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Abstract. We prove the stable parametrized h-cobordism theorem: For CAT equal

to one of the geometric categories TOP, PL or DIFF, and M a compact CAT mani-
fold, the space of stable CAT h-cobordisms on M is naturally homotopy equivalent
to the loop space of the CAT Whitehead space of M . Here the stable h-cobordism

space is defined in terms of manifold bundles, whereas the Whitehead space is defined
in terms of the algebraic K-theory A(M) of the space M .
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Introduction

We present a proof of the stable parametrized h-cobordism theorem stated below.

Theorem 0.1. There is a natural homotopy equivalence

H
CAT (M) ≃ ΩWhCAT (M)

for each compact CAT manifold M , with CAT = TOP, PL or DIFF.

Here HCAT (M) denotes a stable CAT h-cobordism space defined in terms of

manifolds, whereas WhCAT (M) denotes a CAT Whitehead space defined in terms
of algebraic K-theory. We specify precise functorial models for these spaces in
Definitions 1.1.1, 1.1.2, 3.1.6 and 3.1.11.

This is a stable range extension to parametrized families of the classical h- and
s-cobordism theorems. Such a theorem was first stated by A. E. Hatcher in [Ha75,
Thm. 9.1], but his proofs were incomplete. The aim of the present paper is to
provide a full proof of this key result, which provides the link between the geometric
topology of high-dimensional manifolds and their automorphisms, and the algebraic
K-theory of spaces and structured ring spectra. The paper is based on a manuscript
by the first author, with the same title, which was referred to as “to appear” in
[Wa82] and as “to appear (since ’79)” in [Wa87b].

We first recall the classical h- and s-cobordism theorems. Let M be a compact
manifold of dimension d, either in the topological, piecewise-linear or smooth dif-
ferentiable sense. An h-cobordism on M is a compact (d + 1)-manifold W whose
boundary decomposes as a union ∂W ∼= M ∪ N of two codimension zero submani-
folds along their common boundary, such that each inclusion M ⊂ W and N ⊂ W
is a homotopy equivalence. Two h-cobordisms W and W ′ on M are isomorphic
if there is a homeomorphism, PL homeomorphism or diffeomorphism W ∼= W ′, as
appropriate for the geometric category, that restricts to the identity on M . An
h-cobordism is said to be trivial if it is isomorphic to the product h-cobordism
W = M × [0, 1], containing M as M × 0. (There is a little technical point here
about corners in the DIFF case, which we gloss over.)

Assume for simplicity that M is connected and has a chosen base point, let
π = π1(M) be its fundamental group, and let Wh1(π) = K1(Z[π])/(±π) be the
Whitehead group of π (often denoted Wh(π)). To each h-cobordism W on M
there is associated an element τ(W,M) ∈ Wh1(π), called its Whitehead torsion
[Mi66, §9]. Trivial h-cobordisms have zero torsion. In general, an h-cobordism
with zero torsion is called an s-cobordism. The h-cobordism theorem of S. Smale
(concerning the simply-connected case, when the Whitehead group is trivial) and
the s-cobordism theorem of D. Barden, B. Mazur and J. R. Stallings (for arbitrary
fundamental groups), assert for d ≥ 5 that the Whitehead torsion defines a one-to-
one correspondence

{h-cobordisms on M}/(iso)
∼=
−→ Wh1(π)

[W ] 7→ τ(W,M)

between the isomorphism classes of h-cobordisms on M and the elements of the
Whitehead group. Thus, in these dimensions the s-cobordisms are precisely the
trivial h-cobordisms.
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The aim of a parametrized h-cobordism theorem is to obtain a similar model
for the space H(M) of h-cobordisms on M , so defined that each map B → H(M)
corresponds to a bundle over B of h-cobordisms on M . The set of isomorphism
classes of h-cobordisms on M can be identified with the set π0H(M) of path com-
ponents of the h-cobordism space, so the s-cobordism theorem asserts that there is
a natural bijection

π0H(M) ∼= Wh1(π)

for d ≥ 5. Our goal, however, is to go beyond this and to give a description of
the whole homotopy type of H(M). Unlike the classification up to isomorphism,
the parametrized answer will to some extent depend on the geometric category of
manifolds in which the constructions take place. We therefore write HCAT (M) for
the space of CAT h-cobordisms on a manifold M , where CAT is one of TOP, PL
and DIFF.

We shall have to settle for a stable parametrized h-cobordism theorem, which
provides a homotopy equivalent model for the stabilized CAT h-cobordism space

H
CAT (M) = colim

k
HCAT (M × [0, 1]k) .

The model in question is defined in algebraic K-theoretic terms, much like the
definition of the Whitehead group in terms of the algebraic K1-group of the integral
group ring Z[π]. We will express each CAT Whitehead space WhCAT (M) in terms of
the algebraic K-theory space A(M), which was introduced (largely for this purpose)
by the first author. As stated at the outset, the model for the homotopy type of
HCAT (M) will be the based loop space ΩWhCAT (M). The PL and TOP Whitehead

spaces WhPL(M) = WhTOP (M) will be the same, since it is known by triangulation
theory that HPL(M) ≃ HTOP (M) for PL manifolds of dimension d ≥ 5, but

WhDIFF (M) will be different. (This wordplay is due to Hatcher.)
By definition, the algebraic K-theory A(M) of the space M is the loop

space Ω|hS•Rf (M)| of the geometric realization of the subcategory of homotopy
equivalences in the S•-construction on the category with cofibrations and weak
equivalences Rf (M) of finite retractive spaces over M . See [Wa85, §2.1]. Iteration
of the S•-construction specifies a preferred sequence of higher deloopings of A(M),
so we may view that space as the underlying infinite loop space of a spectrum
A(M), in the sense of algebraic topology.

Letting ∗ denote a one-point space, the PL Whitehead space is so defined that
there is a natural homotopy fiber sequence

h(M ;A(∗))
α
−→ A(M) −→ WhPL(M)

for each space M , where h(M ;A(∗)) = Ω∞(A(∗)∧M+) is the unreduced generalized
homology of M with coefficients in the spectrum A(∗), and α is the natural assembly
map to the homotopy functor A(M). The stable parametrized PL h-cobordism
theorem can therefore be restated as follows.

Theorem 0.2. There is a natural homotopy fiber sequence

H
PL(M) −→ h(M ;A(∗))

α
−→ A(M)

for each compact PL manifold M , where α is the assembly map.
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The DIFF Whitehead space is so defined that there is a natural homotopy fiber
sequence

Q(M+)
ι
−→ A(M) −→ WhDIFF (M)

for each space M , where Q(M+) = Ω∞Σ∞(M+) and ι is induced by the unit map
η : S → A(∗) and the assembly map. In this case the fiber sequence is naturally split
up to homotopy, by a stabilization map A(M) → AS(M) ≃ Q(M+). The stable
parametrized DIFF h-cobordism theorem can therefore be restated as follows.

Theorem 0.3. There is a natural homotopy fiber sequence

H
DIFF (M) −→ Q(M+)

ι
−→ A(M)

for each compact DIFF manifold M . The map ι is naturally split, up to homotopy,
so there is a natural homotopy factorization

A(M)
≃
−→ Q(M+) × WhDIFF (M) ,

where WhDIFF (M) ≃ BHDIFF (M).

We note that when M is based and connected, with fundamental group π, then
π1A(M) ∼= K1(Z[π]) and π1 WhCAT (M) ∼= Wh1(π), so these theorems recover the
classical identification of π0H

CAT (M) with Wh1(π), but only after stabilization.
The proof of the PL case of Theorem 0.1 can be summarized in the following

diagram of (simplicial sets, categories and) simplicial categories:

(0.4) HPL(M) //

u

²²

colimn Mn
•

j
//

u

²²

colimn hMn
•

u

²²

sẼh
•(M) // sẼ•

j
// hẼ•

sDh(X) //

ñr

OO

i

²²

sD
j

//

ñr

OO

i

²²

hD

ñr

OO

i

²²

sCh(X) // sC
j

// hC

Here X is a finite combinatorial manifold, with geometric realization the compact
PL manifold M = |X|. The notation Mn

• refers to PL bundles of stably framed

compact n-manifolds, the notation Ẽ• refers to PL Serre fibrations of compact
polyhedra, the notation D refers to finite non-singular simplicial sets (a little more
general than ordered simplicial complexes) and the notation C refers to general
finite simplicial sets. The prefixes s and h refer to categories of simple maps (with
contractible point inverses) and (weak) homotopy equivalences, respectively. The
entries in the left hand column refer to objects which, in a suitable sense, contain
M or X as a deformation retract.

We show in Sections 3.2, 3.3 and 4.1 that the horizontal rows are homotopy
fiber sequences. In Sections 4.2 and 4.3 we show that the middle and right hand
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vertical maps u are homotopy equivalences. These maps view stably framed PL
manifolds as polyhedra, and PL bundles as PL Serre fibrations. In Sections 3.4
and 3.5 we show that the middle and right hand vertical maps ñr are homotopy
equivalences. These pass from simplicial complexes to polyhedra by geometric
realization, and simultaneously introduce a simplicial direction by viewing product
bundles as PL Serre fibrations. In Section 3.1 we show that the middle and right
hand vertical maps i are homotopy equivalences. These view non-singular simplicial
sets as general simplicial sets. Part 2 contains the foundational material on simple
maps of simplicial sets needed for these proofs. More detailed explanations and
references are given in Sections 1.1 and 1.2. The nerve of the category sCh(X) is

one model for the looped PL Whitehead space ΩWhPL(X), by Proposition 3.1.1,
Theorem 3.1.7 and Theorem 3.3.1 of [Wa85]:

|sCh(X)| ≃ Ω|sN•C
h(X)| ≃ Ω|sS•R

h
f (X∆•

)| ≃ ΩWhPL(X) .

Its relation to the functor A(X), leading to Theorems 0.2 and 0.3 and the DIFF
case of Theorem 0.1, is reviewed in Section 1.3.

In Section 1.4, we comment on the relation of this paper (and one of K. Igusa
[Ig88]) to that of Hatcher [Ha75], reaching the conclusion that in spite of the missing
technical details of the latter, its main conclusions turn out to be qualitatively
correct. We also discuss an alternative approach to the PL case of Theorem 0.1,
which with some effort can be assembled from papers by M. Steinberger [St86] and
T. A. Chapman [Ch87], in combination with [Wa85] and parts of the present paper.

To guide the reader, we might say that Part 1 has been written to present
only the definitions needed to precisely state the main results. Part 2 contains all
the technical material on simple maps of simplicial sets and related constructions.
Some of the details are quite intricate, and it may be more enjoyable to go through
them after learning why these results are useful. The geometrically minded reader,
interested in h-cobordisms and spaces of PL manifolds, could therefore start with
Part 4 instead. The algebraic K-theorist, interested in A(X) and categories of
simple maps, could start with Part 3. Both of the latter two parts have been
written with this possibility in mind, and contain direct references to Part 2 for
most of the technical results needed.

A previous version of this paper was developed around 1990 by the first author
and Wolrad Vogell. It improved on the ordering of the material from the original
manuscript, and added to the exposition of the manifold part. However, some years
later that development had stalled. The second and third author joined the project
around the year 2000, and are both grateful for being given the opportunity to help
complete this important bridge between high-dimensional geometric topology and
the algebraic K-theory of spaces.

The authors are also grateful to Tom Goodwillie for an explanation of the PL
concordance stability theorem for smoothable manifolds (Corollary 1.4.2), to Larry
Siebenmann for a clarification of the meaning of zero Whitehead torsion for pairs
of simplicial complexes (Lemma 3.2.9(d)), and to Dan Grayson for helpful advice
on the exposition.
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1. The stable parametrized h-cobordism theorem

1.1. The manifold part

In this section, let ∆q = {(t0, . . . , tq) |
∑q

i=0 ti = 1, ti ≥ 0} be the standard
affine q-simplex. We write DIFF for the category of C∞ smooth manifolds, PL for
the category of piecewise-linear manifolds, and TOP for the category of topological
manifolds. We generically write CAT for either one of these geometric categories.
Let I = [0, 1] and J be two fixed closed intervals in R. We will form collars using
I and stabilize manifolds and polyhedra using J .

By a CAT bundle π : E → ∆q we mean a CAT locally trivial family, i.e., a
map such that there exists an open cover {Uα} of ∆q and a CAT isomorphism over
Uα (= a local trivialization) from π−1(Uα) → Uα to a product bundle, for each α.
For π to be a CAT bundle relative to a given product subbundle, we also ask that
each local trivialization restricts to the identity on the product subbundle. We can
always shrink the open cover to a cover by compact subsets {Kα}, whose interiors
still cover ∆q, and this allows us to only work with compact polyhedra in the PL
case.

Definition 1.1.1. (a) Let M be a compact CAT manifold, with empty or non-
empty boundary. We define the CAT h-cobordism space H(M) = HCAT (M)
of M as a simplicial set. Its 0-simplices are the compact CAT manifolds W that
are h-cobordisms on M , i.e., the boundary

∂W = M ∪ N

is a union of two codimension zero submanifolds along their common boundary
∂M = ∂N , and the inclusions

M ⊂ W ⊃ N

are homotopy equivalences. For each q ≥ 0, a q-simplex of H(M) is a CAT bundle
π : E → ∆q relative to the trivial subbundle pr : M × ∆q → ∆q, such that each
fiber Wp = π−1(p) is a CAT h-cobordism on M ∼= M × p, for p ∈ ∆q.

(b) We also define a collared CAT h-cobordism space H(M)c = HCAT (M)c,
whose 0-simplices are h-cobordisms W on M equipped with a choice of collar, i.e.,
a CAT embedding

c : M × I → W

that identifies M × 0 with M in the standard way, and takes M × [0, 1) to an open
neighborhood of M in W . A q-simplex of H(M)c is a CAT bundle π : E → ∆q

relative to an embedded subbundle pr : M × I ×∆q → ∆q, such that each fiber is a
collared CAT h-cobordism on M . The map H(M)c → H(M) that forgets the choice
of collar is a weak homotopy equivalence, since spaces of collars are contractible.

To ensure that these collections of simplices are really sets, we might assume
that each bundle E → ∆q is embedded in R∞ ×∆q → ∆q. To smooth any corners
that arise, we interpret DIFF manifolds as coming equipped with a smooth normal
field, like in [Wa82, §6]. The emphasis in this paper will be on the PL case.

To see that the space of CAT collars on M in W is contractible, we note that
[Ar70, Thm. 2] proves that any two TOP collars are ambient isotopic (relative to
the boundary), and the argument generalizes word-for-word to show that any two
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parametrized families of collars (over the same base) are connected by a family of
ambient isotopies, which proves the claim for TOP. In the PL category, the same
proof works, once PL isotopies are chosen to replace the TOP isotopies Fs and Gs

given on page 124 of loc. cit. The proof in the DIFF case is different, using the
convexity of the space of inward pointing normals.

Definition 1.1.2. (a) The stabilization map

σ : H(M) → H(M × J)

takes an h-cobordism W on M to the h-cobordism W × J on M × J . It is well-
defined, since M × J ⊂ W × J and (N × J) ∪ (W × ∂J) ⊂ W × J are homotopy
equivalences. The stable h-cobordism space of M is the colimit

H
CAT (M) = colim

k
HCAT (M × Jk)

over k ≥ 0, formed with respect to the stabilization maps. Each stabilization map
is a cofibration of simplicial sets, so the colimit has the same homotopy type as the
corresponding homotopy colimit, or mapping telescope.

(b) In the collared case, the stabilization map σ : H(M)c → H(M × J)c takes a
collared h-cobordism (W, c) on M to the h-cobordism W × J on M × J with collar

M × I × J
c×id
−−−→ W × J .

Each codimension zero CAT embedding M → M ′ induces a map H(M)c → H(M ′)c

that takes (W, c) to the h-cobordism

W ′ = M ′ × I ∪M×I W ,

with the obvious collar c′ : M ′ × I → W ′. This makes H(M)c and HCAT (M)c =
colimk H(M × Jk)c covariant functors in M , for codimension zero embeddings
of CAT manifolds. The forgetful map HCAT (M)c → HCAT (M) is also a weak
homotopy equivalence.

We must work with the collared h-cobordism space when functoriality is required,
but will often (for simplicity) just refer to the plain h-cobordism space. To extend
the functoriality from codimension zero embeddings to general continuous maps
M → M ′ of topological spaces, one can proceed as in [Ha78, Prop. 1.3] or [Wa82,
p. 152], to which we refer for details.

Remark 1.1.3. For a cobordism to become an h-cobordism after suitable stabi-
lization, weaker homotopical hypotheses suffice. For example, let X ⊂ V be a
codimension zero inclusion and homotopy equivalence of compact CAT manifolds.
Let c0 : ∂X×I → X be an interior collar on the boundary of X, let M0 = c0(∂X×1)
and W0 = c0(∂X×I)∪(V \X). Then W0 is a cobordism from M0 to N0 = ∂V , and
the inclusion M0 ⊂ W0 is a homology equivalence by excision, but W0 is in general
not an h-cobordism on M0. However, if we stabilize the inclusion X ⊂ V three
times, and perform the corresponding constructions, then the resulting cobordism
is an h-cobordism.
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In more detail, we have a codimension zero inclusion and homotopy equivalence
X × J3 ⊂ V × J3. Choosing an interior collar c : ∂(X × J3) × I → X × J3 on the
boundary of X × J3, we let M = c(∂(X × J3) × 1), N = ∂(V × J3) and

W = c(∂(X × J3) × I) ∪ (V × J3 \ X × J3) .

