence of

A=-modules

_ Q0 =K -3 F > M > 0
much that

e O——FK——pFP—3FM—s0
(6) 0 — g, K ~—> gr P +—>gr i —> 0

are exact for all =n.
i): If gr(M) is a finjtely generated B-module, then To(gr(rd)) is a finitely
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generated k-module, hence we can take L.‘i to be & free finitely generated k-module
whieh 1s zero for large 3j. Then P is a free finitely generated A-module, so M is

finitely generated, proving the first part of i). The second part follows by taking M

to be a left ideal of A and endowing it with the induced filtratien Fnl'i = MnF‘nA .
ii): If gr(M) dis projective over B, then To(gr(M)) is préjective over k, and

we can ‘take Lj = ‘.T.‘c.(gr(}“l})‘j + Then To(gr(p{)) is an isomorphism, so from the exact

sequence
7, (gr(8)) —> T _(gr(K)) — 1 _(gr(P)) ~—-T (gr(M))

wa conclude that T'O(gr(l()) =0, Then gr(K) =0, 80 K=0,M =P, and M is
projective over A, proving ii).

i11): We use induction on n, the case n = O being clear from i) and i),
Assuming gr(M) has a resolution of length € n by finitely generated graded projective it
B-modules, choose P as in the proof of i), so that gr{P) is a free finitely generated 2
B-module. From the exact sequence (6), and the legma after Th. 3, Cor. }, (or Schanuel's ;
lemma), we know that gr{X) has a resolution of length £ n-1 by finitely generated
graded projective B-modules, Applying the induction hypothesis, it follows that X haas
a :_?(A)-rasolution of length < n-1, so ¥ has a z(A)-resolution of length < n, as was

te be shown.

lemms 4, If B is noetherian, k is regular, and if k has finita Tor dimension’

&3 a right B-module, then 4 is regular.

This is an immediate consequence of Lemma 2 and Lemma 3 iii),

We can now prove the main result of this section.

Theorem 7. Let 4 be s ring equipped with an increasing filtration

‘0= F_1A < E‘OA_ < F1AC »ss Such that 1EFDA . F‘PA-FqA < Fp-*qA » 20d UFPA = A. Suppogs
B = gr(A) is noetherian and that B is of finite Tor dimension as a right module over |

B, = F {hence FA and A are nostherian and A is of finite Tor dimension as &

right F A-module). Suppose also that F A is of finite Tor dimension as e right

B-module, Then the inclusion FOACIL induces isomorphisms K:i'.(FoA) = Kj'.A » If furthe

F A is regular, then so is 4, and we have isomorphisms Ki(FQA)—"-’o-KiA .

Proaof. .Put k = FOA. Silnce B is noetherian, we lmow A is also by Lemma 3 i). ,:
Also if B has Tor dimension d over k, then FnA/Fn_1A. has Tor dimension <d ‘forr‘
each n, s0 the same is true for FnA , end hence also for A, Thus the map Kik e Kj'_ i
is defined, and we have only to prove that it is an iscmorphism. Indeed, the last as
;ion of the theorem results from Lemma 4 and the fact that KiA = Ki)\. for regular A
the resolution theorem (Th. 3, Cor. 2).

Let z be an indeterminate and let A' be the subring _U_(FnA)zn of afz). We
show the graded ring A' satisfies the hypotheses of Theorem 6. The fact that A" 1
-finite Tor dimension over k is clear from the praceding paragraph. Since =z is X
central non-zero-divisar in A, we have that B = A'/zA' 1is of Tor dimension one o

A', As k has finjte Tor dimenaion over 3B, it follows that k has finite Tor dime



over A'. Finelly %0 show A' is noetherian, we filter 4' by letting FPA' coneist of
those polynomials whose coefficients are in FPA. The ring

gr(4*) _LL.(e:r A)z"

 induced by F 1= A'R

pST

is isomorphic to gr(A)[2], which is noetherian, hénce A' is noetherian by Lemma 3 i).
Let F be the full subcategory of Modf(k) consisting of F such that Tor'(E,F)

=0 for i>0. whence K F X!k by the resolution theorem (Th.%, Cor. 3}. Applying

i
Theorem 6 to B and A', we obtain Z[t]-module iascmorphisms

z(t) & KF =5 K (Modfgr(B)) , 1&x > (BR?),x

@ 2t)e KF 5 K, (Moafer(a')) , 1@ x > (4'®7),x .

Let B be the Serre au'bca.tego:jr of A = Modfgr(4') consisting of modules on which
z is nilpotent. The functor

j ¢ Modfgr(a') —— Moaf(a) , Mi—p M/ (z=1 )M

is exact and induces an equivelence of the quotient category A/ZB with Modf(a). (Compare'
[Swan, p. 114, 130] note that if 8 = {zn} , then § A‘ is the Laurent polynomial ring
A[z z ] and a graded module over A[z z J is the same as & moduls over A = A'/(=z-1)4',)
Since A'/zA' = B, we have an embedding

i : Modfgr(B} —» Modfgr(s'}

identifying the former with the full éubcategory of the latter‘ congisting of modules
killed by =z. The deviseage theorem implises that K (Modfgr(B)) = K E . Thus the exsct
sequence of the localization thorem for the pair (A B) takes the fom

(8) > K (Motfgr(B)) -t K, (Moafar(s')) 22

- KiA n .
We next compute i, with respect to the isomorphisms (7). Associating to F in 1'__'_‘
the eract sequence '
O~ a'(-1) &, F — A g, F —>B8F —>»0
we obtain an exact seguence of exact fu.nctors' from E to Modfgr(.a'). Applying The. 2,
Cor. 1, we conclude that the square of Z[t]-module homomorphisms

zlt] 8 X F == x, (Moafer(s))

1=t i,

Z[t] ® KF -==p K, (Hodfgr('))
is commutative, Since 1=t is injective with cokernel Kj,£ y we conclude from the exact
sequence (8) that the _compositidn

KF ~——p K (Modfgr(a')) e, KA

kF b A Ek'? is an isoporphism. Since K;LE = Kik s this proves

the theorem.
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The preceding theorem anables one to compute the K-groups of some interesting

non-commutative rings.

E:a.mzlas. Let r.g, be a finite dimensionsl Lie algebrs over a field k, and let
U(OJ’) be its upiyersal enveloping algebra, The Poincare-Birkhoff-¥Witt theorsm asserts
that U(cg/) is 2 filtered algrebra such that gr(U(ryr)) is a polynomial ring over k.
Thus Theorem 7 implies that Kk = KiU(lg/). Similerly if H  is the Heisenberg-Weyl.
algebra over k with generators Pyr 9y 1<ign, subject to the relationa [pi,pj] =
o031 =0 (poay) = 8y, o then we have Kk = KM .

Theorem 8. If A is noetherian, then there are canonical jisomorphisms
i) K'(A[‘c]) = K4
1) Kyl A[t =)= KA @K}

Proof. i) follows_immediately from the preceding theorem.
i1): Applying the localization theorem to the Serre subcategory B of Modf(alt])

consisting of modules on which t is nilpotent, we get a long exact sequence
' . -1
— KB - k(alt]) — ghlttT]D) —

gT Sr /

KlA KA

i i
where the first vertical iscmorphism results from applying the devissage theorem to the
embedding -Modf(A) = Modf (A[t]/th[tJ)C B . The homomorphism A[t,t-i]—a-A gending +t
to 1 makes A a right module of Tor dimension one over A[t.t-1], 50 it induces a map

Ki(A[t,t"”)‘—)- K:.'_A left inverse to the oblique arrow, Thus the exact sequence breaks

up into split short exact sequences proving ii).

Corollary. (Fundamentsl theorem for regular rings) If A 4is regular, then there o
are canonical isomorphisms K, (A[t]) = KA and K (alt,+7]) = KA@K,_ 4

This is clear from Th. 3, Cor. 2, since A[t] and A[t,t”] are regular if A is.

Sxercise. let ¢ be an sutomorphism of a noetherian ring 4, and let A [t]
A [t t ‘] be the associated twisted polynomisl and Laurent polynomial rings in whic‘n ;
ta = gla)-t , ([Farrall—ﬁsiang]). Show that KiA = K:.'_ Aﬁ‘[t] snd that there is a long:

exact sequence
14,

.
>

the K-groups of certain mkew-fields. Xeith Dennis points out that this has some interet
already in the case of K2 » since a non~commutative generalization of Matsumoto's theb
is not imown. (Here and in the computation to follow, we will be assuming Theorem 1.
the announcement [Quillen ‘l] y which implies that the KZA here is the same as Milnm"

and that the groups l{iﬂ‘ are the same as the ones computed in [Quillen 2:] )

Example 1. Let k be the algebraic closure of the finite field E‘p. and lst 4

be the twisted polynomial ring k r‘[F] with Fx =x% for z in k, where q = p s




Then 4 4is a non-commutative domain in whick every left ideal is principel. Let D be
. the guotient skew-field of A, whence Modf (D) = Modf(A)/g, where B is the Serre sub-
category consisiing of A-modules which are torsion, or eguivalently, which are finite

i,
(10): — KB > KA > K,D » X, _ B —s
(A and D are regular), and we have K A=Kk by Theorem 7.

An object of ,E is & finite dimensional vector space V over k equipped with an
additive mep F : V -+ V buch that F(xv) =x9F(v) for 1 in k and v 4nV, Itis
well-known that V splits canonically: V,='Vo @V,, vhere F is nilpotent on V_ and
bijective on '\’1 ¢ and moreover that

e/
q

vhere V- {_VGV I = v} is s finite dimensionsl vector space over the subfield E‘q
of k with q elements, Tims we have an equivalence of categories

B X Uﬁaaf(a/u'“) x Hodf (R )
n

Appljring the devissage theorem to the first factor, we obtaein Kig = Kik@ KiE‘q .

Let # : k =»k be the Frobenius sutomorphim: ¢{x) = 2%, and let #(V) denote the
base eitension of the kevector space V with respect to ¢, i.e. ¢#(V) =k &k‘f, where
k is regarded as a right k-module vie g, If V im regarded as an A-module killed by

¥, we have an exact segquence of A-modules

0 —p Aﬂkﬁ((V)~—-> ARY — ¥ —— 0

aBlz@v) j» exF BV

On the other hand, if W 4is a finite dimensional vector space over H“q, we have an

exact sequence of A-modules
OerﬁE.H-—-rAﬂE,w—;-kﬁFw-——;-O
. q q
adw | a{P-1)@vx

vhere F acts on the cokernel by Flx @ w) = x% @ w . Applying Th. 2, Cor. 1, to these

"characteristic" sequences, one easily deduces that the composite

i,
Kk OKF = KB =T KA = KKk

is zero on the factor KiE‘q and the map 1 = p’* on Kik . From [Quillen 2] one hae
1 -4,
0 — Kil"q -—+Kik b Kik — 0
for 1> 0. Combining this with (10) we obtain the formulas

exact seguences

KOD = Z K,‘D = Z@Z

(11) K, D = (K21_1Fq)2 = @ {t~1)z?®  ido
2
K2i.+1D T (KZin) = 0 1»0.
123
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Example 2. Let H be the Heisenberg-weyl algebra with generators p,q such that |
pq = gp = | over an algebraicelly closed field k¥, and let D be the quotient skew-field
of H. In this case, cne cen prove that the localization exact sequence associated to
Modf(KE)} and the Sarre subcategory of torsion modules bresks up into short exact seguences T

0 —=Kk ——aKD — [1K — 0 i

i i i—1
where the direct sum is taken over the set of isomorphism classes of simple H-modules,
The proof is similar to the preceding, the e=zsential points being a) torsion finitely ‘
generated H-modulea are of finite length, because H has no modules finite dimensional

over ¥, and b) k is the ring of endomorphiams of any simple H-module (Eaxillen 3]).

§7. K'-theory for schemes

1. If X 4is a scheme, we put Kq; = qu(X}, whare E(X) is the category of vector .7
bundles over X (= locelly free sheaves of Oy -modules of finite rank) equipped with the
ususl notion of exact sequence, If X is a noetherian scheme. we put K’ X = KqM( i),
where g(X) is the abelian category of coherent sheaves on X. The followlng theory

concerns primarily the groups -n&X. 80 for the rest of this section we will assume all

schemes to be noetherian and separated, unless stated otherwise. ' i @

As the inclusion functor from P(X) +to M(X) is exact, it induces a howomerphism

11 KX £'X
( ) q --_-}n.q

When X is regular this is an isomorphism. In effect, one knows that any coherent sheaf °
F is a quotient of a vector bundle [SGA 6 II 2.2.3 - 2.2.7.1] , hence it has a resolution

by vector bundles, in fact a finite resolution as X is regular and quasi-compact {see
LSGA 2 VII1 2.4]). Thus 1.1 is an isomorphism by the resclution theorem (Th. 3, Cor. 1)
If E is a vector bundle on X, then F > E @ F 1is en exact functor from g(x) to

itself, hence as in B3 ,(1), we obtain pairings
(1.2) KXeKX —» KX
o ) q

making Kéx s module over the ring KDX. (In a later peper I plan 1o extend this idea §
define a graded anti-commutative ring structure on K X such that KX is a graded

module over K/X.}

2, Functorial behavior., If f : X =+ Y 4is a morphism of schemes (resp a flat
morphism), then the inverse image functor f* : =(Y) — E(X} (resp. f* : M
is exact, hence it induces a homomorphism of K-groups which will be denoted

(2.1) _ £* ¢ x‘r—,xq}: { resp. f* : K;.r - Ké.x ) .
It is clear that in this way K becomes a contravariant funcior from schemes to abe

L

groups, and that Ké is a contravariant functor on the subcategory of schemea and fhﬂaME'

morphisms.,



Progositinn 2.2. Let i p=s xi be & filtered projective system of schemes such that

» the transiticn morphisms xi - X j are aff:fne, and let X = i_:._m Xi. Then

(2-3) - qu = l_in.in qui e
If in addition the fransition morvhisms are flat, then
. ' = 1
| (2.4) kX Ug KX, .

‘Proof. We wish to apply §2 (9), ueing the fact that P(X) is essentially the
linductive limit of the E(Xi) by [EGA Iv 8.5}. In order to obiain an honest inductive
aystem of categories, we replace E(Ki) by an equivalent category using Gireud's method
. {0 and let I' be the
_category obtained by adjoining an initial object ¢ to 1. We extend the system xi to
I' by putting X‘ = X, and let E be the fibred category over I' having the [ibre
;! g(xi) over 1. Let gi be the caiegory of cartesian sections of P over I'/i. (An
object of P, is a family of pairs (E;, 6,) with E,
(3 $4)*E, = E, for each object J +i uf I'/i.) Clearly P, is equivalent to B(X,)

J
and 14> P, is a‘functor from 1° to categories. Using [EGA IV B.5] it is not hard

as follows. Llet 1 be the index category of the system X

€F Xj) and Bj an isomorphism

to see that we have an equivalence of categories
Lo (i} B,) ~— P(X)

such that a seguence is exact in P(XJ if and only if it comes from an exact sequence in
some P . Thus from §2 (3) we have K P {(X) = lin X Pi , proving 2.3. The proof of 2.4
is similar.

?.5. Suppose thet T : X —~ Y is 2 morphism of finite Tor dimension {i.e. gx is

of finite Tor dimension as a module over r"WgY) ), and let g{r,r) ve the full sub—
catagory of E(Y) consisting of sheaves F such that

Q
Tor.=Y
i

QK'F)':O for 150 .

Assuming that every F in M(Y) is a gquoiient of & member of P(Y £), the resclution
theorem (Th. 3, Cor. 3) implies that the inclusion P(Y £) —» M(Y) induces isomorphisms
on K-groups. Combining this isomorphism with the homomorphism induced by the exact
functor £* : P(Y ) =¥ M(X), we obtain a homemorphism which will be denoted

(2.6) % 1 K'Y -~ K'X .
q q

The assumption holds if either f is flat (whence E(Y,f) = E(Y) ), or if every coherent
sheaf on Y is the guotient of a vector bundle (e.g. if Y has an ample line bundle).
In both of these cases the formula (fg)* = g*f* is easily verified.

2.7, let f :+ X —> Y be a proper ﬁorphism, so that the higher direct image functors
Rif, carry coherent sheaves on_ X to coherent sheaves on Y. Let E{x,f) denote the
full subcategory of M(X) consisting of F such 'that it (F W(F) =0 for i»0. Since
- R f,=0 for 1 large [EGA III 1.4. 12] we can apply Th. 3, Cor, 3 +to the inclusion

E(X,f) — @(x) to get an isomorphism qu(l,f) —v-Kax, provided we assume that every
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coherent sheaf on X can be embedded in & member of F(x,f). Composing this isomorphism
with the homomorphism of K-groups induced by the exact functor f, : g(x,f) = (Y}, we )
obtain a homomorphism which will be denoted ' ' g'

2.8 f,+ K'Y — E'T .
(2.8) KX = BT

The sssumption ias satiasfied in the following cases:

i) wWhen f 4is finite, in particular, whem f is a closed immersicn. In this case
Rlf, = 0 for 1>0 [EGa IIT1.3.2], so F(X,£) = K(X).

ii) Wwhen X has an ample line bundle [EGA. II 4.5.3]. In effect if L is ample
on X, then it is ample when restricted to any open subeet, and in particular, itf is
ample relative to f. Replacing L by a high tensor powsr, we can suppose L is very
ample relative to f , and further that L is generated by its global sections. Then for .'_I-:t:!
any D we have an epimorphism (gx)m—-) L®" hence dualizing and tensoring with 128, ve
obtain an sxact sequence of vector bundles
ﬁn)m

o-,-gx——»(x. vt B =3 0.