Then W is a cobordism from M to N . The three inclusions M ⊂ X×J3, N ⊂ V ×J3

and W ⊂ V ×J3 are all π1-isomorphisms (because any null-homotopy in V ×J3 of a
loop in N can be deformed away from the interior of V times some interior point of
J3, and then into N , and similarly in the two other cases). Since X × J3 ⊂ V × J3

is a homotopy equivalence, it follows that both M ⊂ W and N ⊂ W are π1-
isomorphisms. By excision, it follows that M ⊂ W is a homology equivalence,
now with arbitrary local coefficients. By the universal coefficient theorem, and
Lefschetz duality for the compact manifold W , it follows that N ⊂ W is a homology
equivalence, again with arbitrary local coefficients. Hence both M ⊂ W and N ⊂ W
are homotopy equivalences, and W is an h-cobordism on M .

In the following definitions, we specify a model sẼh
•(M) for the stable PL h-

cobordism space HPL(M), based on a category of compact polyhedra and simple
maps. In the next two sections we will re-express this polyhedral model: first in
terms of a category of finite simplicial sets and simple maps, and then in terms of
the algebraic K-theory of spaces.

Definition 1.1.4. A PL map f : K → L of compact polyhedra will be called a
simple map if it has contractible point inverses, i.e., if f−1(p) is contractible for
each point p ∈ L. (A space is contractible if it is homotopy equivalent to a one-point
space. It is, in particular, then non-empty.)

In this context, M. Cohen [Co67, Thm. 11.1] has proved that simple maps (which
he called contractible mappings) are simple homotopy equivalences. Two compact
polyhedra are thus of the same simple homotopy type if and only if they can be
linked by a finite chain of simple maps. The composite of two simple maps is
always a simple map. This follows from Proposition 2.1.3 below, in view of the
possibility of triangulating polyhedra and PL maps. Thus we can interpret the
simple homotopy types of compact polyhedra as the path components of (the nerve
of) a category of polyhedra and simple maps.

Definition 1.1.5. Let K be a compact polyhedron. We define a simplicial category

sẼh
•(K) of compact polyhedra containing K as a deformation retract, and simple PL

maps between these. In simplicial degree 0, the objects are compact polyhedra L
equipped with a PL embedding and homotopy equivalence K → L. The morphisms
f : L → L′ are the simple PL maps that restrict to the identity on K, via the given
embeddings. A deformation retraction L → K exists for each object, but a choice
of such a map is not part of the structure.

In simplicial degree q, the objects of sẼh
q (K) are PL Serre fibrations (= PL

maps whose underlying continuous map of topological spaces is a Serre fibration) of
compact polyhedra π : E → ∆q, with a PL embedding and homotopy equivalence
K×∆q → E over ∆q, from the product fibration pr : K×∆q → ∆q. The morphisms

f : E → E′ of sẼh
q (K) are the simple PL fiber maps over ∆q that restrict to the

identity on K × ∆q, via the given embeddings.
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Each PL embedding K → K ′ of compact polyhedra induces a (forward) func-

tor sẼh
•(K) → sẼh

•(K ′) that takes K → L to K ′ → K ′ ∪K L, and similarly in
parametrized families. The pushout K ′ ∪K L exists as a polyhedron, because both

K → K ′ and K → L are PL embeddings. This makes sẼh
•(K) a covariant functor

in K, for PL embeddings. There is a natural stabilization map

σ : sẼh
•(K) → sẼh

•(K × J)

that takes K → L to K × J → L × J , and similarly in parametrized families. It is
a homotopy equivalence by Lemma 4.1.12 below.

As in the following definition, we often regard a simplicial set as a simplicial
category with only identity morphisms, a simplicial category as the bisimplicial
set given by its degreewise nerve (Definition 2.2.1), and a bisimplicial set as the
simplicial set given by its diagonal. A map of categories, i.e., a functor, is a homo-
topy equivalence if the induced map of nerves is a weak homotopy equivalence. See
[Se68, §2], [Qu73, §1] or [Wa78a, §5] for more on these conventions.

Definition 1.1.6. Let M be a compact PL manifold. There is a natural map of
simplicial categories

u : HPL(M)c → sẼh
•(M × I)

that takes (W, c) to the underlying compact polyhedron of the h-cobordism W , with
the PL embedding and homotopy equivalence provided by the collar c : M×I → W ,
and views PL bundles over ∆q as being particular cases of PL Serre fibrations over
∆q. It commutes with the stabilization maps, so induces a natural map

u : H
PL(M)c → colim

k
sẼh

•(M × I × Jk) .

Here is the PL manifold part of the stable parametrized h-cobordism theorem.

Theorem 1.1.7. Let M be a compact PL manifold. There is a natural homotopy
equivalence

H
PL(M) ≃ sẼh

•(M) .

More precisely, there is a natural chain of homotopy equivalences

H
PL(M)c = colim

k
HPL(M × Jk)c u

−→
≃

colim
k

sẼh
•(M × I × Jk)

σ
←−
≃

sẼh
•(M) ,

and HPL(M)c ≃ HPL(M).

By the argument of [Wa82, p. 175], which we explain below, it suffices to prove
Theorem 1.1.7 when M is a codimension zero submanifold of Euclidean space, or
a little more generally, when M is stably framed (see Definition 4.1.2). The proof
of the stably framed case will be given in Part 4, and is outlined in Section 4.1.
Cf. diagram (4.1.13).

Remark 1.1.8 (Reduction to the stably framed case). Here we use a second ho-
motopy equivalent model H(M)r for the h-cobordism space of M , where each
h-cobordism W comes equipped with a choice of a CAT retraction r : W → M ,
and similarly in parametrized families. The forgetful map H(M)r → H(M) is a
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weak homotopy equivalence, since each inclusion M ⊂ W is a cofibration and a
homotopy equivalence. For each CAT disc bundle ν : N → M there is a pullback
map ν! : H(M)r → H(N)r, that takes an h-cobordism W on M with retraction
r : W → M to the pulled-back h-cobordism N ×M W on N , with the pulled-back
retraction.

M × Jk // ≃ //

τ

²²

W × Jk
r×id

//

²²

M × Jk

τ

²²

N // ≃ //

ν

²²

N ×M W //

r∗ν

²²

N

ν

²²

M // ≃ // W
r // M

If τ : M × Jk → N is a second CAT disc bundle, so that the composite ντ equals
the projection pr : M × Jk → M , then (ντ)! equals the k-fold stabilization map
τ !ν! = σk. Hence there is a commutative diagram:

H(M)r ν!
//

≃

²²

H(N)r τ !
// H(M)r

≃

²²

H(M)
σk

// H(M)

By Haefliger–Wall [HW65, Cor. 4.2], each compact PL manifold M admits a stable
normal disc bundle ν : N → M , with N embedded with codimension zero in some
Euclidean n-space. Furthermore, PL disc bundles admit stable inverses. Let τ : M×
Jk → N be the disc bundle in such a stable inverse to ν, such that ντ is isomorphic
to the product k-disc bundle over M , and τ(ν × id) is isomorphic to the product k-
disc bundle over N . By the diagram above, pullback along ν and τ define homotopy
inverse maps

H
PL(M)

ν!

−→ H
PL(N)

τ !

−→ H
PL(M)

after stabilization.
Likewise, there is a homotopy equivalent variant sẼh

•(M)r of sẼh
•(M), with a

(contractible) choice of PL retraction r : L → M for each polyhedron L con-
taining M , and similarly in parametrized families. There is a simplicial functor

ν! : sẼh
•(M)r → sẼh

•(N)r, by the pullback property of simple maps (see Propo-
sition 2.1.3). It is a homotopy equivalence, since each stabilization map σ is a
homotopy equivalence by Lemma 4.1.12. Thus it suffices to prove Theorem 1.1.7
for N , which is stably framed, in place of M .

Remark 1.1.9. A similar argument lets us reduce the stable parametrized TOP
h-cobordism theorem to the PL case. By [Mi64] and [Ki64] each compact TOP
manifold M admits a normal disc bundle ν : N → M in some Euclidean space, and
ν admits a stable inverse. As a codimension zero submanifold of Euclidean space, N
can be given a PL structure. By the argument above, ν! : HTOP (M) → HTOP (N)
is a homotopy equivalence. Furthermore, HPL(N) → HTOP (N) is a homotopy
equivalence for n = dim(N) ≥ 5, by triangulation theory [BL74, Thm. 6.2] and
[KS77, V.5.5]. Thus HPL(N) ≃ HTOP (N), and the TOP case of Theorem 0.1
follows from the PL case.
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Remark 1.1.10. More variations are possible in the definition of the h-cobordism
space H(M). For a fixed h-cobordism W on M , the path component of H(M)
containing W is a classifying space for CAT bundles with fiber W , relative to the
product bundle with fiber M . A homotopy equivalent model for this classifying
space is the bar construction BCAT (W rel M) of the simplicial group of CAT au-
tomorphisms of W relative to M . Hence there is a homotopy equivalence

H(M) ≃
∐

[W ]

BCAT (W rel M) ,

where [W ] ranges over the set of isomorphism classes of CAT h-cobordisms on M .
In particular, when W = M × I is the product h-cobordism on M ∼= M × 0, we

are led to the simplicial group

(1.1.11) C(M) = CAT (M × I,M × 1)

of CAT concordances (= pseudo-isotopies) on M . By definition, these are the
CAT automorphisms of M × I that pointwise fix the complement of M × 1 in
∂(M ×I). The concordances that commute with the projection to I = [0, 1] are the
same as the isotopies of M rel ∂M that start from the identity, but concordances are
not required to commute with this projection, hence the name pseudo-isotopy. The
inclusion C(M) → CAT (M × I rel M × 0) is a homotopy equivalence, so the path
component of H(M) that contains the trivial h-cobordisms is homotopy equivalent
to the bar construction BC(M). In general, H(M) is a non-connective delooping
of the CAT concordance space C(M).

By the s-cobordism theorem, the set of path components of H(M) is in bijection
with the Whitehead group Wh1(π) = K1(Z[π])/(±π), when d = dim(M) ≥ 5 and
M is connected with fundamental group π. For disconnected M , the Whitehead
group should be interpreted as the sum of the Whitehead groups associated to its
individual path components. For each element τ ∈ Wh1(π), we write H(M)τ for
the path component of H(M) that consists of the h-cobordisms with Whitehead
torsion τ . For example, H(M)0 ≃ BC(M) is the s-cobordism space.

Still assuming d ≥ 5, we can find an h-cobordism W1 from M to Mτ , with
prescribed Whitehead torsion τ relative to M , and a second h-cobordism W2 from
Mτ to M , with Whitehead torsion −τ relative to Mτ . Then W1 ∪Mτ

W2
∼= M × I

and W2 ∪M W1
∼= Mτ × I, by the sum formula for Whitehead torsion and the

s-cobordism theorem. Gluing with W2 at M , and with W1 at Mτ , define homotopy
inverse maps

H(M)τ → H(Mτ )0 → H(M)τ .

Hence

(1.1.12) H(M) =
∐

τ

H(M)τ ≃
∐

τ

H(Mτ )0 ≃
∐

τ

BC(Mτ ) ,

where τ ∈ Wh1(π).

1.2. The non-manifold part

In this section let ∆q be the simplicial q-simplex, the simplicial set with geometric
realization |∆q| the standard affine q-simplex.



12 FRIEDHELM WALDHAUSEN, BJØRN JAHREN AND JOHN ROGNES

Definition 1.2.1. A simplicial set X is finite if it is generated by finitely many
simplices, or equivalently, if its geometric realization |X| is compact. A map
f : X → Y of finite simplicial sets will be called a simple map if its geometric
realization |f | : |X| → |Y | has contractible point inverses, i.e., if for each p ∈ |Y |
the preimage |f |−1(p) is contractible.

A map f : X → Y of simplicial sets is a weak homotopy equivalence if
its geometric realization |f | is a homotopy equivalence. A map f : X → Y of
simplicial sets is a cofibration if it is injective in each degree, or equivalently, if its
geometric realization |f | is an embedding. We say that f is a finite cofibration if,
furthermore, Y is generated by the image of X and finitely many other simplices.

We shall see in Section 2.1 below that simple maps are weak homotopy equiva-
lences, and that the composite of two simple maps is a simple map. In particular,
the simple maps of finite simplicial sets form a category.

Definition 1.2.2. By the Yoneda lemma, there is a one-to-one correspondence
between the n-simplices x of a simplicial set X and the simplicial maps x̄ : ∆n →
X. We call x̄ the representing map of x. A simplicial set X will be called
non-singular if for each non-degenerate simplex x ∈ X the representing map
x̄ : ∆n → X is a cofibration.

In any simplicial set X, the geometric realization |x̄| : |∆n| → |X| of the repre-
senting map of a non-degenerate simplex x restricts to an embedding of the interior
of |∆n|. The additional condition imposed for non-singular simplicial sets is that
this map is required to be an embedding of the whole of |∆n|. It amounts to the
same to ask that the images of the (n + 1) vertices of |∆n| in |X| are all distinct.

When viewed as simplicial sets, ordered simplicial complexes provide examples
of non-singular simplicial sets, but not all non-singular simplicial sets arise this way.
For example, the union ∆1 ∪∂∆1 ∆1 of two 1-simplices along their boundary is a
non-singular simplicial set, but not an ordered simplicial complex.

Definition 1.2.3. For any simplicial set X, let C(X) be the category of finite
cofibrations y : X → Y . The morphisms from y to y′ : X → Y ′ are the simplicial
maps f : Y → Y ′ under X, i.e., those satisfying fy = y′.

For finite X, let sCh(X) ⊂ C(X) be the subcategory with objects such that
y : X → Y is a weak homotopy equivalence, and morphisms such that f : Y → Y ′

is a simple map. Let D(X) ⊂ C(X) and sDh(X) ⊂ sCh(X) be the full subcategories
generated by the objects y : X → Y for which Y is non-singular. Let i : sDh(X) →
sCh(X) be the inclusion functor.

The definition of sCh(X) only makes sense, as stated, for finite X, since we have
not defined what it means for f : Y → Y ′ to be a simple map when Y or Y ′ are
not finite. We will extend the definition of sCh(X) to general simplicial sets X in
Definition 3.1.12, as the colimit of the categories sCh(Xα) where Xα ranges over
the finite simplicial subsets of X. The categories D(X) and sDh(X) are only non-
empty when X itself is non-singular, since there can only be a cofibration y : X → Y
to a non-singular simplicial set Y when X is also non-singular.

Definition 1.2.4. The geometric realization |X| of a finite non-singular simpli-
cial set X is canonically a compact polyhedron, which we call the polyhedral
realization of X. Its polyhedral structure is characterized by the condition that
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|x̄| : |∆n| → |X| is a PL map for each (non-degenerate) simplex x of X. The geo-
metric realization |f | : |X| → |Y | of a simplicial map of finite non-singular simplicial
sets is then a PL map.

For any compact polyhedron K, let sEh(K) be the category of PL embeddings
ℓ : K → L of compact polyhedra, and simple PL maps f : L → L′ under K. For any
finite non-singular simplicial set X let r : sDh(X) → sEh(|X|) be the polyhedral
realization functor that takes y : X → Y to |y| : |X| → |Y |, and similarly for mor-

phisms. Let ñ : sEh(K) → sẼh
•(K) be the simplicial functor that includes sEh(K)

as the 0-simplices in sẼh
•(K), as introduced in Definition 1.1.5.

See Definition 3.4.1 for more on compact polyhedra, PL maps and the polyhedral
realization functor. The non-manifold parts of the stable parametrized h-cobordism
theorem follow.

Theorem 1.2.5. Let X be a finite non-singular simplicial set. The full inclusion
functor

i : sDh(X) → sCh(X)

is a homotopy equivalence.

Theorem 1.2.5 will be proved as part of Proposition 3.1.14. Cf. diagram (3.1.15).

Theorem 1.2.6. Let X be a finite non-singular simplicial set. The composite

ñ ◦ r : sDh(X) → sẼh
•(|X|)

of the polyhedral realization functor r and the 0-simplex inclusion ñ, is a homotopy
equivalence.

Theorem 1.2.6 is proved at the end of Section 3.5. Cf. diagram (3.5.4). We do
not claim that the individual functors r : sDh(X) → sEh(|X|) and ñ : sEh(|X|) →

sẼh
•(|X|) are homotopy equivalences, only their composite. The proof involves

factoring the composite in a different way, through a simplicial category sD̃h
•(X),

to be introduced in Definition 3.1.7(d).
The construction X 7→ sCh(X) is covariantly functorial in the simplicial set X. It

is homotopy invariant in the sense that any weak homotopy equivalence x : X → X ′

induces a homotopy equivalence x∗ : sCh(X) → sCh(X ′). Union along X defines
a sum operation on sCh(X) that makes it a grouplike monoid, with π0sC

h(X)
isomorphic to the Whitehead group of π1(X). See Definition 3.1.11, Corollary 3.2.4
and Proposition 3.2.5 for precise statements and proofs.