Hence for any coherent sheaf F on X we have an exact sequence

(2.9) 0~ P — Fn)™ — FEE — 0

where F(n) Fa Lﬂn. But by Serre's theorem [EGA III 2.2.1], there is an n_ such
that ROf (F(n)) 0 for iX>0, n2 n, 80 Fn) & E(x,f) for azn . Thus F can be
embedded in a member of E(X,i‘ ) as asserted,

The verification of the formula (fg), = f,g, 4in cases i} and ii) is straight-

forward and will be omitted,

)

sazssaiiiisg

......

Proposition 2,10. (Projection formula) Suppose f : X —w ¥ proper and of finite

Tor dimension, and assume X and Y have ample line bundles so that 2.6 agnd 2.8 are
defined, Then for x € KX and y¢ K"I we have f (x.f*y) = £ {x).y in x&r , where

£.(z) is the image of T by the homomorphiem fot KX —>KY of [sea6 2.123].

Proof. We recall that if x = LE] is the class of a vector bundle E, then f,(r)‘i,
is the class of the perfect complex Rf, (E). Arguing as in case ii) above, one sees
that K X 1is generated by the elements [E] such that R°f L(E) =0 for £>0. Then ._
af _(E) = £f,8, and £, (x) = § () [P]E KX , where {P,] is a finite resolution of I, 3
by vector bundles on Y. Let ﬁ denote the full subcategory of Q(Y) consisting of

such that 0 0

Tor i (£,E,F) = 0 = Tori (gx.F) i»0 .

By the Tesolution theorem we have Kq'l___.

K&Y' Moreover, applying Th. 2, Cor., 3 to .

O—+PﬂF-—>..—rPﬁF—»f*EaF—ro

for F g L, one sees that ¥y |—-)» - (x)sy 4is the endomorphism of X 'f induced by thﬁ
exact functor Fia £ LEQF from .1; to M(‘f} '

4 R
From the projection formula in the derived category: Rf _(E QYE‘) = BRf (2) 0% F
(see [5G4 6 III 2.7]), we find for F in L that

e e e e e o e e i
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v -

- <

. 0 q;éO
o Ry (E @ £*E) =
' fEeF q=0.

Thus_ B @ £*F is in F(X,f), so by the definition of 2.6 end 2.8, we have that
. g > £, (xe f*y) 4is the endomorphism of K'Y induced by the exact functor F ff (E ﬂi""F)
from L 1o g(‘x‘). Sirice we have an isomorphism f,(E® f*F) = fE @ F , the projection

formula follows,

Progosition 2.1, Let

be s cartesian square of schemes heving ample line bundles. Assume f is proper, g is

of finite Tor dimension, and that Y' and X are Tor independent over Y, {i.e.

—I,y _ .
TQ i (QII ' t _x I) = 0 EE'. :L}D
for any x€X, y'€Y¥', yeY such that f{x) =y = g{y').) Then

gL, = f'y g'* Kk — KX

q
Sketch of proof. Set L = P(X,g')n¥(X,f). From the formula Lg*Rf, = Rf',Lg'*
in the derived category [SGA 6 IV 3.1 0], one deduces that for Fé€ L we have that
£ FE P(Y g), g'*F € F(x', ‘), end that there is an iscmorphism g*f*(.) = ' g"*(F).
Thus everything comes to showing that K L—- K! X . Since xqg(x,g')::.xax » we have
only to check that the inclusion L—-u- P X&) induces isomorphisms on K~-groups, But
“ this feollows from the resclution theurem,‘ because the exact sequence 2.5 shows that the

functors Rif* on the category P(X,g') are effaceable for 150,

3« Closed subschemes, Let £ Dbe & closed subscheme of X, let i : & —» X be the
canonical immersion, and let I ‘be the coherent sheaf of ideals in gx defining Z. The
functor i, @ I;l(Z) -+ K(X) allows us to identify coherent sheaves on £ with coherent ’

. sheaves on X killed by I.

Proposition 3.1. If I 4is nilpotent, them 1  : Kc‘lZ — K&X is an isomorphism. In
LF&Y ot t
particular, Kq(.kre == KX -

This i1s an immediate consequence of Theorem 4.

Proposition 3.2. let U be ihe complement of Z in X, gnd J : U =—+X the

canonical open immersion., Then there is a long exact segquence

&

HE

i * .
. K t * > K e 3
(3.3) —_— q+‘|U — qu qu Lqu —_—

_————

S,

Proof. One knows [Gabriel,Ch, V] that j* : ﬂ(x) — M(U) induces an equivalence
of g(u) with the quotient category E(I)/E. where B is the Serre subcategory consis-
ting of coherent sheaves with support in Z, Theorem 4 implies that i, : !_4(2) — E
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induces isomorphisms on K-groups, so the desired exact sequence results from Theorem 5.

Remark 3,4, The exact sequance 3,3 has some evident naturality properties which ;

follow from the fact that it is the homotopy exact sequence of the "fibration"

BEM(z)) ~—> Ba(M(x)) — BQM(U)) .

For exesmple, if &' 18 a closed subscheme of X containing Z, then there is a map from
the exact sequence of (X,Z) %o the one for (X,Z2'). Also a flat map f : X' —»X

induces a map from the exact sequence for (X,Z) to the one for (X',f-1Z).

Remark 3.5. From 3.3 one deduces in a well-known fashion a Mayer-Vietoris sequence

4

[} . ) 1 ] [} ;I rFdl
i l{qH(UnV) —_— gq(uw) —— KqU@quV — :Cq(UnV) —

for any two open sets U and V¥V of X,
Gersten {see their paper in this procedings) conastruct a spectral sequence

DY = #P(x, k) == KLX

which reflects the fact that K'-theory is a sheaf of generalized cchomology theories in
In connection with this, we mention that Gersten has proposed defining

Starting assentially from this point, Brown andl

& certain sense.
hizher K-groups for regular schemes by piecing together the Karoupi-Villamayor theories %ﬁ

belonging to the oven affine subschemes (see [Gersten 2]}. Using the above Mayer—Vietoris:%E
sequence and the fact that Karoubi-Villamsyor K-theory coincides with ours for regular ‘gé

rings, Gersten has shown that his method leads to the groups qu K&x studied here, -

4. Affine and oroiactive space bundles.

‘Proposition 4.1. ({Homotopy property) Let b
are affine spaces (for example, a vector bundle or a torsor under a

: P X be g flat map whose fibres
vector bundle}. Then .

i* x&x — KéP ig an isomorphism.

Proof. If Z is = closed suoset of X with complement U, then because f is fla
we have a map of exact sequences ' A
~— K'Z —3 'Y —- KU o

q q q

1 ) $

et z{qPZ — K'P — K‘PU —

other two. Using noetherian induction we can assume the proposition holds for all clo d
subsets 2 # X, ¥e can suppose X 4is irreducible, for if X = 21L122 -
then the proposition holds for Z, and X =~ Ly =2, - (Z1r122), hence alago for X.
can also suppose X reduced by 3.1.

Now take the inductive limit in the above diagram as Z runs over all closed subsé
A%, Then by 2.4, in KU = £i(k(x)) and Mg KIE; = Ki(k(x) 2,P), where k(x) 12
residue field at =x, and where xr is the generic point of X, Thus we have reduced t

But this follows from §6 Th. 8 , so the proof is complete.



4424 lJoua.nolou'B device. Jouanoglou has shown -that at least for a gquasi-projective
scheme X over a field, theré is m torsor P over X with group s vector bundle such
that P is an affine scheme. BHe defines higher K~groups for ewooth X by taking the
Z$E;,oub1-villamaycr K=groups of the coordinate ring of P and showing that these do not

-v-ﬁ_#

‘dppand on the choice of P, From 4.1 it is clear that his method y3elds the groups

e KX-= x'x considered hare.
q

‘ Proggaition 4, 3 Let E be a vector bundle of rank r over X, let PE = PrOJ(bE)
be the associdted projective bundle, whers SE is the symmetric algebra of E, and let
£ : PE =» X Dbe the structural map. Then ve have & K (PE)-module isomorphism

(4.4) _ PE) “’x x x-x Iy K'(?E)

given yRx ey, Eguivalentlx. if 2€ K (PE) is the class of the canonical
live bundle O(-1), then we have an isomorphism

: ' =1
| T [yt [ \ - iu
(4.5) 27 = wlem) , (dogier M 21=Oz ST

Sketch of pfoof. The equivalence of 4.4 and 4.5 results from the fact that

(PE) is a free K X-module with basisA ‘l,..,zrm1 [SGA 6 vI 1 ﬂ Using the exact
sequenca 3.3 as in the proof of 4.1, one reduces to the case where X = Spec(k), k a
field. By the standard correspondence between coherent sheaves on PE and finitely
generated graded SE-modules, one knows that M(PE) is equivalent to the guotient of
Modfgr{SE) by the subcategory of M such that M O for n large., This subcategory
has the same X-groups as the category Modfgr(k) by Theorem 4, where we view k-modules as
SE-modules killed by the mugmentation idesl. Thus from the localization theorem we have

an exact sequence

{4.6) — K {Modfgr(k)) ——» K (!-iodfsr(SE)) X! ( E) —

[l
K

where 1 1is the inclusion and. j associlates to s module M the associated sheaf M on
PE. From Theorem & we have the vertical isomorphisms in the sgquare '
. A Kq(Modfgx"(k)) -—-j-'*—-,qu(Modfgr(SE))
fo i
z[t] 8 Kk —2—> 2(t] 0 K}k
Using the Koszul resolution
0 ~—> SE(-r) 2 A"E@M ~»..,., —>SE@M —» M —> O

and Th. 2, Cor. 3, one shows that the map h rendering the above square commutative is
multiplication by A _ (E) Z( %) i[/\:"E] Thus i, is injective, so from 4.6 we
g€et en isomorphism | '
tte kxS K1 (PE)
Oxigr
induced by the functors M > o(~1)
gives the desired isomorphism Z.S.