1.3. Algebraic K-theory of spaces

For any simplicial set X, let Rf (X) be the category of finite retractive spaces
over X, with objects (Y, r, y) where y : X → Y is a finite cofibration of simplicial
sets, and r : Y → X is a retraction, so ry = idX . A morphism from (Y, r, y)
to (Y ′, r′, y′) is a simplicial map f : Y → Y ′ over and under X, so r = r′f and
fy = y′. There is a functor Rf (X) → C(X) that forgets the structural retractions.
(The category C(X) was denoted Cf (X) in [Wa78b] and [Wa85], but in this paper
we omit the subscript to make room for a simplicial direction.)

The two subcategories coRf (X) and hRf (X) of Rf (X), of maps f : Y → Y ′

that are cofibrations and weak homotopy equivalences, respectively, make Rf (X)
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a category with cofibrations and weak equivalences in the sense of [Wa85, §1.1
and §1.2]. The S•-construction S•Rf (X) is then defined as a simplicial category
(with cofibrations and weak equivalences), see [Wa85, §1.3], and the algebraic
K-theory of the space X is defined to be the loop space

(1.3.1) A(X) = Ω|hS•Rf (X)| .

Any weak homotopy equivalence X → X ′ induces a homotopy equivalence A(X) →
A(X ′), and we can write A(M) for A(X) when M = |X|.

The S•-construction can be iterated, and the sequence of spaces

{ n 7→ |hS• · · ·S•︸ ︷︷ ︸
n

Rf (X)| }

(with appropriate structure maps) defines a spectrum A(X), which has A(X) as
its underlying infinite loop space. Let S = {n 7→ Sn} be the sphere spectrum.
In the special case X = ∗ there is a unit map

η : S → A(∗) ,

adjoint to the based map S0 → |hRf (∗)| that takes the non-base point to the
0-simplex corresponding to the object (Y, r, y) with Y = S0.

These spectra can be given more structure. By [GH99, Prop. 6.1.1] each A(X) is
naturally a symmetric spectrum [HSS00], with the symmetric group Σn acting on
the n-th space by permuting the S•-constructions. Furthermore, the smash product
of finite based simplicial sets induces a multiplication µ : A(∗)∧A(∗) → A(∗) that,
together with the unit map η, makes A(∗) a commutative symmetric ring spectrum.
Each spectrum A(X) is naturally an A(∗)-module spectrum.

For based and connected X, there is a homotopy equivalent definition of A(X) as
the algebraic K-theory K(S[ΩX]) of the spherical group ring S[ΩX]. Here ΩX can
be interpreted as the Kan loop group of X, see [Wa96], and S[ΩX] is its unreduced
suspension spectrum Σ∞(ΩX)+, viewed as a symmetric ring spectrum, or any other
equivalent notion.

By [Wa85, Thm. 3.3.1], there is a natural homotopy fiber sequence

(1.3.2) h(X;A(∗))
α
−→ A(X) → WhPL(X)

of homotopy functors in X, where

h(X;A(∗)) = Ω∞(A(∗) ∧ X+)

is the unreduced homological functor associated to the spectrum A(∗). See also

diagram (1.4.7) below. The PL Whitehead space WhPL(X) can be defined as
any one of the homotopy equivalent spaces in [Wa85, Thm. 3.1.7]. The proof of that
theorem contains some forward references to results proved in the present paper,
which we have summarized in Remark 1.4.5.

The natural map α is a homotopy equivalence for X = ∗, which characterizes
it up to homotopy equivalence as the assembly map associated to the homotopy
functor A(X), see [WW95, §1]. The homotopy fiber sequence (1.3.2) extends to
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one of (symmetric) spectra, as is seen from [Wa85, Thm. 3.3.1] by iterating the
S•-construction. Hence there is a natural cofiber sequence of spectra

(1.3.3) A(∗) ∧ X+
α
−→ A(X) → WhPL(X) ,

and WhPL(X) ≃ Ω∞ WhPL(X).
By [Wa85, Prop. 3.1.1] and our Theorems 1.1.7, 1.2.5 and 1.2.6 there is a natural

chain of homotopy equivalences

H
PL(|X|)

≃
−→ sẼh

•(|X|)
≃
←− sDh(X)

≃
−→ sCh(X)

≃
−→ ΩWhPL(X) ,

for each compact PL manifold, triangulated as M = |X|. This establishes the
homotopy equivalence of Theorem 0.1 in the PL case. The homotopy fiber sequence
of Theorem 0.2 is the Puppe sequence obtained by continuing (1.3.2) one step to
the left.

The DIFF Whitehead space WhDIFF (X) is so defined that there is a natural
homotopy fiber sequence

(1.3.4) Q(X+)
ι
−→ A(X) → WhDIFF (X) .

Here

Q(X+) = colim
n

ΩnΣnX+ = Ω∞Σ∞X+ = Ω∞(S ∧ X+)

is the unreduced homological functor associated to the sphere spectrum S. We
define the spectrum map ι : Σ∞X+ → A(X) as the composite

Σ∞X+ = S ∧ X+
η∧id
−−−→ A(∗) ∧ X+

α
−→ A(X) ,

and (1.3.4) is the homotopy fiber sequence of infinite loop spaces that underlies the
natural cofiber sequence of (symmetric) spectra

(1.3.5) Σ∞X+
ι
−→ A(X) → WhDIFF (X) .

We can now deduce Theorem 0.3 and the DIFF case of Theorem 0.1 from Theo-
rem 0.2. The argument was explained in [Wa78b, §3] and [Wa82, §2], but we review
and comment on it here for the reader’s convenience.

We consider homotopy functors F from spaces to based spaces, such that there
is a natural map F (M) → hofib(F (M+) → F (∗)). The stabilization FS of F (not
related to the other kind of stabilization that we use) is an unreduced homological
functor, with

FS(M) ≃ colim
n

Ωn hofib(F (Σn(M+)) → F (∗)) .

In the notation of [Go90b], FS(M) = D∗F (M+), where D∗F is the differential of F
at ∗. There is a natural map F (M) → FS(M), which is a homotopy equivalence
whenever F itself is a homological functor. This form of stabilization preserves
natural homotopy fiber sequences.
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Each term in the homotopy fiber sequence of Theorem 0.2 is such a homotopy
functor. Hence there is a natural homotopy equivalence

Ωhofib(A(M) → AS(M))
≃
−→ hofib(HPL(M) → H

PL,S(M)) .

The stable h-cobordism space HDIFF (M) can also be extended to such a homotopy
functor. By Morlet’s disjunction lemma [BLR75, §1], cf. [Ha78, Lem. 5.4], the
stabilized functor HDIFF,S(M) is contractible. By smoothing theory, also known as
Morlet’s comparison theorem, the homotopy fiber of the natural map HDIFF (M) →
HPL(M) is a homological functor [BL77, §4]. Hence there is a natural chain of
homotopy equivalences

H
DIFF (M)

≃
←− hofib(HDIFF (M)) → H

DIFF,S(M))
≃
−→ hofib(HPL(M) → H

PL,S(M)) .

The composite map Q(M+)
ι
−→ A(M) → AS(M) is a homotopy equivalence, by

the “vanishing of the mystery homology theory” [Wa87a, Thm.]. Alternatively, this
can be deduced from B. I. Dundas’ theorem on relative K-theory [Du97, p. 224],
which implies that the cyclotomic trace map induces a profinite homotopy equiv-
alence AS(M) ≃ TCS(M), together with the calculation TCS(M) ≃ Q(M+) of
[He94]. The rational result was obtained in [Wa78b, Prop. 2.9] from work by
A. Borel [Bo74], F. T. Farrell and W.-C. Hsiang [FH78]. Either way, it follows
that the composite natural map

hofib(A(M) → AS(M)) → A(M) → WhDIFF (M)

is a homotopy equivalence. In combination, we obtain a natural chain of homotopy
equivalences that induces the homotopy equivalence

H
DIFF (M) ≃ ΩWhDIFF (M)

claimed in Theorem 0.1. The homotopy fiber sequence of Theorem 0.3 is the Puppe
sequence obtained by continuing (1.3.4) one step to the left. The stabilization
map A(M) → AS(M) provides a natural splitting of ι : Q(M+) → A(M), up to

homotopy, and together with the map A(M) → WhDIFF (M) it defines the natural
homotopy factorization of the theorem.

1.4. Relation to other papers

The main assertion in Hatcher’s paper [Ha75] is his Theorem 9.1, saying that
there is a k-connected map from the PL h-cobordism space HPL(M) to a classifying
space S(M) for “PL Serre fibrations with homotopy fiber M and a fiber homotopy
trivialization”, provided that n = dim(M) ≥ 3k + 5. The model for S(M) chosen

by Hatcher equals the simplicial set of objects in our simplicial category sẼh
•(M).

In Hatcher’s Proposition 3.1, this space is asserted to be homotopy equivalent to
the nerve of sEh(M). That particular claim appears to be difficult to prove in the
polyhedral context, since the proposed argument for his Proposition 2.5 makes sig-
nificant use of chosen triangulations. However, it is correct that S(M) is homotopy

equivalent to the nerve of the simplicial category sẼh
•(M), so in essence, Hatcher’s
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Theorem 9.1 claims that the map HPL(M) → sẼh
•(M) is about (n/3)-connected,

for n = dim(M). Stabilizing with respect to the dimension, this amounts to the
manifold part Theorem 1.1.7 of our stable parametrized h-cobordism theorem. Thus
the stable form of Hatcher’s main assertion is correct.

The relevance of simple maps to the study of PL homeomorphisms of manifolds
may be motivated by the following theorem of M. Cohen [Co70, Thm. 1]: For (say)
closed PL n-manifolds M and N with n ≥ 5 each simple PL map M → N can be
uniformly approximated by a PL homeomorphism M ∼= N . A similar result in the
TOP category was proved by L. Siebenmann [Si72].

The first author’s paper [Wa78b] (from the 1976 Stanford conference) contains

in its Section 5 the assertion that Hatcher’s polyhedral model sẼh
•(M) for HPL(M)

is homotopy equivalent to the model sCh(X) that is defined in terms of simplicial
sets, where M = |X| as usual. This translation is the content of our non-manifold
Theorems 1.2.5 and 1.2.6. Furthermore, Section 5 of that paper contains the ho-
motopy fiber sequences of Theorems 0.2 and 0.3. Modulo some forward references
to the present paper, their proofs appeared in [Wa85], except for the result that
AS(M) ≃ Q(M+), which appeared in [Wa87a]. For more on these forward refer-
ences, see Remark 1.4.5 below.

Hatcher’s paper [Ha78] in the same proceedings surveys, among other things,
how concordance spaces (with their canonical involution) measure the difference
between the “honest” automorphisms groups of manifolds and the block automor-
phism groups of manifolds, which are determined by surgery theory [Wl70, §17.A].
The spectral sequence of [Ha78, Prop. 2.1] makes this precise in the concordance
stable range. In [WW88, Thm. A], M. Weiss and B. Williams express this spectral
sequence as coming from the Z/2-homotopy orbit spectral sequence of an involu-
tion on the stable h-cobordism space, with its infinite loop space structure. Their
later survey [WW01] explains, among many other things, how this contribution
from concordance and h-cobordism spaces also measures the difference between the
“honest” moduli space parametrizing bundles of compact manifolds and the block
moduli space given by the surgery classification of manifolds.

In the meantime, M. Steinberger’s paper [St86] appeared, whose Theorem 1
proves that (the nerve of) sDh(X) is a classifying space for “PL Serre fibrations with
homotopy fiber |X| and a fiber homotopy trivialization”. Thus sDh(X) ≃ S(M),
which is close to our Theorem 1.2.6. His main tool for proving this is a special
category of finite convex cell complexes in Euclidean space, and certain piecewise
linear maps between these.

Steinberger’s Theorem 2 is the same as our Theorem 1.2.5, but his proof leaves a
significant part to be discovered by the reader. His argument [St86, p. 19] starts out
like our first (non-functorial) proof of Proposition 3.1.14, and relies on a result like
our Proposition 2.5.1. At that point, he appeals to an analogue C(h) of Cohen’s
PL mapping cylinder, but defined for general maps h of simplicial sets. However,
he does not establish the existence of this construction, nor its relevant properties.
Presumably the intended C(h) is our backward reduced mapping cylinder M(Sd(h))
of the normal subdivision of h, and the required properties are those established in
our Sections 2.1 through 2.4.

The following year, T. A. Chapman’s paper [Ch87] appeared. His Theorem 3
proves the stable form of Hatcher’s main claim, that a version of HPL(M) is homo-
topy equivalent to the classifying space S(M). Modulo the identification of S(M)
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with sẼh
•(M), this is equivalent to our Theorem 1.1.7. Combining Chapman’s The-

orem 3 with Steinberger’s Theorems 1 and 2 one obtains a homotopy equivalence
HPL(M) ≃ sCh(X), for M = |X|. When combined with the homotopy equivalence

sCh(X) ≃ ΩWhPL(X) from [Wa85, §3], bringing algebraic K-theory into the pic-
ture, one recovers the PL case of our Theorem 0.1. In a similar way, Chapman’s
Theorem 2 is analogous to our main geometric Theorem 4.1.14, except that Chap-
man works with manifolds embedded with codimension zero in some Euclidean
space, whereas we have chosen to work with stably framed manifolds. His main
tool is a stable fibered controlled h-cobordism theorem.

Chapman’s paper omits proofs of several results, because of their similarity with
other results in the literature (his Propositions 2.2 and 2.3), and only discusses the
absolute case of some inductive proofs that rely on a relative statement for their
inductive hypotheses (his Theorems 3.2 and 5.2). Furthermore, some arguments
involving careful control estimates are only explained over the 0- and 1-skeleta of
a parameter domain, and it is left to the reader to extend these over all higher
skeleta.

Since Theorem 1.1.7, 1.2.5 and 1.2.6 are fundamental results for the relation be-
tween the stable h-cobordism spaces and the Whitehead spaces, we prefer to provide
proofs that do not leave too many constructions, generalizations or relativizations
to be discovered or filled in by the reader. The tools used in our presentation are
close to those of [Wa85], which provides the connection onwards from the White-
head spaces to the algebraic K-theory of spaces. Taken together, these two papers
complete the bridge connecting geometric topology to algebraic K-theory.

The present paper is also needed to justify the forward references from [Wa85],
including the general case of Theorem 2.3.2 and its consequence Proposition 2.3.3,
which was used in [Wa85, §3.1] on the way to Theorem 0.2. Hence these results from
our Part 2 are also required for Theorem 0.3 and the DIFF case of Theorem 0.1,
neither of which are covered by Steinberger and Chapman’s papers.

Returning to Hatcher’s original paper, the unstable form of the main assertion
would imply not only the stable conclusion, but also a PL concordance stabil-
ity result [Ha78, Cor. 9.2], to the effect that a suspension map σ : CPL(M) →
CPL(M × J) is about (n/3)-connected, for n = dim(M). Delooping once, this
would imply that the stabilization map σ : HPL(M) → HPL(M × J) is also about
(n/3)-connected. As we discuss in Remark 4.2.3, our methods are essentially stable.
In particular, we do not attempt to prove these PL concordance stability results.
However, working in the DIFF category, K. Igusa proved the following concordance
stability result in [Ig88], using Hatcher’s PL argument as an outline for the proof.

Theorem 1.4.1 (Igusa). The suspension map

σ : CDIFF (M) → CDIFF (M × J)

is k-connected, for all compact smooth n-manifolds M with n ≥ max{2k+7, 3k+4}.

Delooping once, and iterating, it follows that the infinite stabilization map
HDIFF (M) → HDIFF (M) is (k + 1)-connected, for M , n and k as in the theo-
rem. When combined with Theorem 0.3 and calculations of the algebraic K-theory
of spaces A(M), this leads to concrete results on the homotopy groups πiC

DIFF (M)
and πiH

DIFF (M), for i up to about n/3.
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For example, in the case M = Dn ≃ ∗ there is a rational homotopy equivalence
A(M) ≃ A(∗) → K(Z), and the striking consequences for πiDIFF (Dn) ⊗ Q of
Borel’s calculation [Bo74] of Ki(Z) ⊗ Q were explained in [Wa78b, Thm. 3.2] and
[Ig88, p. 7]. Analogous rational results for Euclidean and spherical space forms were
obtained in [FH78], [HJ82] and [HJ83]. Calculations of the p-torsion in πiA(∗) were
made in [Ro02] for p = 2 and [Ro03] for odd regular primes, and some consequences
concerning the p-torsion in πiDIFF (Dn) were drawn in Section 6 of the latter paper.

D. Burghelea and R. Lashof [BL77, Thm. C] used smoothing theory and Morlet’s
disjunction lemma to show that the PL concordance stability theorem stated by
Hatcher would imply a DIFF concordance stability theorem, in about half the PL
concordance stable range. T. Goodwillie has improved on this argument, using his
multiple disjunction lemma from [Go90a], to establish a DIFF concordance stable
range only three less than such an assumed PL concordance stable range.

However, no proof of a concordance stability theorem for general PL manifolds
seems to be known. In the absence of a PL proof, it was observed by Burghelea and
by Goodwillie that for smoothable manifolds M one can deduce a PL concordance
stability theorem from Igusa’s DIFF concordance stability theorem, with the same
concordance stable range. The argument below was explained to us by Goodwillie.
It follows that the optimal DIFF concordance stable range and the optimal PL
concordance stable range for smoothable manifolds are practically the same.

Corollary 1.4.2 (Burghelea, Goodwillie). The suspension map

σ : CPL(M) → CPL(M × J)

is k-connected, for compact smoothable n-manifolds M with n ≥ max{2k+7, 3k+4}.

Proof. Let M be a compact DIFF n-manifold and let P → M be its frame bundle,
i.e., the principal On-bundle associated to the tangent bundle of M . By smoothing
theory [BL74, Thm. 4.2] there is a homotopy fiber sequence

DIFF (M) → PL(M) → Γ(M ;PLn/On) .

Here Γ(M ;PLn/On) denotes the space of sections s in the fiber bundle associated
to P → M with fiber PLn/On, such that s|∂M maps to the base point in each
fiber. (The precise statement requires a detour via spaces of piecewise differentiable
maps, which we suppress.) For concordance spaces [BL77, (2.4)] there is a similar
homotopy fiber sequence

(1.4.3) CDIFF (M) → CPL(M) → Γ(M ;Cn) ,

where Γ(M ;Cn) is the space of sections in a bundle over M with fiber

Cn = hofib(PLn/On → PLn+1/On+1) ,

with prescribed behavior on ∂M . (Burghelea–Lashof write Fn for the TOP/DIFF
analogue of this homotopy fiber.)

Let

FCAT (M) = hofib(CCAT (M)
σ
−→ CCAT (M × J))
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be the homotopy fiber of the suspension map for CAT concordances. By [BL77,
Thm. A] the concordance suspension maps are compatible with a suspension map
ϕ : Cn → ΩCn+1, so there is a homotopy fiber sequence

(1.4.4) FDIFF (M) → FPL(M) → Γ(M ;Fn) ,

where Γ(M ;Fn) is the space of sections in a bundle with fiber

Fn = hofib(Cn
ϕ
−→ ΩCn+1) ,

still with prescribed behavior on ∂M .
The columns in the following diagram are homotopy fiber sequences:

Cn

ϕ
//

²²

ΩCn+1

²²

On+1/On

ϕDIFF

//

²²

Ω(On+2/On+1)

²²

PLn+1/PLn

ϕP L

// Ω(PLn+2/PLn+1)

The lower vertical arrows are (n+2)-connected for n ≥ 5, by the PL/DIFF stability
theorem [KS77, V.5.2]. Hence Cn, ΩCn+1 and the upper horizontal map ϕ are all
(n + 1)-connected, and the homotopy fiber Fn is at least n-connected.

Igusa’s theorem implies that FDIFF (M) is (k − 1)-connected, for M , n and k
as above. In addition, σ : CDIFF (M) → CDIFF (M × J) is 0-connected (for n ≥
7). Since Γ(M ; ΩCn+1) is 1-connected, it follows from (1.4.3) that σ : CPL(M) →
CPL(M × J) is at least 0-connected.

Now consider the special case M = Dn. The spaces PL(Dn), CPL(Dn) and
FPL(Dn) are all contractible, by the Alexander trick. The tangent bundle of Dn is
trivial, so Γ(Dn;Fn) = ΩnFn. Igusa’s theorem and (1.4.4) then imply that ΩnFn

is k-connected. It follows that Fn is (n+ k)-connected, since we saw above that Fn

is at least n-connected.
Returning to the case of a general smoothable n-manifold M , the section space

Γ(M ;Fn) is k-connected by obstruction theory. Hence FPL(M) is (k−1)-connected
by Igusa’s theorem and (1.4.4). It follows that the PL concordance stabilization
map σ : CPL(M) → CPL(M × J) is k-connected, since we saw above that it is at
least 0-connected. ¤

In a relative way, Igusa’s theorem improves on the cited PL/DIFF stability
theorem, by showing that the PL suspension map

PLn+1/PLn
ϕP L

−−−→ Ω(PLn+2/PLn+1)

is at least (n + k + 2)-connected, when n ≥ max{2k + 7, 3k + 4}. For comparison,
the DIFF suspension map

Sn ∼= On+1/On
ϕDIFF

−−−−→ Ω(On+2/On+1) ∼= ΩSn+1
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is precisely (2n − 1)-connected, by Freudenthal’s theorem.

Remark 1.4.5. There are some forward references in [Wa85, §3.1] concerning simple
maps to (an earlier version of) the present paper. For the reader’s convenience, we
make these explicit here. The claim that simple maps form a category, and satisfy
a gluing lemma [Wa85, p. 401] is contained in our Proposition 2.1.3. The claim
that the H-space sCh(X) is group-like [Wa85, p. 402] is our Corollary 3.2.4.

The proof of [Wa85, Lem. 3.1.4] contains three forward references. The “well
known argument” was implicit in [GZ67], and is made explicit in our Lemma 3.2.14.
The result that the last vertex map is simple is our Proposition 2.2.17. The fact
that subdivision preserves simple maps is our Proposition 2.3.3. In our proof, the
full strength of our Theorem 2.3.2 is used. Thus that result, on the quasi-naturality
of the Fritsch–Puppe homeomorphism, is presently required for the identification
sCh(X) ≃ ΩWhPL(X), and thus for Theorems 0.1, 0.2 and 0.3.

On top of page 405 of [Wa85], use is made of a simplicial deformation retraction of
[n] 7→ X∆n×∆n

onto [n] 7→ X∆n

, where X is a simplicial set. The relevant inclusion
is induced by the projection pr1 : ∆n ×∆n → ∆n, and we take the retraction to be
induced by the diagonal map diag : ∆n → ∆n × ∆n. Then diag ◦ pr1 is the nerve
of the composite functor (= order-preserving function) f : [n]× [n] → [n]× [n] that
takes (i, j) to (i, i), for i, j ∈ [n]. There is a chain of natural transformations

(i, i) ≤ (i,max(i, j)) ≥ (i, j)

relating f to the identity on [n] × [n], which is natural in [n]. Taking nerves, we
get a chain of simplicial homotopies relating diag ◦ pr1 to the identity on ∆n ×∆n,
which is still natural in [n]. Forming mapping spaces into X, we obtain the required
chain of simplicial homotopies.

There are two references on page 406 of [Wa85] to our Proposition 3.2.5, i.e., the
fact that the functor X 7→ sCh(X) respects weak homotopy equivalences.

The concluding reformulation [Wa85, Prop. 3.3.2] of [Wa85, Thm. 3.3.1] is not
right as stated. In the definition of the simplicial category Rf (X)•, the condition
on the objects in simplicial degree q that the composite map

Y
r
−→ X × ∆q pr

−→ ∆q

is locally fiber homotopy trivial, should be replaced with the stronger condition that
the map is a Serre fibration. This leads to the following definition and corrected
proposition.

Definition 1.4.6. To each simplicial set X we associate a simplicial category

R̃•(X). In simplicial degree q, it is the full subcategory of Rf (X × ∆q) gener-
ated by the objects (Y, r, y) for which the composite map

Y
r
−→ X × ∆q pr

−→ ∆q

is a Serre fibration. Let R̃h
•(X) be the full simplicial subcategory with objects

such that y : X × ∆q → Y is also a weak homotopy equivalence, and let s- and h-
prefixes indicate the subcategories of simple maps and weak homotopy equivalences,
respectively.
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By [Wa85, Thm. 3.3.1], there is a homotopy cartesian square

(1.4.7) sS•R
h
f (X∆•

) //

²²

sS•Rf (X∆•

)

²²

hS•R
h
f (X∆•

) // hS•Rf (X∆•

)

where the entries have the following meaning. Let XK denote the mapping space
Map(K,X), with p-simplices the maps ∆p × K → X. For each q, let X∆q

denote
this mapping space (that is, take K = ∆q). Then the entries in the diagram need to
be taken in the following slightly tricky sense: for each fixed q evaluate the functor
in question on X∆q

, and then take the simplicial object that results by varying q.
The upper left hand term is one model for WhPL(X), the lower left hand term is

contractible, and the loop spaces of the right hand terms are homotopy equivalent
to h(X;A(∗)) and A(X), respectively. The homotopy fiber sequence (1.3.2) is part
of the Puppe fiber sequence derived from this homotopy cartesian square.

Proposition 1.4.8. There is a homotopy cartesian square

sS•R̃
h
•(X) //

²²

sS•R̃•(X)

²²

hS•R̃
h
•(X) // hS•R̃•(X)

and it is homotopy equivalent to the square above by a natural map.

Proof. The natural map of homotopy cartesian squares is induced by the functor

Rf (X∆•

) → R̃•(X) given in simplicial degree q by the composite

Rf (X∆q

) → Rf (X∆q

× ∆q) → Rf (X × ∆q) ,

where the first map is given by product with ∆q, and the second map is functorially
induced by

(ev, pr) : X∆q

× ∆q → X × ∆q

where ev is the evaluation map. When applied to a retractive space Y over X∆q

the result is a Serre fibration over X × ∆q, by the fiber gluing lemma for Serre
fibrations, Proposition 2.7.10. The proof then goes through as in [Wa85, p. 418],

up to the claim that sCh(X) → sC̃h
•(X) is a homotopy equivalence. But this will

be proved as Corollary 3.5.2.
Actually, the fiber gluing lemma for Serre fibrations was also used in the verifica-

tion that the simplicial category R̃•(X) in Definition 1.4.6 is a simplicial category

with cofibrations; in particular, that for every q the category R̃q(X) is a category
with cofibrations, as is required for the use of the S•-construction. ¤

In the “manifold approach” paper [Wa82, Prop. 5.1], a similar (approximately)
homotopy cartesian square is constructed, where the entries are simplicial (sets
or) categories of CAT manifolds. As discussed in [Wa82, pp. 178–180], there is
a chain of homotopy equivalences relating the manifold square to the square of
Proposition 1.4.8. This is how one can deduce [Wa82, Prop. 5.5], for CAT = PL,

asserting that the manifold functor that corresponds to sS•Rf (X∆•

) ≃ sS•R̃•(X)
is indeed a homological functor in X.



SPACES OF PL MANIFOLDS AND CATEGORIES OF SIMPLE MAPS 23

2. On simple maps

2.1. Simple maps of simplicial sets

In this section we define simple maps of finite simplicial sets, and establish some
of their formal properties.

Let ∆ be the skeleton category of finite non-empty ordinals, with objects the
linearly ordered sets [n] = {0 < 1 < · · · < n} for n ≥ 0, and morphisms α : [n] → [m]
the order-preserving functions. A simplicial set X is a contravariant functor from
∆ to sets. The simplicial set ∆q is the functor represented by the object [q]. By a
simplex in X we mean a pair ([n], x), where n ≥ 0 and x ∈ Xn, but we shall usually
denote it by x, leaving the simplicial degree n implicit. We refer to [GZ67], [FP90,
§4] or [GJ99] for the theory of simplicial sets.

Definition 2.1.1. Let f : X → Y be a map of finite simplicial sets. We say that
f is a simple map if its geometric realization |f | : |X| → |Y | has contractible
point inverses, i.e., if for each point p ∈ |Y | the preimage |f |−1(p) is a contractible
topological space.

We sometimes denote a simple map by X
≃s−−→ Y .

Proposition 2.1.2. A map f : X → Y of finite simplicial sets is a simple map if
and only if |f | : |X| → |Y | is a hereditary weak homotopy equivalence, i.e., if for
each open subset U ⊂ |Y | the restricted map |f |−1(U) → U is a weak homotopy
equivalence. In particular, a simple map is a weak homotopy equivalence.

This follows immediately from the more detailed Proposition 2.1.8 below, which
in turn suggests the more general Definition 2.6.2 (when X and Y are arbitrary
topological spaces). We shall principally use the following consequences.

Proposition 2.1.3. Let f : X → Y and g : Y → Z be maps of finite simplicial
sets.

(a) (Composition) If f and g are simple, then so is their composite gf : X → Z.
(b) (Right cancellation) If f and gf are simple, then g is simple.
(c) (Pullback) Pullbacks of simple maps are simple.
(d) (Gluing lemma) Let

X1

≃s

²²

X0
oooo

≃s

²²

// X2

≃s

²²

Y1 Y0
oooo // Y2

be a commutative diagram of finite simplicial sets, such that the maps X0 → X1

and Y0 → Y1 are cofibrations and the maps Xi → Yi for i = 0, 1, 2 are simple. Then
the induced map of pushouts

X1 ∪X0 X2 → Y1 ∪Y0 Y2

is simple.

Simple maps do not have the left cancellation property, as the composite ∆0 →
∆1 → ∆0 illustrates. The cofibration hypotheses in the gluing lemma cannot be
omitted, as the vertical map from ∆1 ⊃ ∂∆1 ⊂ ∆1 to ∆0 ←− ∂∆1 −→ ∆0 shows.
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Weak homotopy equivalences have the 2-out-of-3 property, which combines the
composition, right cancellation and left cancellation properties. They are often not
preserved under pullback, but satisfy the gluing lemma [GJ99, II.8.8].

Proof of Proposition 2.1.3. (a) For each open subset U ⊂ |Z| the restricted map
|gf |−1(U) → U factors as

|gf |−1(U)
≃
−→ |g|−1(U)

≃
−→ U

where the first map is a weak homotopy equivalence because f is simple and
|g|−1(U) is open, and the second map is a weak homotopy equivalence because
g is simple and U is open.

(b) For each open subset U ⊂ |Z| the preimage |g|−1(U) is open in |Y |, so the
left hand map and the composite map in

|gf |−1(U)
≃
−→ |g|−1(U) −→ U

are both weak homotopy equivalences. Hence so is the right hand map.
(c) Geometric realization commutes with pullbacks, so this follows from the

definition of simple maps in terms of preimages of points.
(d) Let

T (X0 → X2) = X0 × ∆1 ∪X0 X2

be the (ordinary) mapping cylinder of the map X0 → X2. The front inclusion
X0 → T (X0 → X2) is a cofibration, and its composite with the cylinder projection
pr : T (X0 → X2) → X2 equals the given map X0 → X2. The cylinder projection is
a simple map, because formation of mapping cylinders commutes with geometric
realization, and each point inverse of |T (X0 → X2)| → |X2| is a cone, hence
contractible. Using that X0 → X1 is a cofibration, it follows easily that also the
map of pushouts X1 ∪X0 T (X0 → X2) → X1 ∪X0 X2 is simple. Arguing likewise
with the Yi, we obtain a commutative square

X1 ∪X0 T (X0 → X2)
≃s //

≃s

²²

X1 ∪X0 X2

²²

Y1 ∪Y0 T (Y0 → Y2)
≃s // Y1 ∪Y0 Y2

with simple horizontal maps. The left hand vertical map is simple, for each point
inverse of its geometric realization is also a point inverse of one of the maps |Xi| →
|Yi|, for i = 0, 1, 2. By the composition and right cancellation properties of simple
maps, it follows that the right hand vertical map is simple. ¤

The geometric realization |X| of a simplicial set is a CW complex, with one open
n-cell en ⊂ |X| for each non-degenerate n-simplex in X. Recall that by the Yoneda
lemma, each n-simplex x ∈ Xn corresponds to a representing map x̄ : ∆n → X,
and conversely.

Lemma 2.1.4. Let f : X → Y be a map of finite simplicial sets, let p ∈ |Y | and let
em ⊂ |Y | be the open cell that contains p, in the CW structure on |Y |. The preimage
|f |−1(p) is a finite CW complex, with (n − m)-skeleton equal to the intersection of
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|f |−1(p) with the n-skeleton of |X|. More precisely, |f |−1(p) has one open (n−m)-
cell |f |−1(p) ∩ en for each open n-cell en that maps to em under f , in the CW
structure on |X|.

Proof. Let y ∈ Ym be the non-degenerate simplex corresponding to em, and let
ξ ∈ |∆m| be the unique interior point that is mapped to p under |ȳ| : |∆m| → |Y |.
Write X = ∆n ∪∂∆n X ′, with x̄ : ∆n → X representing a non-degenerate simplex
x ∈ Xn, and suppose inductively that the lemma holds for the restricted map
f ′ : X ′ → Y . If f(x) = ρ∗(y) for some degeneracy operator ρ, i.e., an order-
preserving surjection ρ : [n] → [m], then we have a commutative diagram:

∂∆n // //

²²

∆n
ρ

//

x̄

²²

∆m

ȳ

²²

X ′ // // X
f

// Y

The preimage D = |ρ|−1(ξ) of the interior point ξ under the affine linear map
|ρ| : |∆n| → |∆m| is a convex (n−m)-cell, with boundary equal to the intersection
S = |∂∆n|∩D. By induction, S is mapped into the (n−m−1)-skeleton of |f ′|−1(p),
and |f |−1(p) is obtained from |f ′|−1(p) by attaching (D,S) ∼= (Dn−m, Sn−m−1)
along this map. Hence |X| has the asserted CW structure. If f(x) is not a degen-
eration of y, then |f ′|−1(p) = |f |−1(p) and there is nothing more to prove. ¤

We shall use the following two results of R. C. Lacher. To state them, we first
review some point-set topology.