Qiﬁkm, 0§i<r from Modf(k) to E_(PE). This
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The following generalizes 3.1.

Proposition 4.7. Let f : X' ==X Ye a finite morphism which is radicisl and
gurjective (i.e. for each x in X' the fibre f-1(x) hes exactly ome point X' and
the residue field extemsion k{x')/k(x) 4is purely inseparable). Let S5 be the multi.
plicative system in Z generated by the degrees [k(x'):k(x)] for a1l x in X. Then
£, + KI(X') KX induces an tsomorphiem s"x&(x') o4 5™ KX .

Proof. If 2 is a closed subscheme of X with complement U, and if 2' and U
are the respective inverse images of Z and U in X', then we have a map of exact

sequences .
e K&(Z')-——-+ :c{'l(x') S Kc';(u') —

[(, | [(ruu
— K2 —> KX —-;-sc;lu‘—-.a-
Localizing with respect to S and using the five lemma, we see that if the propoaiéion
holds for two of fZ' £, fU it holds for the third, Thus arguing as in the proof of 4.1
we can reduce to the case where X = Spec(k), k a field. By 3.1 we can suppose
X' = Spec(k'), where k' is a purely inseparable finite extension of k. Thus we have

reduced to the following.

el
O

Proposition 4.8, let f : k—> k' be a purely inseparable finite extension of
degree p°. Then f,f* = multiolication by p° on K gnd £+, = miltiplication by

»3 IR R e L,

a
on K (k',.
pooan K (k')
Proof. The fact that £ f* = multiplication by [k':k] is an immediate consequence

of the projection formula B4 (5) and does no% use the purely inseparable hypothesis.
The homomorphism f*f, 1is induced by the sxact functor

Vi> kel = (k'-ﬁkk')ﬂk,v

X! ﬁk k' 4is nilpotent. PFiltering by powers of I, one obtains a filtration of the abov
functor with '

. ) _ n ;.04
sl g ) g, v = LG e, v

But because the twe k'-module structures on In/In+1 coincide, this graded functor is.
isomorshic to the functor V p» V-, where r = dimk.(gr(k’ 8, k')) = pd. Applying '
Cor. 2 to this filtration, we find {*f, = multiplication by pd, completing the p

5. HMltratioen bl suggort‘ Gersten's caniectureI and the Chow rigg. Let Ep(x)1

dencte the Serre subcategory of g(X) consisting of those coherent sheaves whose BUPPe
is of codimension P p. (The codimension of a closed subset Z of X is the infipum’
the dimensions of the local rings gx,z where z Tuns over the generic points of z

From §2.(9) and 3.1, it is clear that we have

(5.1) ‘ Kq(gp(x)) = }-i.in’Kc'lZ



. whare Z runs over the closed subsets of codimension 2 p. We also have

(5.2) f*(!ip(x)) < gp(x') if £1X'=X isflat. _
5"1q affect, one has to show that if 7 has codimension > p_in X, then f£7'Z has L.
codimension 2> p in X'. But if 2' is = gensric point of f"Z, and 2z = £z’ ), then 5

the homomorphiam gx'z—& gx,'z, is a flat local hommﬁorphiam guch that :'ad(gx,a)-gx.'%l
15_.pz.‘imary for rad(gx, , )i hence d.:\.m(gx'z) = dim(gx,'z,) by [EGA IV 6.1.3_], proving
the assertion.

If X = ‘]:2 xi where 1 js xi is & filtered projective system with effine flat
transition morphisms, then we have isomorphisme

(5.3) . k(X)) = unk (M (X)) .

In view of 5.1 this reduces to showing that any Z of codimeneion p im X 4is of the
form i‘:l (Zi) for some i, where I,
f:I. 8 X o xi denctes the canonical map. Iut for 1 large enough, one has 2 = :E‘:I(Zi)
with Zi = the closure of fi(Z). Hence any generic point =' of Zi is the image of &
generic point z of Z, so the local rings at z' and 2z have the same dimension by the

result about dimension used above. Thus 2 N also has codimension p, proving 5.3.

Theorem 5.4. Let }ip be the set of points of codimension p in X. There is =

is of codimension p in Xi , and where

apeciral seguence

- Pq - 1
(5.5} | E] (x) = ;jE];K_p_qk(x) == K'X
P

which is convergent when X has finite (Krull) dimension. This speciral seguence is

contravariant for flat morphisms. Furthermore, if X = l,,,__,,m xi , where 1 > X : is &

filtered projective system with affine flat transition morphisms, ithen the spectral

sequence for X . is the inductive limit of the spectra)l sequences for the Ki .

In this spectral segquence we interpret Kn as zero for n<0. Thus the spectral
sequence is concentrated in the range px0 , p+q € O.
Proof. We consider the filtretion

M(X) = (X)) > KX D ...

of g(x) by Serre subcategories. There is an equivalence

w a0 2 11 U soas(g, /realg, ™)
=P r - xgX 1. ' o

so from Th. 4, Cor. 1, one has an isomorphism

K (0 (08, (1) = ;'gj,z K, ()
P

e -

where k(x) is the residue field at x. From Th. 5 we get exact sequences

— KO X)) — k&) — lelx Ki(x) — k(0 (X)) —
X
P

11

et T L T P L
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which give rise to the desired spectrsl sequence in a standard way. The functora.litj
assertions of the theorem follow immediately from 5.2 and 5.3.

We will now take up a line of investigation initiated by Gersten in his talk at this
conference [Gerstan 3].

Progoéition 5.6. The following conditions sre equivélent:

1) For every p»0, the inclusion MpH (X)-—->-M X} 1induces zero on K—ﬁ;oups.

1) Porall q, BBUX) =0 if p#0 and the ed_g_homomornhism k! E - qu(x)
is an iscmorphiasm.

1ii) For every n the seguence’

d .
(5.7} 0-—9-1{';{-#“}(3(::—-—,““ S BN
x&X, x€X1

is exact. Here a, is the differentisl on E, (X) and e 4is the map obtained by

pulling-back with respect to the canomical morphisms Spec k(z) — X.

This follows immediately from the spectral sequence 5.5 and its comstruction.

o :
b

=

Proposition 5.8. (Gersten) Let K' denote the sheaf on X associated to the
Ereheai‘ U v L{nU . Assume that Spec(gx’x) satisfies the egquivalent conditiqns of 5.6

sl

for all x in X. Then there is a canonical isomorghism

PA(y) _— uP i
B (%) = (x'-K-'q)
swith EPXX) as in 5.5. [;i
- '

Proof. We view the sequences 5,7 for the different open subsets of X as a sequence L
of presheaves, and we sheafily to get a sequence of sheaves Y

(5.9) 0 —» & — Il (1)t — 11 (1), K
xex xC}E1

where i : Spec k(x) — X denotes the canonical map. The stalk of 5.9 over =z is
sequence 5.7 for Spec(gx’x) , because Spec(g‘x‘x) = .Eim U, wiere U runs over the :
affine open neighborhoods of x, and because the spectiral sequence 5.5 commutes with ,
guch prujective limits, By hypothesis, 5.9 is exact, hence it is a flask resolution of,

[}
i_fn.ao

8 {5 [, L ()& k() )]}

zex
P{a!-;» E:""‘(x}} - EP' B(x)

HP(X,K)

I

as asserted.
The following conjecture has been verified by Gersten in certain cases [Geraten

Conjecturs 5.10. (Gersten) The conditions of 5.6 are satisfied for the spect

of a regular local ring.

Adctually, it seems reasonable to conjecture that the conditions of 5.5 hold BeT
generally for semi-local regular rings, for in the cases where the conjecture has beeZ




S

proved, the argumente aleo apply to the comaponding.sami—local situation. On the other
pend there are examples suggesting that it is unreascnable to expect the conditions of
5.6 to hold for any general class of local rings besides the regulsr locel rings.