Definition 2.1.5. A topological space is called a Euclidean neighborhood re-
tract (ENR) if it is homeomorphic to a retract of an open subset of some (always
finite-dimensional) Euclidean space. Every finite CW complex is a compact ENR
[Ha02, Cor. A.10]. A metric space X is called an absolute neighborhood retract
(ANR) if, whenever X is embedded as a closed subspace of a metric space Z, then
X is a retract of some neighborhood of X in Z. Euclidean spaces are ANR’s, by
Tietze’s extension theorem, and it is a formality that the class of ANR’s is closed
under passage to open subsets and retracts [FP90, Prop. A.6.4]. Therefore every
ENR is an ANR.

The Čech homotopy type (or shape) of a compact subspace X of the Hilbert
space of square-summable sequences was defined by K. Borsuk [Bo68, §8]. By
Urysohn’s embedding theorem [Ur24], the class of these spaces equals the class of
compact separable metric spaces, and includes all compact ENR’s. Two compact
ANR’s embedded in Hilbert space have the same Čech homotopy type if and only
if they have the same homotopy type [Bo68, (8.6)]. In particular, a compact ENR
has the Čech homotopy type of a point if and only if it is contractible.

For separable metric spaces the Menger–Urysohn inductive dimension and the
Čech–Lebesgue covering dimension are equal. See Definitions III.1 and V.1 and
Theorem V.8 of Hurewicz–Wallman [HW41]. Every finite-dimensional separable
metric space can be embedded in a Euclidean space, and conversely, every sub-
space of a Euclidean space is a finite-dimensional separable metric space. See
Theorems III.1, IV.1 and V.3 of [HW41]. In particular, every ENR is a finite-
dimensional separable metric space.
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M. Brown [Br60] defined a subspace A of an n-manifold M to be cellular if it
is the intersection A =

⋂∞
i=1 Qi of a sequence of closed, topological n-cells in M ,

with Qi+1 contained in the interior of Qi, for each i ≥ 1.
R. C. Lacher [La69b, p. 718] defined a space A to be cell-like if it can be

embedded as a cellular subspace of some manifold. Furthermore, a map f : X → Y
of topological spaces is cell-like if f−1(p) is a cell-like space for each p ∈ Y . Any
cellular or cell-like space is non-empty, and any cell-like map is surjective.

D. R. McMillan [Mc64] defined an embedding ϕ : A → X to have property UV ∞

if for each open subset U of X containing ϕ(A) there exists an open subset V of X
with ϕ(A) ⊂ V ⊂ U , such that the inclusion map V ⊂ U is null-homotopic in U .

A map f : X → Y of topological spaces is a proper homotopy equivalence
if f is proper (preimages of compact sets are compact) and there are proper maps
g : Y → X, H : X × I → X and H ′ : Y × I → Y such that H is a homotopy from
gf to idX and H ′ is a homotopy from fg to idY .

Theorem 2.1.6 (Lacher). The following conditions are equivalent for a finite-
dimensional compact separable metric space A:

(a) A is cell-like;
(b) A has the Čech homotopy type of a point;
(c) A is nonempty and admits an embedding with property UV ∞ into an ENR.

Proof. This is the theorem on page 599 of [La69a]. Lacher does not state that A
should be separable, but his proofs use that A can be embedded in some Euclidean
space, which requires separability. Obviously, either one of conditions (a) and (b)
implies that A is nonempty. ¤

Theorem 2.1.7 (Lacher). Let f : X → Y be a proper map of ENR’s. Then (a)
f is cell-like if and only if (b) f is surjective and for each open subset U ⊂ Y the
restricted map f−1(U) → U is a proper homotopy equivalence.

Proof. See [La69b, Thm. 1.2]. ¤

Proposition 2.1.8. Let f : X → Y be a map of finite simplicial sets, with geomet-
ric realization |f | : |X| → |Y |. The following conditions (a)–(f) are equivalent:

(a) f is a simple map;
(b) For each point p ∈ |Y |, the preimage |f |−1(p) has the Čech homotopy type of

a point;
(c) |f | is a cell-like mapping;
(d) |f | is a hereditary proper homotopy equivalence, i.e., for each open subset

U ⊂ |Y | the restricted map |f |−1(U) → U is a proper homotopy equivalence;
(e) |f | is a hereditary homotopy equivalence, i.e., for each open subset U ⊂ |Y |

the restricted map |f |−1(U) → U is a homotopy equivalence;
(f) |f | is a hereditary weak homotopy equivalence.

Proof. By Lemma 2.1.4, each preimage |f |−1(p) is a finite CW complex, hence a
compact ENR. So by Borsuk’s result cited above, |f |−1(p) is contractible if and
only if it has the Čech homotopy type of a point. Thus (a) ⇐⇒ (b). By the
dimension theory reviewed above, each |f |−1(p) is a finite-dimensional compact
separable metric space. Thus (b) ⇐⇒ (c) by the equivalence of Theorem 2.1.6(a)
and (b). The implication (c) =⇒ (d) follows from Theorem 2.1.7 applied to the
map |f | : |X| → |Y |, which is proper (and closed) since |X| is compact and |Y |
is Hausdorff. The implications (d) =⇒ (e) and (e) =⇒ (f) are obvious, since
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every proper homotopy equivalence is a homotopy equivalence, and every homotopy
equivalence is a weak homotopy equivalence.

It remains to prove that (f) =⇒ (c). Thus suppose that f : X → Y is a map
of finite simplicial sets, such that |f | : |X| → |Y | is a hereditary weak homotopy
equivalence. We shall demonstrate below that |f | is surjective, and that the inclu-
sion A = |f |−1(p) ⊂ |X| has property UV ∞, for each p ∈ |Y |. This will complete
the proof, since |X| is an ENR, so by the equivalence of Theorem 2.1.6(a) and (c)
each point inverse |f |−1(p) is cell-like, and this verifies (c).

The image L = |f |(|X|) ⊂ |Y | is closed, since |f | is closed, so U = |Y | \ L is
open. Its preimage |f |−1(U) is empty, so the restricted map |f |−1(U) → U can
only be a weak homotopy equivalence when U is empty, i.e., when |f | is surjective.

It remains to verify the property UV ∞. Let A = |f |−1(p) ⊂ U ⊂ |X| with
U open. The complement K = |X| \ U is closed, so its image |f |(K) ⊂ |Y | is
closed and does not contain p. Each point in a CW-complex has arbitrarily small
contractible open neighborhoods [Ha02, Prop. A.4], so p ∈ |Y | has a contractible
open neighborhood N that does not meet |f |(K). By assumption, the restricted
map |f |−1(N) → N is a weak homotopy equivalence, so by defining V = |f |−1(N)
we have obtained an open, weakly contractible neighborhood of A that is contained
in U , namely V .

Now |X| is an ENR, and thus an ANR, so its open subset V is also an ANR. Thus
V has the homotopy type of a CW-complex, by Milnor’s theorem [Mi59, Thm. 1(a)
and (d)]. See alternatively [FP90, Thm. 5.2.1]. Hence the weakly contractible space
V is in fact contractible, so the inclusion V ⊂ U is null-homotopic. ¤

Remark 2.1.9. There is a technical variant of Definition 2.1.1 and Proposition 2.1.2
that will also be needed, principally in Propositions 2.7.5 and 2.7.6. Let Z be a
fixed simplicial set and V ⊂ |Z| a fixed open subset. A map f : X → Y of finite
simplicial sets over Z, i.e., a map commuting with given structure maps X → Z
and Y → Z, will be called simple over V if for every open subset U ⊂ |Y | that
is contained in the preimage of V the restricted map |f |−1(U) → U is a weak
homotopy equivalence. Equivalently, thanks to Lacher, f is simple over V if and
only if each point p ∈ |Y | contained in the preimage of V has contractible preimage
under |f |. Propositions 2.1.3 and 2.1.8 both carry over to this situation, in the
sense that all simplicial sets and maps can be taken over Z, and the term “simple”
may be replaced throughout by “simple over V ”. To see this one modifies the above
arguments in a straightforward way.

2.2. Normal subdivision of simplicial sets

In this section we define the Barratt nerve B(X) and the Kan normal subdivision
Sd(X) of a simplicial set X. We also define the last vertex map dX : Sd(X) → X,
and show that it is a simple map for each finite simplicial set X.

We call each injective morphism µ in ∆ a face operator, and each surjective
morphism ρ in ∆ a degeneracy operator. We write ιn : [n] → [n] for the iden-
tity morphism of [n], often thought of as an n-simplex of ∆n. A proper face or
degeneracy operator is one that is not equal to the identity. The i-th face oper-
ator δi : [n − 1] → [n] maps no element to i, while the j-th degeneracy operator
σj : [n+1] → [n] maps two elements to j. For any simplicial object X and morphism
α : [m] → [n] in ∆, we write α∗ : Xn → Xm for the induced morphism.
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Definition 2.2.1. The nerve NC of a small category C is the simplicial set with
q-simplices the set NqC of functors c : [q] → C, or equivalently, the set of diagrams

c0 → c1 → · · · → cq

in C. The simplicial structure is given by right composition, so α∗(c) = c ◦ α for
each morphism α in ∆. More explicitly, the i-th face operator deletes the object
ci, and the j-th degeneracy operator inserts the identity morphism of cj . A functor
F : C → D induces a map NF : NC → ND of simplicial sets, taking the q-simplex
c above to F ◦ c, i.e., the resulting diagram F (c0) → F (c1) → · · · → F (cq) in D.
A natural transformation t : F → G of functors F,G : C → D can be viewed as
a functor T : C × [1] → D, and induces a simplicial homotopy NT : NC × ∆1 ∼=
N(C × [1]) → ND from NF to NG.

The nerve NC of a partially ordered set C is the nerve of C viewed as a small
category, i.e., with one object for each element of C, a single morphism a → b
if a ≤ b in the partial ordering, and no morphisms from a to b otherwise. Any
order-preserving function ϕ : C → D then induces a map Nϕ : NC → ND.

The trivial observation that each simplex of a simplicial set is the degenera-
tion of some non-degenerate simplex can be sharpened to the following uniqueness
statement, known as the Eilenberg–Zilber lemma.

Lemma 2.2.2. Each simplex x of a simplicial set X has a unique decomposition
in the form

x = ρ∗(x#) ,

where x# is a non-degenerate simplex in X and ρ is a degeneracy operator.

Proof. See [EZ50, (8.3)] or [FP90, Thm. 4.2.3]. ¤

We shall call x# the non-degenerate part of X. If x is already non-degenerate,
then of course x = x# and ρ is the identity, but otherwise ρ is a proper degeneracy
operator.

The following construction B(X) was called the nerve functor NX by Barratt
[Ba56, §2], and the star functor X∗ in [FP90, p. 219]. We will instead call it the
Barratt nerve of X.

Definition 2.2.3. For any simplicial set X, let X# = {x# | x ∈ X} be the set
of its non-degenerate simplices. Give X# the partial ordering where x ≤ y if x is
a face of y, i.e., if x = µ∗(y) for some face operator µ. Let the Barratt nerve
B(X) = N(X#,≤) be the nerve of this partially ordered set. A q-simplex of B(X)
is a chain (x0 ≤ · · · ≤ xq) of non-degenerate simplices of X, where xi is a face of
xi+1 for each 0 ≤ i < q.

A map f : X → Y of simplicial sets induces a function f# : X# → Y #, given by
f#(x) = f(x)#. This function is order-preserving, because if x is a face of y, then
the non-degenerate part of f(x) is a face of the non-degenerate part of f(y). Hence
there is an induced map of nerves B(f) : B(X) → B(Y ), which makes the Barratt
nerve a covariant functor.

The Barratt nerve functor has bad homotopy properties in general. For example,
when X = ∆n/∂∆n for n ≥ 1, the non-degenerate 0-simplex is a face of the non-
degenerate n-simplex, and B(X) ∼= ∆1 is contractible.
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Example 2.2.4. For X = ∆n, X# is the set of all faces of ∆n. It equals the
set of face operators µ : [m] → [n] with target [n], and is isomorphic to the set of
non-empty subsets µ([m]) ⊂ [n], ordered by inclusion. When viewed as an ordered
simplicial complex [FP90, p. 152], the Barratt nerve B(∆n) can be identified with
the barycentric subdivision of ∆n [FP90, p. 111]. More precisely, there is a canonical
homeomorphism

hn : |B(∆n)|
∼=
−→ |∆n|

that takes the 0-cell (µ) in |B(∆n)| corresponding to a face operator µ : [m] → [n]
to the barycenter 〈µ〉 of the face µ∗|∆

m| of |∆n|. The barycenter of |∆m| is the
point β = 〈ιm〉 with barycentric coordinates (t0, . . . , tm) all equal to 1/(m + 1),
and 〈µ〉 is its image under |µ| : |∆m| → |∆n|. Its barycentric coordinates are thus
(t0, . . . , tn), where now ti = 1/(m+1) if i is in the image of µ, and ti = 0 otherwise.

Furthermore, the homeomorphism hn maps each simplex in |B(∆n)| affine lin-
early to |∆n|, in the sense that for each q-simplex x = (µ0 ≤ · · · ≤ µq) in B(∆n)
the maps

|∆q|
|x̄|
−→ |B(∆n)|

hn−→ |∆n|

take (t0, . . . , tq) in |∆q| to u =
∑q

k=0 tk(µk) in |B(∆n)|, and then to

hn(u) =

q∑

k=0

tk〈µk〉

in |∆n|. These homeomorphisms are natural for face operators µ : [m] → [n], in the
sense that |µ| ◦hm = hn ◦ |B(µ)|. It follows that if X is the simplicial set associated
to an ordered simplicial complex, then B(X) is the simplicial set associated to its
barycentric subdivision, and there is a canonical homeomorphism hX : |B(X)| ∼=
|X|. See also Theorem 2.3.1 below.

Remark 2.2.5. The homeomorphisms hn of Example 2.2.4 are not natural for most
degeneracy operators ρ. For instance, the square

|B(∆2)|
h2 //

|B(ρ)|

²²

|∆2|

|ρ|

²²

|B(∆1)|
h1 // |∆1|

does not commute for either of the two degeneracy maps ρ = σ0, σ1 : ∆2 → ∆1.
In fact, there does not exist any natural homeomorphism hX : |B(X)| ∼= |X| for X
in a category of simplicial sets that contains these two degeneracy maps. The two
0-cells (δ1) and (ι2) of |B(∆2)| will have different images under the embedding

(|σ0|, |σ1|) ◦ h∆2 : |B(∆2)| → |∆1| × |∆1| ,

but their images under (h∆1 ◦ |B(σ0)|, h∆1 ◦ |B(σ1)|) will be the same. See [FP67,
p. 508] and [FP90, pp. 124–125].

We now turn to the left Kan extension of the Barratt nerve, namely the normal
subdivision functor, which has much better homotopy properties. The following
definition is from [GZ67, II.1.1].
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Definition 2.2.6. For each simplicial set X, let the simplex category simp(X)
have objects the pairs ([n], x) with x ∈ Xn, and morphisms from ([m], y) to ([n], x)
the morphisms α : [m] → [n] in ∆ such that α∗(x) = y. In other words, simp(X) =
Υ/X is the left fiber at X of the Yoneda embedding Υ of ∆ into simplicial sets.
A map f : X → Y induces a functor simp(X) → simp(Y ) that takes ([n], x) to
([n], f(x)), so simp(−) is a functor from simplicial sets to small categories.

The rule ([n], x) 7→ ∆n defines a functor from simp(X) to simplicial sets, and
the representing maps x̄ : ∆n → X combine to a natural isomorphism

colim
simp(X)

(
([n], x) 7→ ∆n

) ∼=
−→ X .

The left hand side can also be written as the identification space
∐

n≥0

(Xn × ∆n)/ ∼ ,

where ∼ is generated by the relation (α∗(x), ϕ) ∼ (x, αϕ) for α : [m] → [n], x ∈ Xn

and ϕ ∈ ∆m
q , q ≥ 0. The following definition is due to D. Kan [Ka57, §7], see also

[FP90, §§4.2 and 4.6].