¥e will ridw prove Gersten's conjectire il some imporiAni egui=characterietic—cases:——

Theorem 5.11. Let R be & finite type algebra over a field k, let S be a finite
set of primes in R such that Rp is regular for each p in S5, and let A be the
reguler semi-local ring obtained by localizing R with respect to S. Then Spec A
satisfies the conditions of 5.6. '

Proof. We first reduce to the case where R is smooth over k. There exists a
gubfield k' of k finitely generated over the prime field, & finite type k'-sglgebra
R', and & finite subset s of OSpec R' such that R=1k Qk,R' .and such that the prines
in S are the bese extensicns of the primes in 8'. If A' is the localization of R'
" with respsct to S', then A=k R .A' and A' is regular.. Letting. k,
subfields of 'k containing k' and finitely gensrated over the prime field, we have
=l k@ A e K(0(A) = Ln K (8 (@ 81) by 5.3, where here and in the
follawmg we write !ip(k) instead of M (Spec A). Thus it suffices to prove the thecrenm
when k is finitely generated over the prime field. In this case A is & locmlization

run over the

of & finite type algebra over the prime field, so by changing R, we can suppose k is
the prime field., As prime fields are perfect, it follows that R is szmooth over k &t
the points of &, hence alse in an open neighborhood of S. Replating R by R £ for
some I not vanishing at the peints in S5, we can suppose R is smooth over k as
asserted.

We wish to prove that for any p>0 the inclusion MP‘”(A) - &P(A) induces zero on

X-groups. By 5.3 we have

. KA (A) = i k(0 (R)

where { runs over elemenis not venishing at the points of S5, hence replacing R by Rf,
we reduce to showing that the functor y_w.‘(R) -e»lgp{A) induces zero on X-groups. As

(4, () = um K0 (R/4R)

where % runs over the regular slements of R, it suffices to show that given s regular
element: %, there exists an f, not vanishing st the points of 5, such that the functor
M I—pM from M (R/tR ) to ]jp (R) induces zero on K-—groups. '

We will need the following variant of the numalization Jemma.

Lemma 5.12. Let R »e a smooth finite type algebra of dimension r over a field
kX, let t be s Tegular element of R, and let S be s finite subset of Spec R, Then

there exist elements TyvenaX y of R algebraically independent over k such tbat if
B= k[11 .‘..,11._1] CR, then i) R/tR- is finite over B, and ii) R is emooth over B

at the pointa of 8.

Granting this for the moment, put B' = R/tR and R' =R ﬁ.BB' so that we have ,
arTows ' ' :

1T
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R o

R i
l u' Tu 53
B 4

B

|

where the horizontal arrows dre finite. Let S' be the finite set of points of Spee R!
lying over the points im S. As u 4is amooth of relative dimension one at the points of
S, u' is smooth of relative dimension one at the peints of 5'. One knows then

[S64 1 II 4.15] that the ideal I = Ker (R'-+B') is principal at the points of §',
hence principal in a neighborhood of S'. Since R'/R is finite, this neighborhood
contains the inverse image of a neighborhood of S 4in Spec R. Thus we can find £ in
R not vanishing at the pointe of 5 such that If £~
medule., We can also suppose f chosen ao that R! f is smooth, hence flai, over 3',

ia isomorphic to R'f as an R’

Then for any 3'-module M we have an exact segquence of Rf-modules
* ]
(%) 0 —> I8 M — RS M — ¥, —> 0.

Since R', is flat over B', if M dsin M (B') then R' @ M isin gp(n'f), 80
viewed as an R.-module, we have R'.8_, M is i.n M (R ). Thus (*) 4is an exact seguence I
of exact functors from MP(B‘) to ¥ (R ). Applying Th. 2, Cor. 1, and using the isomor-
phisn If R, , we conclude that the functor from ,ﬂp(B'), to gp(ﬂf) induces the
zero map on K-groups, as was to be shown. ‘
Proof of the lemma. .Choosing for each prime in 3 a max:l.m.al ideal containing 1t, we :;»,,
can suppese S is a finite set of maximal ideals of R. Let .[)_1 be the module of Kahler .:
differentisls of R over k. It is a projective R-module of ran.k r, and for R +to be
smooth over B = k[11 ..,xr_1] a2t the points of & means that the differentials ‘J dxié _{2_1
are independent at the points of S. Let J 'be the intersection of the ideals in 8. 4s
fl/.l'n = T\_ R/mn » €S, is finite dimensionanl ovar k, we can find a finite dimensional
grewrV, in V whose :

differentials form a baasis for ..0.1 at m vanishing at the other points of S. We can -;

k-subspace V of R such that for esch m in S, there exista v

suppose alsc that V generates R as an algebra over k. :

Define an increasing filtration of R/tR by letting Fn(R/tR) be the subspace
spanned by the monomials of degree £ n in the elements of V. Then the associated
graded ring gr(R/tR} is of dimension 1r-}. To see this, note that Pro;j(_]_l_F (R/tR))
is the closure in projective space of the subscheme Spec (R/tR) of the affine space
Spec (V). Since R/tR has dimension 11, the part of this Proj at infinity, nameli
Proj(gr(R/tR)), is of dimension r-2, so gr(R/tR) has dimension r-1 as asserted.
Let 2,,..,2,_, be a system of parameters for gr(R/tR) such that each z, is -
nomogenecus of degree > 2. ‘Then gr(R/tR) 4is finite over k[z1,..,zr_1]. so if the
of R, then R/tR 4is finite over k[:i',..,xz"_d .
-1 in V such that I, .
1gi<r, have independent differentiala at the points of S, whence condition i) of .t
lemma is satisfied., On the other hand, the x, have the leading terms 2y in gr( R/ ﬂ-‘L |
so R/tR ia finite over k[x1,...xr_1]. The preof of the lemma and Theorem 5.11% i_

now complete,

are lifted to slements xj'_

By the cholce of V, we can choose VirearV = ::'. + vy ;;



Theorem 5.13. The conditions of 5.6 hold for Spec A when A is the Ting of
E’E“l povwer series kEX1,..,In]] over a fielfi k, and when A is the ring of convergent
power series in X,‘ ,..,xn with coefficients in a field complete with respect to a
non-trivigl velustiozs

The proof is analogous to the preceding, Indeed, given O t £ 4 = Lc[[}f.1 ,,,xn]] ,
then after a cbange of coordinates, A/ti Dbecomes finite over B = L:[[J{1 ,...xr_1]] by the
Weierstrass preparation theorem. Further, if we put A' =4 EBA‘/M' then Ke;-( A' - A/tA)
is principal, so arguing as before, we can conclude that Iip(A/tA) - ﬂp(k) induces zerc
on K-groupe., The argument elso works for convergent power series, since the preparstion
theoren i still available,

¥We pow want to give an application of 5.11 to the Chow ring. We will sassume known
the fast that the K1A defined here is canonically‘isomarphic to the Bass K.l , and in
parficuler that K1A is canonically isomorphic to the group of units A*, when A iz e
local ring or a Euclidean domain.

Proposition 5.14. Llet X Dbe s regular scheme of finite over a field. Then the
image of 7 ‘
: d, l I K k(x) —_— l | K k(x) I l zZ

1
in the spectral seguence 5, 5 is the subgrouy of codimension P cycle which are

x€X zex xgx

- linearly eguivalent to zero. Consaquently Ep' (}'.) is canonically isomorphic to the

gToup AP(X) of cycles of codimension p modulo linear eguivalence.

Prooef. Llet P be the projective line over the ground f:.eld, and lat ¢ denote the
cancnical rational function on P". Let CP(X} dendte the group -of codimension p |
cycles. The subgroup of cycles linearly eguivalent to zaro.is generated by cycles of the
form Wo - ‘n'm, where ¥ is an :eradugible pubvariety of X x '.F’1 of codimension p such
that the intersections VW = ¥nlX x 0) and ¥, = Wn(Xx o) are proper. We need a
known formuls for ‘a’o - h’m " which we now recall,

Let Y be the image of W under the projection Xx :E’1 — X, 80 that dim(Y) =
dim(¥W) or dim{¥W) - 1 . 1In the latter case we have W=1Y x P1 and ‘wo - Wm = 0, 80
ve may sssume dim{W) = dim(Y), whence Y hss codimension p~-1 in X. let y Dbe the
generic point of Y and w the generic point of W, so that k(w) ies a finite extemsion
of k(y). Let t' be the non-zero element of k{w) obtained by pulling t back to W,
and let x be & point of codimension one in Y, whence 0 is a local domain of

. =Y,z
dimension one with gquotient field Xk(y):- Then the formuls we want is

{5.15) (maltiplicity of x in Wo-- Wm) = °rdyx(nomk(\\')/k(?) t)

where ord x k(y)® —2Z is the unigue homomorphism such that

ordﬂ(f) = leng‘ch I/:I'O -

for feé! g+ # 0. For a proof of 5.15 see [Chevslley, p. 2-12]. ‘
=
From 5.15 it is clear that the subgroup of cycles linearly equivalent to zero is :
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the image of the homomorphism
‘ g : _Ll_ kly)” —— _U_EZx = ¢P(x)
yex xeX |
where if f£€k(y)*, then #(f) = 2 ord {(f):x and we put ordyx =0 if x¢g}. Since
_l{lk(y) = k(y)*, we see ¢ is a map from Ef_i'—p(x) to Ef’-p(X). s0 all that
remains to prove the proposition is to show that g = _d1 .