Definition 2.2.7. Let X be a simplicial set. The rules ([n], x) 7→ B(∆n) and α 7→
B(α) define a functor from simp(X) to simplicial sets. The normal subdivision
of X is equal to the colimit

Sd(X) = colim
simp(X)

(
([n], x) 7→ B(∆n)

)

of this functor. In other words, Sd is the left Kan extension [ML71, X.3(10)] of the
functor [n] 7→ B(∆n) from ∆ to simplicial sets, along the Yoneda embedding Υ of
∆ into simplicial sets. We can also write

(2.2.8) Sd(X) =
∐

n≥0

(Xn × B(∆n))/ ∼ ,

where ∼ is generated by the relation (α∗(x), ϕ) ∼ (x,B(α)(ϕ)) for α : [m] → [n],
x ∈ Xn and ϕ ∈ B(∆m)q, q ≥ 0.

For each map f : X → Y the functor ([n], x) 7→ B(∆n) extends over the functor
simp(X) → simp(Y ), so there is an induced map of colimits

Sd(f) : Sd(X) → Sd(Y )

that makes Sd a functor from simplicial sets to simplicial sets. The representing
maps x̄ : ∆n → X induce maps B(x̄) : B(∆n) → B(X) that combine to define a
natural map

bX : Sd(X) → B(X) ,

also known as the canonical map from a left Kan extension.

Recall from Definition 1.2.2 that a simplicial set X is non-singular if for each
non-degenerate simplex x ∈ X# the representing map x̄ : ∆n → X is a cofibration
of simplicial sets, or equivalently, if all its vertices are distinct. Any ordered sim-
plicial complex is non-singular, when viewed as a simplicial set. The nerve NC of
any partially ordered set (but not of every category) is such an ordered simplicial
complex, and thus a non-singular simplicial set. In particular, the Barratt nerve
B(X) of any simplicial set is a non-singular simplicial set.



SPACES OF PL MANIFOLDS AND CATEGORIES OF SIMPLE MAPS 31

Lemma 2.2.9. The normal subdivision functor Sd preserves cofibrations and all
colimits of simplicial sets. If X is finite, or non-singular, then so is Sd(X).

Proof. The preservation of colimits is formal, say from the formula (2.2.8). Suppose
X = ∆n∪∂∆n X ′. Then Sd(X) is obtained from Sd(X ′) by attaching Sd(∆n) along
the simplicial subset Sd(∂∆n), so Sd(X ′) → Sd(X) is a cofibration. Preservation
of general cofibrations follows by a passage to colimits. See also [FP90, Cor. 4.2.9
and 4.2.11].

The Barratt nerve B(∆n) = Sd(∆n) is finite and non-singular, and we have just
seen that if ∂∆n → X ′ is a cofibration, then so is Sd(∂∆n) → Sd(X ′). Hence if X
is finite, or non-singular, then so is Sd(X), by induction over the non-degenerate
simplices of X and a passage to colimits. ¤

Lemma 2.2.10. The canonical map bX : Sd(X) → B(X) is surjective, for each
simplicial set X.

Proof. Any q-simplex of B(X) can be written as a chain µ∗
0(x) ≤ · · · ≤ µ∗

q(x) = x
of non-degenerate simplices of X, with x ∈ Xn and µ0 ≤ · · · ≤ µq = ιn. Then
(x, µ0 ≤ · · · ≤ µq) is a q-simplex of Sd(X) that maps to the given q-simplex of
B(X). ¤

Lemma 2.2.11. If X is non-singular then the canonical map bX : Sd(X) → B(X)
is an isomorphism, and conversely.

Proof. In the special case X = ∆n, the simplex category simp(∆n) has the terminal
object ([n], ιn), so the colimit defining Sd(∆n) is canonically isomorphic to the value
of the functor at that object, and b∆n : Sd(∆n) → B(∆n) equals the canonical
isomorphism.

More generally, for a finite simplicial set X write X ∼= ∆n ∪∂∆n X ′, where
x̄ : ∆n → X is the representing map of a non-degenerate simplex x ∈ Xn of maximal
dimension. Consider the commutative square

Sd(∆n) ∪Sd(∂∆n) Sd(X ′)
∼= //

∼=

²²

Sd(X)

bX

²²

B(∆n) ∪B(∂∆n) B(X ′) // B(X) .

The left hand vertical map is an isomorphism, by induction on the dimension of X
and the number of non-degenerate n-simplices in X, and the special case X = ∆n.
The upper horizontal map is an isomorphism, by Lemma 2.2.9 for the case of
pushouts.

By the assumption that X is non-singular, x̄ restricts to a cofibration ∂∆n → X ′,
which induces an injective function (∂∆n)# → (X ′)#. Viewing it as an inclusion,
the partially ordered set X# is isomorphic to the union of (∆n)# and (X ′)# along
their intersection (∂∆n)#. It follows that the nerve B(X) = NX# is the union of
the nerves B(∆n) and B(X ′) along B(∂∆n), i.e., that the lower horizontal map in
the commutative square above is an isomorphism. Hence the right hand vertical
map Sd(X) → B(X) is an isomorphism in this case.

The case of infinite non-singular X follows by passage to the filtered colimit over
the finite simplicial subsets of X, ordered by inclusion, since both Sd and B respect
such colimits.
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For the converse implication (which we will not make any use of), suppose that
Sd(X) → B(X) is an isomorphism, and consider a non-degenerate n-simplex x
of X. Let Y ⊂ X be the simplicial subset generated by x, and write Y = ∆n∪∂∆n Z.
In the commutative diagram

Sd(∂∆n) //

²²

Sd(∆n)

Sd(x̄)

%%JJJJJJJJJ

²²

Sd(Z) // Sd(Y ) // // Sd(X)
bX // B(X)

the square is a pushout and Sd(Y ) → Sd(X) is a cofibration, by Lemma 2.2.9. As
µ : [m] → [n] ranges through the faces of ∆n, the pairwise distinct 1-simplices (µ ≤
ιn) of Sd(∆n), which are not in Sd(∂∆n), remain pairwise distinct in Sd(Y ) and in
Sd(X). Their images in Sd(X) are the 1-simplices (x, µ ≤ ιn). By the assumption
on bX they remain pairwise distinct in B(X), so the 1-simplices (µ∗(x)# ≤ x) are
all different. This means that the faces µ∗(x) of x ∈ Xn are all non-degenerate
and distinct, i.e., the representing map x̄ : ∆n → X is a cofibration. Thus X is
non-singular. ¤

Remark 2.2.12. To each simplicial set X there is a universal/initial surjective map
X → DX to a non-singular simplicial set DX, which we call the desingularization
of X. For simplicial subsets, and arbitrary products, of non-singular simplicial sets
are always non-singular, so DX can be defined as the image of the canonical map

X →
∏

f : X→Y

Y

that takes x ∈ Xn to (f(x))f , where f ranges over all quotient maps from X onto
non-singular simplicial sets Y . Any surjective map f : X → Y to a non-singular Y
then factors uniquely over X → DX.

Here are some open problems about desingularization: Can DX be given a more
explicit description? Is D(Sd(X)) ∼= B(X) for regular or op-regular X (see Defi-
nition 2.5.3)? Is D(T (f)) ∼= M(f) when f : X → Y has simple cylinder reduction
(see Definition 2.4.9)?

Definition 2.2.13. Define the cone on ∆n to be cone(∆n) = N([n] ∪ {v}), where
[n]∪{v} is ordered by adjoining a new, greatest, element v to [n]. The rule ([n], x) 7→
cone(∆n) defines a functor from simp(X) to simplicial sets, and the cone on X is
defined as

cone(X) = colim
simp(X)

(
([n], x) 7→ cone(∆n)

)
.

The inclusion [n] ⊂ [n] ∪ {v} induces the natural base inclusions ∆n → cone(∆n)
and i : X → cone(X).

Remark 2.2.14. The q-simplices of cone(X) can be explicitly described as the pairs
(µ : [p] ⊂ [q], x ∈ Xp) for 0 ≤ p ≤ q, where µ = δq . . . δp+1 is a front face of [q],
together with the vertex v. Alternatively, v can be interpreted as the unique pair
(µ, x) with p = −1, see Definition 2.4.1.
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Lemma 2.2.15. The cone functor preserves cofibrations and all colimits of sim-
plicial sets. If X is finite, or non-singular, then so is cone(X).

Proof. The preservation of colimits is formal. Suppose X = ∆n ∪∂∆n X ′. Then
cone(X) is obtained from cone(X ′) by attaching cone(∆n) ∼= ∆n+1 along the horn
cone(∂∆n) ∼= Λn+1

n+1, see Definition 3.2.1. The remaining claims follow from this
observation. ¤

The geometric realizations |Sd(X)| and |X| are homeomorphic, even if no natural
homeomorphism exists. In the case of singular (= not non-singular) X this is a
difficult fact due to Fritsch and Puppe [FP67], which we will extend in Section 2.3
below. However, there exists another relation between Sd(X) and X, which is
natural and also much easier to set up, namely the last vertex map dX : Sd(X) → X.
We recall its definition from [Ka57, §7].

Definition 2.2.16. Let dn : (∆n)# → [n] be the function

(µ : [m] → [n]) 7−→ µ(m)

that takes each non-degenerate simplex in ∆n to its last vertex. It is order-
preserving, because the last vertex of any face of µ is less than or equal to the
last vertex of µ. It is natural in [n], because for each morphism α : [n] → [p] in ∆
the last vertex of αµ equals the last vertex of its non-degenerate part (αµ)#.

Passing to nerves, we obtain a last vertex map of simplicial sets

dn : B(∆n) → ∆n ,

which is natural in [n] in the sense that for each α : [n] → [p] the square

B(∆n)
dn //

B(α)

²²

∆n

α

²²

B(∆p)
dp

// ∆p

commutes. Hence ([n], x) 7→ dn : B(∆n) → ∆n defines a natural transformation
of functors from simp(X) to simplicial sets. The induced map of colimits of these
functors is by definition the last vertex map

dX : Sd(X) → X .

It is straightforward to check that dX is natural in the simplicial set X.

Proposition 2.2.17. The last vertex map dX : Sd(X) → X is simple, for each
finite simplicial set X.

Proof. We proceed by induction on the dimension n of X and the number of non-
degenerate n-simplices of X. Choose an isomorphism X ∼= ∆n ∪∂∆n X ′. In order
to show that the map

dX : Sd(X) ∼= Sd(∆n) ∪Sd(∂∆n) Sd(X ′) → ∆n ∪∂∆n X ′ ∼= X
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is simple, it will suffice, by the gluing lemma for simple maps and Lemma 2.2.9, to
show that the three maps Sd(∆n) → ∆n, Sd(∂∆n) → ∂∆n and Sd(X ′) → X ′ are
all simple. In the second and third cases this holds by the inductive hypothesis.

To handle the first case, we note that ∆n has a greatest non-degenerate simplex
(the identity ιn on [n]), so Sd(∆n) may be identified with the cone on Sd(∂∆n),
and the map d∆n may be factored as a composite

cone(Sd(∂∆n)) → cone(∂∆n) → ∆n .

The first map is the cone on the last vertex map for ∂∆n, which is simple by
the inductive hypothesis and the pullback- and gluing properties of simple maps.
The second map takes the cone point to the last vertex of ∆n, and its geometric
realization has point inverses that are points or intervals, so it is also a simple
map. ¤

Definition 2.2.18. There is an involutive covariant functor (−)op : ∆ → ∆ that,
heuristically, takes each object [n] = {0 < 1 < · · · < n} to the same set with the
reversed total ordering. Since we are working with ∆ as a small skeleton for the
category of all finite non-empty ordinals, [n]op is then canonically identified with
[n] again, but each morphism α : [m] → [n] is mapped to the morphism αop given
by αop(i) = n − α(m − i) for i ∈ [m].

To each simplicial set X, considered as a contravariant functor from ∆ to sets,
the opposite simplicial set Xop is the composite functor X ◦ (−)op. The set of
n-simplices of Xop equals that of X, but the ordering of the vertices is reversed,
in the sense that on n-simplices the i-th face map of Xop equals the (n − i)-th
face map of X, and similarly for the other simplicial structure maps. There is
a natural homeomorphism of geometric realizations |X| ∼= |Xop|, induced by the
homeomorphism |∆n| ∼= |∆n| that takes (t0, . . . , tn) to (tn, . . . , t0) in barycentric
coordinates.

Definition 2.2.19. The simplicial opposite to the normal subdivision Sd(X) is
the op-normal subdivision Sdop(X) = Sd(X)op. It can be defined as the colimit
of the functor ([n], x) 7→ Bop(∆n) = B(∆n)op, where now Bop(∆n) may be defined
as the nerve of the partially ordered set of non-degenerate simplices in ∆n with
the opposite ordering from that of Definition 2.2.3, or inductively as the cone on
Sdop(∂∆n), with the rule that the cone point is the initial vertex of any simplex
containing it.

Let dop
n : (∆n)# → [n] be the function that takes each face µ : [m] → [n] to

its “first” vertex µ(0). It induces a map of nerves dop
n : Bop(∆n) → ∆n, which is

natural in [n]. For each simplicial set X the rule ([n], x) 7→ dop
n defines a natural

transformation of functors from simp(X) to simplicial sets, with colimit the first
vertex map

dop
X : Sdop(X) → X .

The normal subdivisions Sd(X) and Sd(Xop) are in fact equal, as quotients of∐
n≥0 Xn ×B(∆n) =

∐
n≥0 Xop

n ×B(∆n). So the first vertex map for X equals the
opposite of the last vertex map for Xop. In particular, Proposition 2.2.17 implies
that also the first vertex map dop

X is simple, for each finite simplicial set X.
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2.3. Geometric realization and subdivision

The following Theorem 2.3.1, that the geometric realizations of X and Sd(X)
are homeomorphic, was stated by Barratt in [Ba56, Thm. 3], but first properly
proved in [FP67, Satz] by Fritsch and Puppe, since [Ba56, Lem. 3.1] is wrong. See
also [FP90, Thm. 4.6.4]. We shall also obtain Theorem 2.3.2, asserting that the
homeomorphisms |Sd(X)| ∼= |X| and |Sd(Y )| ∼= |Y | can be chosen to be compatible
with respect to a previously given map f : X → Y , when Y is non-singular.

This kind of quasi-naturality statement lets us prove in Proposition 2.3.3 that
Sd preserves simple maps of finite simplicial sets. This result is needed for the
proof of Lemma 3.1.4 and Theorem 3.1.7 of [Wa85], which in turn is needed for our
homotopy fiber sequence (1.3.2), Theorems 0.2 and 0.3, and the DIFF case of Theo-
rem 0.1. The quasi-naturality also implies that Sd preserves Serre fibrations, which
we make use of in the proof of Proposition 2.7.6. As discussed in Remark 2.2.5,
there does not exist any natural homeomorphism |Sd(X)| ∼= |X|.

In the special case when we only consider finite non-singular simplicial sets X
and Y , the proofs are much easier, and we shall give these first. This will suffice for
the application of these results to Theorem 1.2.6. It will also suffice for the non-
functorial first proof of Theorem 1.2.5, given in Section 3.1. Thereafter, we shall
refine the proof of Fritsch and Puppe to also cover the case of general simplicial
sets. This will be needed for the construction of the improvement functor I in
Section 2.5, and thus for the functorial second proof of Theorem 1.2.5, as well as
for the cited results from [Wa85, §3.1].

Theorem 2.3.1. Let X be a simplicial set. There exists a homeomorphism

hX : |Sd(X)|
∼=
−→ |X| ,

which is homotopic to the geometric realization |dX | of the last vertex map.

Theorem 2.3.2. Let f : X → Y be a map of simplicial sets, with Y non-singular.
There exists a homeomorphism hf : |Sd(X)| ∼= |X| such that the square

|Sd(X)|
hf

//

|Sd(f)|

²²

|X|

|f |

²²

|Sd(Y )|
hY // |Y |

commutes, with hf homotopic to |dX | and hY : |Sd(Y )| ∼= |Y | as above.

We first make the following deduction.

Proposition 2.3.3. Let f : X → Y be a map of finite simplicial sets. If f is simple
then so is its normal subdivision Sd(f) : Sd(X) → Sd(Y ), and conversely.

Proof. Suppose first that f : X → Y is a simple map of non-singular simplicial sets.
Using only the non-singular case of Theorem 2.3.2, there are homeomorphisms
hf : |Sd(X)| ∼= |X| and hY : |Sd(Y )| ∼= |Y | such that |f | ◦ hf = hY ◦ |Sd(f)|.
Thus each preimage |Sd(f)|−1(p′) for p′ ∈ |Sd(Y )| is homeomorphic to a preimage
|f |−1(p) for p = hY (p′), and therefore contractible. So Sd(f) is a simple map.
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Suppose next that f : X → Y is a simple map, with Y non-singular. By the
general simplicial case of Theorem 2.3.2, the argument just given shows that Sd(f)
is a simple map.

Now suppose that f : X → Y is any simple map, and write Y = ∆n∪∂∆n Y ′. Let
X×Y ∆n be the pullback of ∆n → Y along f : X → Y , and similarly for X×Y ∂∆n

and X ×Y Y ′. In the commutative diagram

X ×Y ∆n

²²

X ×Y ∂∆noooo //

²²

X ×Y Y ′

²²

∆n ∂∆noooo // Y ′

the vertical maps are simple by the pullback property, and the pushout in the up-
per row is isomorphic to X ×Y Y = X. Apply Sd to this diagram. The resulting
vertical maps Sd(X ×Y ∆n) → Sd(∆n) and Sd(X ×Y ∂∆n) → Sd(∂∆n) are sim-
ple, by the case of a simple map to a non-singular simplicial set (namely ∆n and
∂∆n) just considered. The vertical map Sd(X ×Y Y ′) → Sd(Y ′) is simple by an
induction on the number of non-degenerate simplices in Y . Hence the pushout map
Sd(f) : Sd(X) → Sd(Y ) is simple, by the gluing lemma for simple maps.