g

Let d.1 have the components

i: ‘ (d‘1)yx : k(y) -K1k(y) — Kok(x) =%

i . ) _ . X

; for y in xp_1 end x in X . We want to show that (d1 )y':. = ordyx . Fx y in

:11;’( XP_,I and let Y be its closure. The closed immersion Y —+X carries gj(‘[) to

?’ Ejd—p—-i (X) for =1l j, hence it induces a map from the spectral sequence 5.5 for Y to
S =

the one for X augmenting the filtration by p-1. Thus we get s commutative diagrem
] a } o -
B P(X) s EPY7R(X) cP(x)
bt
Kky) = 27N —Ls 5T = cl(y)

which shows that (d1')y-x =0 unless x is in Y. On the other hand, if x 4is of
codimension cne in Y, then the flat map Spec(gy x) ~>Y induces s map of spectral

AT A e R

*
i
i

sequences, 3¢ we get & commutative diagram %;k
' d &

Kk(y) = E?H(‘r) —1 E}"' (x) = ¢'(x) g

l l l multiplicity @

f x A

R &4 4, ) ° i

K1k(Y) = L‘1 (gy'x) E1 (2 ,x) - z i

which shows that (d'l) is the mep d, in the spactral sequence for Q, . . Therefore
b ]

yx
the equality (d1) yx = ordﬂ is a consequence of the following.

Lesma 5.16. Let A be an egui-characteristic local noetherian domain of dimension

one with quotient field F and resjdue field k,- and let

B 1
F—»KDB:——:KOA—A-KOF—)-O

— K{IL —_— Kl

be the exact sequence 3.3 associated to the closed set Spec k of Spec A. Then

d: K,F —=K k is isomorphic to ord : F* — Z , where ord is the homomorphisp such
that ord(x) = length(A/xA) for x in A, x £ 0.

Proof. We have isomorphisms KiF =F" and K1A = A" pgince A and F are ].oca-"!“-
rings. We wish to show &(x) = ord(x) for x in A, x#0. If x is in A°, this
clear, as 9(x) = 0O since x 4is in the image of the mep K1A -#K“A. —,\K,.F . Thus
can suppose X is not = unit, By hypothesis A 4is an algebra over the prime subfiel
ko of k. If x were algebraic over ko y 1t would be a unit in A, Thus x 18 ﬁof
algebraic, so we have a flat homomorphism ko[t] —- A sending the indeterminate ¢ ¥

4
X, By naturality of the exact sequence 3.3 for flat maps, we get & commutative diag




e e e K{A. ; K F - -a > Kaku..‘____hA__ et ar e £ @1 e n Aan by i 1 o iemie e e e ‘ :

" length with those of P(k). Thus with respect to the isomorphisms Kk =Kk =2 , v

with Tibre X(V), One can show that X(V) 4is contractible (it is essentially &

3 Kk o
0

E

| -1
— Ktko[t] —_— K1ko[t,t ]

lu

L _
such that u(t) = x. The homomorphism v is induced by sending a ko-vectur space V %o
the A-module

“’ko[t]v = AfxA akov

and using devissage to identify the EK-groups of the category of A-modules of finite

is miltiplication by length(A/xA) = ord{z) . Therefore it suffices to show that in the
top row of the above dimgram, ome has O{t) = # 1. But this is easily verified by
explicitly computing the top row, using the fact that KoR = & and K1R =R' for s
Fuclidean demain., q.e.d.

Remark 5.17. In another paper, slong with the proof  of Theorem 1 of [Quillen 1],
I plan to justify the following description of the boundary map 3 3 KnF - Kn—1k for a
local noetherian domain A of dimension one with quotient field F and residue field
k. By the universal property of the X-theory of a ring, such & mep is defined by giving

for every finite dimensions)l vector spece V over F = homo'topy class of maps

(5.18) B(aut(V)) —> BQ(P(k))

compatitle with direct sums, To do this consider the set of a-lattices in V, i.e.
finitely generated A-submodules L such thet F @ L =V. lLet %(V) be the ordered set
of layers (LD,L1) such that L1/L° is killed by the maximal idesl of 4, and put

G = Aut(V), Then G acts.on X(V), s0 we can form a cofibred category X(V)G over &

'building'), hence the functor X(V)G — G is s homotopy equivalence, On the other hand
there is = functor X(V)G — Q(g(k)) sending (Lo'L1) to L1/Lo , hence we obtain the
desired map 5.18.

It can be deduced from this deseription that the Lemma 5.16 is velid without the
equi-characteristic hypothesis.

Combining 5.8, 5.11, and 5.14 we obtain the following.

Theorem 5.19. For a regular scheme X of finite type over a field, there is a
canonicel isomorphism

HP(J{,EP) = AP(X) .

For p=0 and 1 this amounts to the trivial formulas B°(2,2Z) = ¢°(X) and
H1(x'2£) = Pie{(X). For p =2 this formula has been established by Spencer Bloch in
certain cases (sée his paper in thie procedings). |

One noteworthy feature about the formula 5.19 4is that the left side is manifestly
contravariant in X, which suggests that higher K.-theory will eventually provide the tool
for s theory of ‘the Chow ring for non-preojective nonsingular varieties.

iy
¢
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B8. Projectiva fibre bundles

The main result of this section is the computation of the X-groups of tha projective
tundle associated to a vector bundia over a scheme. It generalizes the theorem about
Grothendieck groups in [ﬁGA 6 VI] and may be considered a8 a~first step toward a higher
X-theory for schemes {as opposed to the K';theory developed in the preceding section),
The method of proof differs from that of [EGA 6] in that it uses the existence of
canonical resolutions for sheaves on projective space which are regular in the =sense of
LHumford. Lacture 14]. We also discuss iwo variants of this result proved by the same
method, The first concerns the 'projective line' over a {not necessarily commutative)
ring; it is one of the ingredients for a higher K generalization of the 'Fundamental
Theorem' of Bass to be presented in a later paper. The second is a formula relating
the K-groups of a Severi-Brauer scheme with those of the associated Azumaya algebra

end its powers, which was inapired by a calculation of Roberts.

1. The canonical reasolution of a regular sheaf on PE. Let 5 be a scheme
(not necessarily noetherian or sepurated), let E be a vector bundle of rank r over
S, and let X = PE = Proj(SE) be the associated projective bundle, where BSE is the ;
symetric algebra of E over Q.. Let 214(1) be the canonical line bundle on X and l
fi1X -3 the structural msp. We will use the term "X-module" to mean a gquasi-coherent

sheaf of gx—modules, unless specified otherwise.

The following lemma summarizes some standerd facts about the higher direct image
functors qu* we will need.

Lemma 1.t. &) For any X-module F, qu*(F) ig an S-module which is zero for

Q= r.
b) For any X-module F and vector bundie E' on S, one has

R, (F) BgB' = R (F o E') .

c) For any S-module N, one has

.0 - gqfo, T -1
R, (0, (n) BgN) = 5,2 g0 ) q= 0
(Sr_nE) ﬂs/\ B ggN g= 71

where "~" denotes the dual vector bundle.
d) If P is an Xemodule of finite type (e.g. a vector bundle), and if S is
affine, then .F is a guotient of (gx(_1)ﬁn)k

for some n, k.

Parts a),c) result from the standard Cech calculations of the cohomology of proje
tive space [EGA ITI 2]. Part b} is obvious since locally E' is a direct sum of 'f
finitely many copies of 25‘ For d), see [EGA 1I 2.7.10]. ;

Folloving Mumford, we call an X-module F regular if R%f,(F(~q)) =0 for q>0y
where as usus), Mn) = gx{i)ﬂnan . For example, we have gx(n) 8N is regular fO?E
nx0 by e),



Lemma 1.2. ot O - F' —» F —p P" = 0 bp an exact seguence of X-podules.
a) If ® (n) a.nd F*(n) sere regular, so is F(n).

b)_If yld n)_and_F_(nH )—B.I-'B_NE&J.’-,—‘BG—&B*F" {n)=
e) If F(n+1)} and F" (n) are regular, and if f, {(F(n))~> T, (P*(n)) is onto, then

F'(n+t) 4is regular.

; :_‘; Proof. This follows immediately from the long exact seguence

The following two lemmas appear in [Kunford, Lecture 14] and in [ses 6 X111 1.3],
but the proof given here is slightly different.

Lemma 1,3, If F is regular, then F(n) is regular for all n20.
Proof. From the canonical epimorphism O BcE —}_E_)‘xh) one hes an epimorphism
(1.4) g (-1)ef ~—> 0
Bo we get an exact sequence of vector bundles on X
‘ - .
(1.5) o--p-_gx(-r)es/\E ~= + o0 > Of-1)8E = 0 —0

by taking the exterior algebra of Qx(-‘l) ﬁSE with differential the interior product by
{.4. Tensoring with F we obtein an exact sequence

(1.6) 0 mms F{-r) es/\’E ~~ .1 —>M-1)8E ~=F —0.