The proof of the converse is easier, and does not require Theorem 2.3.2. By
naturality of the last vertex map we have f ◦ dX = dY ◦ Sd(f), where dX and dY

are simple by Proposition 2.2.17. Hence if Sd(f) is simple, then f is simple by the
composition and right cancellation properties of simple maps. ¤

We continue by reviewing the proof of Theorem 2.3.1 by Fritsch and Puppe, in-
troducing some notation along the way. For the subsequent proof of Theorem 2.3.2,
the main change will be that barycenters of simplices in X have to be replaced by
suitably defined pseudo-barycenters of simplices in X, with respect to f . In each
case, we first discuss the easier proof in the case of finite non-singular X (and Y ).

Proof of Theorem 2.3.1, the non-singular case. Suppose that X is a finite non-
singular simplicial set. Then there is a homeomorphism hX : |Sd(X)| → |X|, affine
linear on each simplex of Sd(X), such that for each non-degenerate simplex x of X,
with representing map x̄ : ∆n → X, the square

|Sd(∆n)|
hn //

|Sd(x̄)|

²²

|∆n|

|x̄|

²²

|Sd(X)|
hX // |X|

commutes, where hn is as in Example 2.2.4. This property characterizes hX (if it
exists), since the images of the maps |Sd(x̄)| cover |Sd(X)|.

By induction, we can write X = ∆n ∪∂∆n X ′, where ∂∆n → X ′ is a cofibration,
and assume that h∆n = hn, h∂∆n and hX′ exist. To define hX as the induced map
of pushouts in the diagram below,

|Sd(∆n)|

hn

²²

|Sd(∂∆n)|oo

h∂∆n

²²

// |Sd(X ′)|

hX′

²²

|∆n| |∂∆n|oo // |X ′|
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we just need to know that the left hand square commutes, since the right hand
square commutes by the characterizing property. But this follows from the fact that
the homeomorphisms hn are natural for face operators, and all the non-degenerate
simplices of ∂∆n are faces of ∆n. ¤

Proof of Theorem 2.3.1, the general case. Now let X be any simplicial set. For
each simplex x ∈ Xn, Fritsch and Puppe [FP67] construct a map

(2.3.4) hx : |B(∆n)| → |∆n|

that depends on ([n], x) in simp(X), with the following naturality property.

Proposition 2.3.5. For every morphism α : [n] → [p] in ∆, and pair of simplices
x ∈ Xn, y ∈ Xp with α∗(y) = x, the square

|B(∆n)|
hx //

|B(α)|

²²

|∆n|

|α|

²²

|B(∆p)|
hy

// |∆p|

commutes.

The rule ([n], x) 7→ hx thus defines a natural transformation of functors from
simp(X) to the category of topological spaces, whose induced map of colimits

hX = colim
simp(X)

(
([n], x) 7→ hx

)
: |Sd(X)| → |X|

is the desired map hX for the theorem. Here we are using that geometric realization
commutes with the colimits expressing X and Sd(X), in Definitions 2.2.6 and 2.2.7,
respectively. The map hX can also be characterized by the commutativity of the
square

(2.3.6) |B(∆n)|
hx //

|Sd(x̄)|

²²

|∆n|

|x̄|

²²

|Sd(X)|
hX // |X|

for each simplex x ∈ Xn, with representing map x̄ : ∆n → X. In the upper left hand
corner we have identified Sd(∆n) = B(∆n). To show that hX is a homeomorphism,
Fritsch and Puppe prove the following claim.

Proposition 2.3.7. For each non-degenerate simplex x ∈ Xn, the map hx takes
the interior of |B(∆n)| bijectively onto the interior of |∆n|.

It follows that hX is a continuous bijection. It is also closed, for |Sd(X)| and
|X| have the topologies determined by all the maps |Sd(x̄)| and |x̄|, respectively,
and Proposition 2.3.7 implies that hx is a closed surjection. Thus hX is a homeo-
morphism.
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We now review the definition of the map hx. Each point u ∈ |B(∆n)| is in the
image of the affine q-simplex |∆q| associated to some q-simplex (µ0 ≤ · · · ≤ µq) of
B(∆n), and can therefore be written as a convex linear combination

(2.3.8) u =

q∑

k=0

tk(µk)

of the 0-cells (µk) in |B(∆n)|. The numbers (t0, . . . , tq) with
∑q

k=0 tk = 1 and
tk ≥ 0 are the barycentric coordinates of u in this q-simplex.

For each 0 ≤ j ≤ k ≤ q the relation µj ≤ µk asserts that the image of µj

is contained in the image of µk, so there is a unique face operator µkj such that
µj = µkµkj . See diagram (2.3.10) below.

The placement of the simplex x in the simplicial set X enters as follows. For
each 0 ≤ k ≤ q the face µ∗

k(x) can uniquely be written as ρ∗k(zk) for some degen-
eracy operator ρk and a non-degenerate simplex zk in X, by the Eilenberg–Zilber
Lemma 2.2.2.

For each 0 ≤ j ≤ k ≤ q we can uniquely factor the composite morphism ρkµkj

in ∆ as a degeneracy operator ρkj followed by a face operator µ̃kj . We shall apply
the following definition to the degeneracy operator ρkj .

Definition 2.3.9. For each degeneracy operator ρ : [n] → [m] we define its maxi-
mal section ρ̂ : [m] → [n] to be the face operator given by

ρ̂(i) = max ρ−1(i) = max{j ∈ [n] | ρ(j) = i} .

Then ρρ̂ = ιm is the identity on [m]. For two composable degeneracy operators σ
and τ the maximal sections satisfy (στ)∧ = τ̂ σ̂.

These definitions lead to the following commutative diagram. For typographical
reasons we identify each [n] with its image ∆n under the Yoneda embedding, and
write [−] for a generic such object of ∆:

(2.3.10) [−]
ρ̂kj

//

=
ÃÃA

AA
AA

AA
A

[−]

µj

##µkj
//

ρkj

²²

[−]
µk //

ρk

²²

[n]

x̄

ÂÂ
??

??
??

??

[−]
µ̃kj

// [−]
z̄k // X

For each face operator µ : [m] → [n], we let 〈µ〉 ∈ |∆n| be the barycenter of the
face of ∆n represented by µ. As recalled in Example 2.2.4, this is the point with
barycentric coordinates (t0, . . . , tn), where ti = 1/(m + 1) if i is in the image of µ,
and ti = 0 otherwise. We shall make use of the barycenters of the composite face
operators µj ρ̂kj for 0 ≤ j ≤ k ≤ q.

The map hx : |B(∆n)| → |∆n| is defined in [FP67, (4)] by the explicit formula

hx(u) =
∑

0≤j≤q

tj(1 − tn − · · · − tj+1)〈µj ρ̂jj〉 +
∑

0≤j<k≤q

tjtk〈µj ρ̂kj〉 ,
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due to Puppe (cf. [FP90, p. 222]). Note that ρjj = ρj . As a notational convention,
we let

(2.3.11) ρkj = ρj when k ≤ j.

Using that (1 − tn − · · · − tj+1) =
∑j

k=0 tk for barycentric coordinates, we can
rewrite the formula above as

hx(u) =
∑

0≤j≤q

∑

0≤k≤j

tjtk〈µj ρ̂kj〉 +
∑

0≤j<k≤q

tjtk〈µj ρ̂kj〉 ,

and then collect the terms as

(2.3.12) hx(u) =

q∑

j,k=0

tjtk〈µj ρ̂kj〉 .

This is the formula we shall prefer to work with.
The sum expression (2.3.8) for u is not unique, since the q-simplex in question

may be degenerate and (t0, . . . , tq) ∈ |∆q| might not be an interior point, but one
can pass from any one such sum presentation of u to any other by a finite chain
of the following two operations: (a) deleting a term ti(µi) when ti = 0, and (b)
combining two terms ti(µi) + ti+1(µi+1) to (ti + ti+1)(µi) when µi = µi+1.

Fritsch and Puppe point out that each of these operations leave the point hx(u)
defined by the expression (2.3.12) unchanged. Hence hx : |B(∆n)| → |∆n| is a
well-defined, continuous map. Furthermore, they verify that these maps satisfy
Propositions 2.3.5 and 2.3.7, hence define a homeomorphism hX : |Sd(X)| ∼= |X|.
That completes the proof of their theorem. We do not reproduce the rest of their ar-
guments, since we shall need to generalize them for the proof of Theorem 2.3.2. ¤

Remark 2.3.13. Note that hx(u) is in general a quadratic, rather than linear, ex-
pression in the barycentric coordinates of u. No linear expression can be found
such that Proposition 2.3.5 holds, as explained in [FP67, p. 512]. In particular, the
construction given in [Ba56, §3] does not work.

Remark 2.3.14. If each face µ∗
k(x) is already non-degenerate, as is the case when x

is non-degenerate and X is non-singular, then each ρk is the identity, so each ρkj

and ρ̂kj is the identity, and 〈µj ρ̂kj〉 = 〈µj〉. Hence in this case

hx(u) =

q∑

j,k=0

tjtk〈µj〉 =

q∑

j=0

tj〈µj〉 ,

and hx : |B(∆n)| → |∆n| equals the canonical homeomorphism hn of Example 2.2.4.
Thus, for non-singular X the Fritsch–Puppe homeomorphism hX : |Sd(X)| ∼= |X|
specializes to the homeomorphism we first constructed for non-singular simplicial
sets.

We now turn to the case of subdividing a map f : X → Y of simplicial sets. To
see how the homeomorphisms hX and hY from Theorem 2.3.1 can fail to be natural,
suppose that X and Y are non-singular, consider a non-degenerate simplex x ∈ Xn,
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and factor its image f(x) as ρ∗(y) for a degeneracy operator ρ : [n] → [p] and a non-
degenerate simplex y ∈ Yp. Then in the (non-commutative) square

|B(∆n)|
hx //

|B(ρ)|

²²

|∆n|

|ρ|

²²

|B(∆p)|
hy

// |∆p|

the map hx = hn takes the 0-cell (ιn) of |B(∆n)| to the barycenter βn = 〈ιn〉 in
|∆n|, while |B(ρ)| takes (ιn) to the 0-cell (ιp) in |B(∆p)|, which maps by hy = hp to
the barycenter βp = 〈ιp〉 in |∆p|. The problem is that the affine linear map |ρ| does
not in general take βn to βp. Hence the square above does not in general commute.
By naturality, using the square (2.3.6) for x ∈ Xn and y ∈ Yp, the same problem
applies to the square in Theorem 2.3.2, if we try to use hX in place of the (yet to
be specified) homeomorphism hf .

Retaining the assumption that Y is non-singular, our solution is to leave hY

unchanged, and to replace the maps hx by maps hf
x : |B(∆n)| → |∆n| that take the

0-cell (ιn) to an interior point of |∆n| that is mapped by |ρ| to the barycenter of
|∆p|. A suitable such point is the pseudo-barycenter βρ

n ∈ |∆n|, which depends not
only on the simplex ∆n, but also on the surjective map ρ : ∆n → ∆p.

Definition 2.3.15. Let ρ : [n] → [p] be a degeneracy operator. For each i ∈ [p]
let β(i) ∈ |∆n| be the barycenter of the preimage |ρ|−1(i) ⊂ |∆n| of the vertex

(i) ∈ |∆p|. This preimage is the face of |∆n| spanned by the vertices in ρ−1(i) ⊂ [n].
Let the pseudo-barycenter βρ

n ∈ |∆n|, with respect to ρ, be the barycenter of
the affine p-simplex sp ⊂ |∆n| spanned by the points β(0), . . . , β(p).

Then |ρ| maps sp homeomorphically onto |∆p|, and takes the pseudo-barycenter
βρ

n to the barycenter βp of |∆p|. In particular, βρ
n is an interior point of |∆n|. For an

equivalent definition, let nj be the cardinality of ρ−1ρ(j) = {k ∈ [n] | ρ(k) = ρ(j)},
for each j ∈ [n]. Then βρ

n = (t0, . . . , tn) with tj = 1/nj(p + 1).

Definition 2.3.16. Let f : X → Y be a map of simplicial sets, x ∈ Xn an n-
simplex and µ : [m] → [n] a face operator. Write µ∗f(x) = f(µ∗(x)) ∈ Ym as γ∗(y)
where γ : [m] → [r] is a degeneracy operator and y ∈ Yr is non-degenerate. Define
the pseudo-barycenter of the face µ of x, with respect to f , to be the point

〈µ〉fx = |µ|(βγ
m)

in |∆n|. This is the image under |µ| of the pseudo-barycenter βγ
m of |∆m| with

respect to γ. In the geometric realization of the following commutative diagram of
simplicial sets,

∆m
µ

//

γ

²²

∆n x̄ // X

f

²²

∆r
ȳ

// Y

the pseudo-barycenter βγ
m ∈ |∆m| maps to the barycenter βr ∈ |∆r| and to 〈µ〉fx ∈

|∆n|.

Proof of Theorem 2.3.2, the non-singular case. Suppose that f : X → Y is a map
of finite non-singular simplicial sets. For each non-degenerate simplex x ∈ X, of
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dimension n, say, factor f(x) ∈ Y as ρ∗(y), for a degeneracy operator ρ : [n] → [p]
and a non-degenerate p-simplex y ∈ Y . For each face operator µ : [m] → [n], factor
µ∗(ρ) = ρµ as γ∗(ν) = νγ, for a degeneracy operator γ : [m] → [r] and a face
operator ν : [r] → [p].

∆m
µ

//

γ

²²

∆n x̄ //

ρ

²²

X

f

²²

∆r ν // ∆p
ȳ

// Y

Then ν∗(y) is non-degenerate, since Y is non-singular, and γ∗(ν∗(y)) is the Eilen-
berg–Zilber factorization of f(µ∗(x)). Define a map

hf
x : |Sd(∆n)| → |∆n|

(µ) 7→ 〈µ〉fx

by taking the point corresponding to the 0-simplex (µ) of Sd(∆n) to the pseudo-
barycenter 〈µ〉fx = |µ|(βγ

m) of the face µ, with respect to γ, and extending affine
linearly on each simplex of Sd(∆n). In particular, hf

x takes (ιn) to the pseudo-
barycenter βρ

n, which is an interior point of |∆n|. Furthermore, hf
x takes the bound-

ary |Sd(∂∆n)| to |∂∆n|, and similarly for each face of ∆n.
Let hY : |Sd(Y )| → |Y | be the homeomorphism from Theorem 2.3.1. We claim

that there is a (piecewise-linear) homeomorphism hf : |Sd(X)| → |X| with |f |◦hf =
hY ◦|Sd(f)|, such that for each non-degenerate simplex x of X, as above, the square

|Sd(∆n)|
hf

x //

|Sd(x̄)|

²²

|∆n|

|x̄|

²²

|Sd(X)|
hf

// |X|

commutes. By induction, we can write X = ∆n∪∂∆n X ′, with ∂∆n → X ′ a cofibra-
tion, and assume that hf |∆n

= hf
x, hf |∂∆n

and hf |X′

exist, with the characterizing
property just given.

|Sd(∆n)|

hf
x

²²

|Sd(∂∆n)|oo //

hf|∂∆n

²²

|Sd(X ′)|

hf|X′

²²

|∆n| |∂∆n|oo // |X ′|

To define hf as the pushout of these three maps, we need to know that the left
hand square commutes. But this is clear, since hf

x is constructed to be natural for
face operators.

By induction, hf |∂∆n

is a homeomorphism, and hf
x is the cone on this map, via

the identifications |Sd(∆n)| ∼= cone |Sd(∂∆n)| and |∆n| ∼= cone |∂∆n|, with cone
points (ιn) and βρ

n, respectively. Hence hf
x is also a homeomorphism. It follows by

induction that also hf is a homeomorphism. ¤

The remainder of this section is concerned with the proof of Theorem 2.3.2, in
the case when X is not necessarily non-singular.



42 FRIEDHELM WALDHAUSEN, BJØRN JAHREN AND JOHN ROGNES

Lemma 2.3.17. Let α : [n] → [p] be a morphism in ∆ and µ : [m] → [n] a face
operator such that αµ : [m] → [p] is also a face operator. Then for each pair of
simplices x ∈ Xn, y ∈ Xp with x = α∗(y) we have

|α|〈µ〉fx = 〈αµ〉fy

in |∆n|.

Proof. We factor µ∗f(x) = (αµ)∗f(y) as γ∗(w) for a degeneracy operator γ : [m] →
[r] and a non-degenerate simplex w ∈ Yr:

[m]
µ

//

γ

²²

[n]
α //

x̄

77[p]
ȳ

// X

f

²²

[r]
w̄ // Y

Then we can compute

|α|〈µ〉fx = |α||µ|(βγ
m) = |αµ|(βγ

m) = 〈αµ〉fy .