Assuming F to be regular, then (F(-p) QSAPE)GJ) is sean to be fegu.la.r ueing 1.1 b).
Thus if 1.6 is split into short exact segquences

\ _ P
0 -+zp—+1-*( p)ﬁs/\E — zp_i—ro

we can use 1.2 b) to show by decreasing induction on p that Zp(p+1) is regular.
Thus Z°(1) = F(1) 4ia regular, ac the lemms follows by induction on n,

Lemms 1,7. If F is regular, then the ca.nog'.cai map Oy ﬂsf*(F)-q't-F ie_surjective.

Proof, From the preceding proof one has an exact seguence

0 vy Z, — F(—1)ﬁSE 3 F el

where 21(2) is regular. Thus R1i‘*(z1(n)J =0 for nk1, 80 we find that the canonical

map f*(F(n-U)ﬁsE -'—r'f (P(n)) 4s murjective for n>1. Hence the canonical map of
SE-modules

SEef(F) — _I_Li‘ (F(n))
nzo

is surjeciive. The lemms follows by taking associated sheaves,
Suppose now that F is an X-module which admits & resclution

where the T 4 &re modules on S. Breaking this sequence up into short exact sequences
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R (0-q)) ~+ Rt (F(n-q)) —= B, (F"(n-q)) —~ Rq“f*(F'(n-gJ) — 3%s, (F(n=q)) .

i



and applying 1.2 b), one sees as in the proof of 1.3 +that F has {0 be regular.
Koreover, the above exact sequence can be viewed as a resolution of the zero module by
acyclic objects for the § —functor qu*(?(n)), where n is a.ny.fixed integer > 0, Thus
on applying £, ﬁe get an exact sequence

0 —» S __Bel , ~> ...~ SEOT — £,(Fa)) -0

for each n»0. In particular, we have exact sequences
(1.8) 0 = T = BT , —r. .. — £,(F(n)) — 0

for =0 ,400 r-{ which can be used to show recursively that the modules ‘Tn are
determined by F wup to canonicel isomorphism.

Conversely, given an X-module P, we inductively define a sequence of X-modules
Zn - Zn(F) and a sequeﬁca of S-modules T = ’I‘n(F) as follows. Starting with Z_‘| =W
let T =f (Z (n)), and let & be the kernel of the canonical map gx("n)QSTn—’ Z_
It is clear that Z, and T are additive functors of F. .

Supposing now tha.t F :Ls regular, we show by induction that 2 (n+1) is regular,
this being clear for n = -1, We have an exact sequence

(1.9) 0 — 2(0) == Q8 — Z .(n) — 0

where the canonical map ¢ i& surjective by 1.7 and the induction hypothesis. By 1.3,
1.2 ¢) we find that Zn(m-!) is regular, so the induction works. In addition we have

(1.10) £,(2 (n)) = 0 for n30

because © induces an isomorphism after applying f, .
From 1.9 and the fact that £, is exact on the category of regular X-modules,
one concludes ‘ny induction that F l-)-‘l‘ (F) ie an exact functor from regular X-modules
fo S-modules,

We next show that Z,_.._1 = 0. From 1.9 we 'get exsct seguences
=1 d ' .
R f,(qu y(n)) ——s R, @, (n)) —— Rt {0y q)ﬁSTn+q)
which allow one to prove by induction en gq , sta.rting from 1.10, that Rq'f ( ))

for g,n30. This shows that Zr—‘l (r-1} is regular, since P.q_f* is zero for q> T
1.10 and 1.7 we have Zr_i(r—i) =0, 80 2,
Combining the exact sequencea 1.9 we obtain a canonical resolution of the reg

sheaf F of length r -1, Thus we have proved the following.

= 0 as was to be shown.

Propoaition V.11, Any regular X-module F hss a resolution of the form

0~ Of-r+t)el (F) —w ... — 08 T(F) — P s O

..JC 8o
where the T (F) are S-modules determined up to unique isomorphism by F. Moreove

FisT (F) is an exact functor from the category of regular X-modules to the categ
of S—modulas. &

The nert three lemmas are concerned with the sjtuation when F is a vector b
on X, R




Lamma 1.12. Assume ‘5 is gussi-compact., Then for any vector bundle F on X,
there exists an integer n, such that for all S-modules N and nzn, ., one has
a) R, (F(n)e) =0 for q>0 ‘

b)}—F fF—(—n-)-)-Q—S-N_-"é—-«fu;(-i‘-(-n-)-ﬂgli-)

3

-.._\
e) £,(F(n)) 4is = vector bundle on S.

Proof. Because S5 is the union of finitely many open affines, it suffices to prove
the luma when S is affine. In this case F is the quotient of L = Oy(-n)* for some

p and X by V.1 d), Tiue for any vector bundle F on 5, there is an exact sequence

of vector bundles
0w P! e [ e P o 0

such that the lemma is true for L by 1.1, Since
' .
| 0 ~—» F (n)ﬁsN —> L(n)g ——yF(n)ﬁSN —> D
is exact, we have an exact sequence

RY, (Ln)eg) — R, (P(n)ag) —s RYr,(F'(n)eg)

. 8o part a) cen be proved by decreasing induction on g, as in the proof of Serre's

theorem [EGA 111 2.2.1]. Uéing a) we have a disgram with exact rows

f,(F'(n))eN — £,(L(n))eN — 1, (F(n))el —> O
u! § u
0 ~—> £ (F(2)eN) —- i‘*(L(n)ﬂSN) — f*(F(n)ﬂsN) — 0
for n > some I.’o and all N. Hence u is surjective; applying this to the vector
0
and all N, whence b). By &), f*(F_(n)ﬁSN) is exsct ag a functor of N for sufficient-
1y large n, whence using b) we see I, (F(n)) is a flat gs-module. On the other hand,
f,(P{n)) is a quotient of £ (L(n)} for n » some o, %0 £f,(F(n)) is of finite type.
Applying this to F' we see that f,(F(n)) is of finite presentation for all sufficiently
large n, But a flat module of finite presentation is a vector bundle, whence _c).

bundle F', we see that wu' is surjective, hence u is bijective for n > some n

Lemms 1,13. If F is & vector bundle on X such that Rq'f*(F(n)) =0 for q20,
n >0, then f*(F(n)) is & vector bundle on S for all n3® 0.

Proof. The assertion being local on S, one can suppose S affine, whence f,(F(n})
is & vector bundle on S for large n by 1.12 c); Consider the exact mequence

0 — F(n) — F(o+)gE ~>. . . — F(n+r)a5/\”E"--.- 0

obtained by temsoring F(n) with the dual of the segquence 1.5. For n20, this is &

‘ resolution of the zerc module by acyclic modules for the & -functor qu* s hence one

knows that on applying f, one gets sn exact sequence
0 — £,(F(n)) — ... —m f*(F(n-*r))ﬁs/\rE —> 0.

Therefore one can show f,{(F(n)) is a vector bundle for all n} 0 by decreasing

induction on n.

141

ke E



LAY

T Lo by
S G b

A A TR

=4

134

58

Lomma 1, 14, If F iz a re;t_llar vector bundla on X, then T (F) ia a vector
bundle on S8 for each L. :

This follows by induction cn i, using the 'exact sequences 1,8 and the lemna 1.1'5.‘:

LY

2, The projective bundle theorem. Recell that the K-groups of a scheme are !
naturally modules over I{o v g3 (1). The following result generalizes [SGA 6 VI 1.1].

Theorem 2.1. Let E Dbe a vector bundle of rank r over a scheme 3 and X =

Proj(SE) the sasociated projective scheme. If S5 is guasi-compact, then one has

isomorphisms , 1
T s kX (a,) P
(KqS) Kq R 8)ogicr [N ) 25 f*a,

where z§ KOI is the class of the canonical line bundle g_x(-1-) and f : X «3 5 i3 the
structural map,. 4

Proof. Let gn dencte the full aubcategory of E(X) conaisting of vector btmdlea'-‘
F such that Rq'f*(F(k}) =0 for g#0 and k>n. Let R, ~denote the full subcategor
of g(x) consisting of F such that F(n) is regular, Each of these'subcategoriea is
closed under extensions, ao its K-groups are defined.

Lemma 2,2. For all n, one has isomorphisms: i{q(gn) = xq(gn) ~= Kq(l_’(x))
induced by the inclusions BnC B C E(K).

To prove the lemma, we consider the exact{ sequence
{2.3) 0 —>F —+F1)gE —> ., . —>F(r ﬂ/\E —_—0 .

For each p>0, F y>r F(p)ﬁsf\pE is an exact functor from P to P . , hence it
induces a homomorphism u_: K (B ) X (p i)+ From Th. 2, Cor. 3 it is clear that
y >O('1 Pl is en imlzerseqto the map induced by the inclusion of P, in P .’
Thus we have Kq( ) X (P ) for all an. By 1.12 a), P(K) is tha union of the
P, soby §2(9) we have X LP )= K, (B(x)) for all n. The proof that K (R )=

(P(X)) is similar, whence the lama.

Put Un(H) =9_-J:;('“)“s” for N in P(S). For 0gn<r, U, 1is an exact functor
i
from E(S) to B by 1.4 ¢), hence it induces a homomorphism uw i K (P(S)) - K. ’

In view of 2.2, it suffices for the proof of the thecrem {0 show that ‘che hcmomorp
-1

: Kq(g(s) - _Kq(go) ' (a'n)0<n<'r > % un(a’n)
is an isomorphiam.
~ From 1.13 we know that V_(F) = £,(F(n)) is an exact functor from B to
for n»0, hence we have & homomorphism
viR(2) — K(p(s)) T b (v(2))ogner 0
where Yo is induced by Vn. Since

V) = 2,0 (an)e) = 5 (E)eN
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w 14 ¢), it follows that the composition wvu is describéd by a triengular metrix with
opes on the diagonal, Therefore vu is an isomorphisam, g0 u is injective.

. On_the other hand, T . 15 en exact funetor from R, -to. 1:..(8) ......... by 111 .and. 1.34,. . .08

hence we have & homomorphism

iR (E) = EEET e (0P

where t is induced by T « Applying Th, 2, Cor. 3 %o the exact sequence 1.11, we
see that the composition ut ie the map K (R )-—h-K (P } induced by the inclusion of
Eo in £O . By 2.2, ut is an isomorphism, 80 u is su:,)ective, concluding the proof.

3. The projective line over a ring. Let 4 be & {not necessarily commutative) ring

let t be an indeterminate, snd let
i i

Alt] — afe,t7'] 22— afs"]
denote the canonicel homomeorphisms. When A is commutative, a quasi~coherent sheaf on
Pl Proj(afx_,X,]) may ve identified with a triple F = (K',M",0), where Mhe Moa(a[t]),
€ Mod (4[t™ ’_]) end @ : i7(¥') % 13(N7) 1is en isomorphim of Aft,t” ' -modules, Fol-
loving [Bass XII §9], we define Mod(P‘) for A non-commutative to be the abelian
category of such triples, and we def;.ne the category of vector bundles on P1A , denoted
g(rl), to be the full subcategory consisting of triples with M € 2( p(aft]), ¥ ¢ P(A[t"’]).

Theorem 3.1. Let h_: (A) — P(P ) be the exact functor sending P to the
$riple comsisting of P|t] = A[t]ﬁ P, P[t7'], end multiplicetion by t° on P[t,t"].
Then one has isomorphisme

(ka)? =2 K (2() . (xy) b (ny)y(x) + (8), ()

and the relations

(3.2) (n_), - 2(n + (n

n-1 )*

for all n.

When A is commutative, this follows from 2.1, once one notices that h (P) is the
module O n)ﬂSP + For the non-commutmtive case, one modifies the proof of 2 1 4ina

straightforwa.rd way. For example, if F = (MK ,S), we put P(n) = (v*,M",+0), and let
XO,X1 : F(n=1) ~» F(n) be the homomorphisms given by X =1 on M and t “lon M ,

11 =t on X and 1t on M ). Then we have an exact seguence

(x Xy X, ) X pry + X, pr,
O e F(1r2) e s P(net)? + F(n) == 0

corresponding to 1.6, which leads to the relations 3,2, Also using the fact that R "
can be computed by means to the standard open affine covering of P‘l » we can define
Rq‘f*(F) in the non-commutative case to be the homology of the complex concentrated in
degrees O , 1 given by themap d : M x M~ —n i;(M_) , dlx,y) = e(18x) -~ 18y .
One therefore has available all of the iools used in the proof of 2.1 in the non-commu-
tetive case; the rest 1g stralghtforward checking which will be omitted.
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4. BSeveri-Brauer schemes and Azumava slgebras. et 3 be a scheme and let X dbe

a Severi-Breuer scheme over S of relative dimension r-1. By definition X is an
S—schame locally isomofphic to the projective space P;-1 for the etale topology on 3.
(see LGrothendieckJ}, and it is gssentially the same thing as an Azumsya algebra of rank
r2 over 5. We propose now to generalize 2,1 +to this aituation.

When there exists a line tundle L on X which restricts to 0(~1) on each
gaometric fibre, one has X = PE, where E is the vector bhundle f*ﬂv om S5, f:X =5
being the structural map of X. In éeneral such a line bundle L existas only locally for
the etale topology on X. However, we shall now show that there is a canonical vector :
bundle of rank T on X which restricts to 0(-1)" on each geometric fibre.

Let the group scheme GL r,8 act on 2; ir the standard way, and put Y = P; =
Proj(S(O )). The induced actlon on Y factors through the projective group
PGL = L. S/Gm,s . Since ¢ acts trivially on the vector bundle QY("UESQE ,

r,S m,S

fthe group PGL: 3 operates on this vector bundle compatibly with its action on Y. 4As '

X ia locally isomorphic to Y for the etale topology on S and PGLr 3
of automorphisms of Y over 3, one knows that X i= the bundle over § with fibre Y

1

is the group

associated to a torsor T under PGLr,S locally trivial for the etale topology. Thus
by faithfully flat descent, the bundle 21(“1)352§ en I gives rise to a vector
bundle J on X of rank .
It is clear that the construction of J i3 compatible with base change, and that
( 1)ESE if X = PE. In the general case there is a cartesian sgquare

1
Xt —.-E...._.,-x
f-[ 1f
§' s

where g 1ia faithfully flat (a.g. an eiale surjective map aver which T becomes triviai
such thaet X' =PE for some vector tundle E of rank r on S', and further :

g J) = g, (-1)eE .
Let A be the sheaf of (non-commutative) QOg-algebras given by
A = £,(End (7

where 'op' denotes the opposed ring structure, As g 4is flat, we have g*f, = &'
Hence we have '

e (W% = 0, (ma (0 (-1)ag,E)) = £,(0 8 Ena  (5)) = Ena,(8),
hence A is an Azumaya algebra of rank r2 over S. Moreover oﬁe has
| f*A = End (7)°P
a3 one verifies by pulling back to X',

Let I (resp. A ) be the n-fold tanaor product of J on X (resp. 4 on :5 ,
that A, la an Azumaya algebra of rank (r° ) such that
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= Op - op
A, = £,(Bd (5))7° , (a) = End, (7))
Let P(An) dencote the category of vector bundles on S which are left modules for An .
”Sincew,Jnmmis 1 rightm"ft(kn}pmodule,,Hhich,locallyuonm_xw.ism&"direct ..... summanduofmmf.(ii)'__.m“ﬂ

we have an exact funcior

J & 7 : P(A) — P(X) ' M b= J B £ (M)
n An =''n =" n f*(A)
n
and hence an induced map of K-groups.
Theorem 4.1, 1f S is guasi-compact, one has isamorphisms
-} r=1
Fad
L] xa) &= x &), ) B 22 G, 2)(x) .
=0 n
n=0
This is actually a generalization of 2.1 Dbecause if two Azumaya algebras 4 , B
represent the seme element of the Brauer group of S, then the categories P(4), E(B) are
equivalent, and hence have isomorphic K-groups. Thus Ki(ngn)) = Ki(s) for a1l n if
X is the projective bundle associated io some vector bundle.
The proof of 4.1 is & modification of the proof of 2.1. One defines an X-module
F to be regular if its inverse image on X' = PE is regulsr. For a regular F one
constructs 8 sequence
(4.2) © —+Jr_1ﬁAr_1'I‘r_1(r) —> oo > 0BT (F) wr F o O
recursively by
T (F) = f*(n_o_E:(Jn,Zn_1(F))) 3 2, (F) = Ker [JnBAnTn(F) — 2z, (F)}
gtarting with 2_1(F) = F. It is easy to see this seguence when lifted to A' coincides
the the canonicel resolution 1,11 for the inverse image of F on X'. Since X' is
feithfully flat over X, 4.2 1is s resoclution of F.
) We note slso that there is a canonical epimorphism J -9 0, obtained by descending

=X
1.4, and hence a cunconicel vector bundle exact sequence

0w AT — o vv = T = 0, —> 0

on X corresponding to 1.,5. Therefore it should be clear that all of the tools used in
the proof of 2.1 are aveilable in the situstion under consideration; the rest of the
proof of 4.1 will be left to the reader.

Example: Let X be a complete non-singular curve of genus zerc over the field
k= H°(x,gx) , and suppose X has no rational point. Then X is a Severi-Brauer scheme

over k of relative dimension one, and J is the unique indecomposable vector bundle of

rank 2 over X with degree ~2. The above theorem says
Ki(}’.) = z{i(k) e I\i(.&)

where A is the skew-field of endomorphisms of J. This formula in low dimensions has
been proved by Leslie Roberts ([Roberts] ).

——
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