¤

Proof of Theorem 2.3.2, the general case. Preserving the notations from (2.3.10),
and the convention ρkj = ρj for k ≤ j from (2.3.11), we define hf

x : |B(∆n)| → |∆n|
at a point u =

∑q
k=0 tk(µk) by the explicit formula

(2.3.18) hf
x(u) =

q∑

j,k=0

tjtk〈µj ρ̂kj〉
f
x .

Compared to formula (2.3.12), the barycenters 〈µ〉 for faces of simplices of X are
replaced by the corresponding pseudo-barycenters with respect to the map f . In
the style of [FP67], without our notational convention, the formula can be written
as

hf
x(u) =

∑

0≤j≤q

tj(1 − tn − · · · − tj+1)〈µj ρ̂jj〉
f
x +

∑

0≤j<k≤q

tjtk〈µj ρ̂kj〉
f
x .

Lemma 2.3.19. The formula (2.3.18) above defines a well-defined, continuous map

hf
x : |B(∆n)| → |∆n| .

Proof. If some ti = 0, the term ti(µi) may be deleted from the sum (2.3.8) without
altering u. Then the terms in (2.3.18) for j = i or k = i also disappear, but all
these terms were 0 due to the vanishing coefficient tjtk, so hf

x(u) is unchanged.
If some µi = µi+1, the sum of terms ti(µi)+ti+1(µi+1) in (2.3.8) may be replaced

with a single term (ti+ti+1)(µi). This affects the terms in (2.3.18) for j or k equal to
i or i+1. But ρki = ρk,i+1 for k ≥ i+1, ρij = ρi+1,j for j ≤ i and ρi = ρi+1,i = ρi+1,
so by a little calculation the change does not affect the value of the sum hf

x(u). ¤

Following the proof of [FP67, Satz], we claim that hf
x satisfies the following two

propositions.
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Proposition 2.3.20. For every morphism α : [n] → [p] in ∆, and pair of simplices
x ∈ Xn, y ∈ Xp with α∗(y) = x, the square

|B(∆n)|
hf

x //

|B(α)|

²²

|∆n|

|α|

²²

|B(∆p)|
hf

y
// |∆p|

commutes.

Proof. The proof closely follows that of [FP67, (A)], using Lemma 2.3.17. Let
u ∈ |B(∆n)| be expressed as in (2.3.8), and let

B(α)(µ0 ≤ · · · ≤ µq) = (ν0 ≤ · · · ≤ νq) .

This means that αµk = νkτk for unique face operators νk with target [p], and
degeneracy operators τk, for 0 ≤ k ≤ q. By definition, |B(α)|(u) =

∑q
k=0 tk(νk).

We now follow the definitions leading to the diagram (2.3.10), but applied to the
q-simplex (ν0 ≤ · · · ≤ νq) and y ∈ Xp. For each 0 ≤ j ≤ k ≤ q there is a unique
face operator νkj such that νkνkj = νj . Then τkµkj = νkjτj , since νk is injective.

For each 0 ≤ k ≤ q the face ν∗
k(y) factors uniquely as σ∗

k(zk) for a non-degenerate
simplex zk in X and a degeneracy operator σk. Then ρk = σkτk and zk is the same
as in (2.3.10), by the uniqueness of the factorization for µ∗

k(x).
For each 0 ≤ j ≤ k ≤ q we uniquely factor the composite morphism σkνkj in ∆

as a degeneracy operator σkj followed by a face operator ν̃kj . Then ρkj = σkjτj

and µ̃kj = ν̃kj , by the uniqueness of the factorization. We obtain the following
commutative diagram:

(2.3.21) [−]
µj

55

µkj
//

τj

²²

ρkj

ºº

[−]
µk //

τk

²²

ρk

ºº

[n]

x̄

ÂÂ
??

??
??

??

α

²²

[−]
νj

55

νkj
//

σkj

²²

[−]
νk //

σk

²²

[p]
ȳ

// X

[−]
ν̃kj

µ̃kj

// [−]
z̄k

>>

Thus the composite

(2.3.22) αµj ρ̂kj = νjτj τ̂j σ̂kj = νj σ̂kj

is a face operator. We let σkj = σj when k ≤ j. Then by Lemma 2.3.17 and (2.3.22)
we get

|α|hf
x(u) =

q∑

j,k=0

tjtk|α|〈µj ρ̂kj〉
f
x

=

q∑

j,k=0

tjtk〈αµj ρ̂kj〉
f
y =

q∑

j,k=0

tjtk〈νj σ̂kj〉
f
y = hf

y |B(α)|(u) .

¤
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Proposition 2.3.23. For each non-degenerate simplex x ∈ Xn, the map hf
x takes

the interior of |B(∆n)| bijectively onto the interior of |∆n|.

Proof. Keeping in mind that each pseudo-barycenter βγ
n is an interior point of

|∆n|, the proof closely follows that of [FP67, (B)]. Each point u ∈ |B(∆n)| can be
represented in the form

u =
n∑

k=0

tk(µk)

where µk : [k] → [n] for each 0 ≤ k ≤ n, by possibly letting some tk = 0. There is
a permutation ϕ of [n] such that the image of µk is ϕ([k]), for each k. Since x is
non-degenerate, ρn = ιn, and it follows that ρnj = ιj for each 0 ≤ j ≤ n.

Lemma 2.3.24. For x ∈ Xn non-degenerate, hf
x maps the interior of |B(∆n)| to

the interior of |∆n|.

Proof. By our notational convention, ρkn = ιn for 0 ≤ k ≤ n. The i-th barycentric
coordinates in |∆n|, indicated by a subscript ‘i’, satisfy

hf
x(u)i ≥ tn〈ιn〉

f
x,i

(consider only the terms with j = n in (2.3.18)). When u is interior we have tn > 0,
and the pseudo-barycenter 〈ιn〉

f
x is interior, so each of these barycentric coordinates

is positive. Hence hf
x(u) is interior. ¤

To show that hf
x is injective on the interior of |B(∆n)|, consider a second

point u′ =
∑n

k=0 t′k(µ′
k) in that interior. We decorate the constructions leading

to (2.3.10), but based on u′, with a prime.

Lemma 2.3.25. Suppose that hf
x(u) = hf

x(u′), with u and u′ interior points in
|B(∆n)|. Then tj = t′j, and µj = µ′

j if tj > 0, for each 0 ≤ j ≤ n. Hence u = u′.

Proof. We prove the statement “tj = t′j , and µj = µ′
j if tj > 0” by descending

induction on 0 ≤ j ≤ n. To start the induction, note from Definition 2.3.16 that

the i-th barycentric coordinate satisfies 〈µj ρ̂kj〉
f
x,i = 0 for i not in the image ϕ([j])

of µj . Then the ϕ(n)-th barycentric coordinates satisfy

tn〈ιn〉
f

x,ϕ(n) = hf
x(u)ϕ(n) = hf

x(u′)ϕ(n) ≥ t′n〈ιn〉
f

x,ϕ(n)

(consider the terms with j = n in hf
x(u′)). Since 〈ιn〉

f
x is interior, this implies

tn ≥ t′n. By symmetry tn = t′n, and we already know that µn = µ′
n = ιn.

For the inductive step, let 0 ≤ ℓ < n and assume that the statement has been
proved for all j > ℓ. We must prove the statement for j = ℓ. Consider the point

T =

ℓ∑

j=0

n∑

k=0

tjtk〈µj ρ̂kj〉
f
x

obtained from hf
x(u) by deleting the terms with j > ℓ. By the inductive hypothesis,

T equals the corresponding point T ′ derived from u′.
If µℓ 6= µ′

ℓ, then there is an i ∈ [n] that is in the image of µℓ, but not in the
image of µ′

ℓ. Then the i-th barycentric coordinate of T = T ′ satisfies

tℓtn〈µℓ〉
f
x,i ≤ Ti = T ′

i = 0
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(consider only the term in T with j = ℓ and k = n). Since 〈µℓ〉
f
x is interior in the

µℓ-th face, its i-th coordinate is positive, and tn > 0 because u is interior, so under
this hypothesis we must have tℓ = 0. By symmetry, also t′ℓ = 0.

If on the other hand µℓ = µ′
ℓ, consider the point

S =
n∑

k=0

tk〈µℓρ̂kℓ〉
f
x

and the corresponding point S′. (There is a typographical error at this step in
[FP90, p. 203].) These are equal by the inductive hypothesis. With i = ϕ(ℓ) we
have that i is in the image of µℓ, but not in the image of µj for j < ℓ, so the i-th
barycentric coordinates satisfy

tℓSi = Ti = T ′
i ≥ t′ℓS

′
i = t′ℓSi .

Furthermore, Si ≥ tn〈µℓ〉
f
x,i > 0, since this pseudo-barycenter is interior in the

µℓ-th face, and u is interior. Therefore we must have tℓ ≥ t′ℓ, and by symmetry,
tℓ = t′ℓ. This establishes the inductive step, and completes the proof. ¤

We now return to the proof of Proposition 2.3.23. By Lemma 2.3.25 the map hf
x is

injective when restricted to the interior of |B(∆n)|, so by the theorem of invariance
of domain [HW41, Thm. VI.9], this restricted image is open in the interior of |∆n|.
By Proposition 2.3.20 the boundary of |B(∆n)| is mapped into the boundary of
|∆n|, and hf

x is a closed map, so the image of hf
x on the interior is an open, closed

and non-empty subset of the interior of |∆n|, hence equals all of this (connected)
interior. Thus hf

x is also surjective as a map of interiors. This concludes the proof
of Proposition 2.3.23. ¤

By Proposition 2.3.20 the maps hf
x assemble to a map

hf = colim
simp(X)

(
([n], x) 7→ hf

x

)
: |Sd(X)| → |X|

and by Proposition 2.3.23 this map is a homeomorphism.
It remains to verify that the desired quasi-naturality property holds, i.e., that

|f | ◦ hf = hY ◦ |Sd(f)|. It suffices to check this after composing with |Sd(x̄)| on
the right, for every (non-degenerate) simplex x of X, since the images of the latter
maps cover |Sd(X)|. We factor f(x) as γ∗(y) for a degeneracy operator γ : [n] → [p]
and a non-degenerate simplex y ∈ Yp. Then in the cubical diagram

(2.3.26) |B(∆n)|
hf

x //

|Sd(x̄)|

%%KKKKKKKKKK

|B(γ)|

²²

|∆n|
|x̄|

%%KKKKKKKKKK

|γ|

²²

|Sd(X)|
hf

//

|Sd(f)|

²²

|X|

|f |

²²

|B(∆p)|
hy=hp

//

|Sd(ȳ)|

%%KKKKKKKKKK
|∆p|

|ȳ|

%%KKKKKKKKKKK

|Sd(Y )|
hY // |Y |
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the left and right hand faces are obtained by applying the normal subdivision and
geometric realization functors to the relation fx̄ = ȳγ, and therefore commute.
The top and bottom faces commute by the definition of the maps hf and hY as
the colimits of the maps hf

x and hy, respectively. We note as in Remark 2.3.14 that
hy = hp is the canonical map from Example 2.2.4, because Y is non-singular.

Thus to show that the front face of the cube commutes, it suffices to show that
the back face commutes for each simplex x of X. The following proposition will
therefore complete the proof of Theorem 2.3.2. ¤

Proposition 2.3.27. Let f : X → Y be a map of simplicial sets, with Y non-
singular, and let f(x) = γ∗(y) for x ∈ Xn, γ : [n] → [p] a degeneracy operator and
y ∈ Yp non-singular. Then the square

|B(∆n)|
hf

x //

|B(γ)|

²²

|∆n|

|γ|

²²

|B(∆p)|
hp

// |∆p|

commutes.

Proof. We keep the notation of the sum formula (2.3.8) for u ∈ |B(∆n)|, the dia-
gram (2.3.10) and the explicit formula (2.3.18) for hf

x(u) ∈ |∆n|. Thus

|γ|hf
x(u) =

q∑

j,k=0

tjtk|γ|〈µj ρ̂kj〉
f
x .

We uniquely factor γµj = λjπj for each 0 ≤ j ≤ q, where λj is a face operator with
target [p] and πj is a degeneracy operator. Then B(γ)(µ0 ≤ · · · ≤ µq) = (λ0 ≤
· · · ≤ λq) and

hp|B(γ)|(u) =

q∑

j=0

tj〈λj〉 .

It will therefore suffice to show that

|γ|〈µj ρ̂kj〉
f
x = 〈λj〉

in |∆p|, for all 0 ≤ j ≤ k ≤ q. In particular, the left hand side is independent of k.
Fix a pair j ≤ k, and factor πj ρ̂kj = ντ , where ν is a face operator and τ : [m] →

[r] is a degeneracy operator. We obtain the following commutative diagram:

(2.3.28) [m]
ρ̂kj

//

τ

²²

[−]
µj

//

πj

²²

[n]
x̄ //

γ

²²

X

f

²²

[r]
ν // [−]

λj
// [p]

ȳ
// Y

Here the face w = (λjν)∗(y) ∈ Yr of y is non-degenerate, since y is non-degenerate
and Y is non-singular, so (µj ρ̂kj)

∗f(x) = τ∗(w) is the factorization to be used in
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defining the pseudo-barycenter 〈µj ρ̂kj〉
f
x = |µj ρ̂kj |(β

τ
m) of the face µj ρ̂kj of x with

respect to f .
The pseudo-barycenter βτ

m is chosen to map under |τ | to the (ordinary) barycen-
ter βr of |∆r|, so

|γ|〈µj ρ̂kj〉
f
x = |γµj ρ̂kj |(β

τ
m) = |λjντ |(βτ

m) = |λjν|(βr) = 〈λjν〉

in |∆p|. In fact, we claim that for Y non-singular the image of γµj ρ̂kj in [p] equals
the image of γµj , so λjν = λj (and ν is the identity morphism). To prove this
claim, we use the following lemma.

Lemma 2.3.29. When Y is non-singular, the composite operation γµj extends
over the surjection ρkj, as γµj = αρkj for a unique morphism α in ∆.

Proof. Suppose that two elements in the source of µj have the same image under
ρkj . Regarded as 0-simplices, they then have the same image under x̄µj by (2.3.10),
and thus have the same image under ȳγµj by (2.3.28). But Y is non-singular, so ȳ
is a cofibration, and the two elements also have the same image under γµj . Hence
there is a factorization of γµj over ρkj , as asserted. It is unique because ρkj is
surjective. ¤

Thus the image of the face operator λjν equals the image of γµj ρ̂kj , since τ
is surjective and (2.3.28) commutes, which equals the image of αρkj ρ̂kj = α by
Lemma 2.3.29, which in turn equals the image of αρkj = γµj since ρkj is surjective.
By (2.3.28) this equals the image of the face operator λj , and so λjν = λj . This
concludes the proof of Proposition 2.3.27. ¤

2.4. The reduced mapping cylinder

To each map f : X → Y of simplicial sets, we shall naturally associate a simplicial
set M(f) called the reduced mapping cylinder of f . There is a natural cylinder
reduction map T (f) = X ×∆1 ∪X Y → M(f) from the ordinary mapping cylinder
to the reduced one. There is also a natural cofibration M(f) → cone(X) × Y .
These two maps are compatible with front inclusions of X, back inclusions of Y ,
and cylinder projections to Y .

X

{{vvvvvvvvv

²² &&NNNNNNNNNNN f

¸¸

T (f) // M(f) // cone(X) × Y
pr

// Y

Y

VV ffNNNNNNNNNNNN

OO

=

99ssssssssssss

Like the ordinary mapping cylinder T (f), the reduced mapping cylinder M(f)
and the cone-product construction cone(X) × Y each come in a forward and a
backward version. In the forward versions, there are 1-simplices going from the
image of the front inclusion to the image of the back inclusion, while in the back-
ward versions these 1-simplices are oriented the other way. The backward (reduced
or ordinary) mapping cylinder of f equals the simplicial opposite of the forward
(reduced or ordinary) mapping cylinder of fop.
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Starting with Proposition 2.4.16, and for the remainder of this paper, we will
only make use of the backward version of the reduced mapping cylinder. So outside
of the present section, the notation M(f) will always refer to the backward reduced
mapping cylinder. The asymmetry enters in Lemma 2.4.21, where we emphasize
the faces of a given simplex x, rather than its cofaces (containing x as a face).

When f = Sd(g) : Sd(X) → Sd(Y ), for a map g : X → Y of ordered simpli-
cial complexes, the backward reduced mapping cylinder M(Sd(g)) equals Cohen’s
mapping cylinder Cg, as defined in [Co67, §4], in the subdivided form that con-
tains Sd(X) and Sd(Y ) at the front and back ends, respectively. This is clear from
Lemma 2.4.12. See also Remark 4.3.2 below.

We say that a map f has simple cylinder reduction when the map T (f) →
M(f) of backward mapping cylinders is simple. We show in Lemma 2.4.21 and
Corollary 2.5.7 that f has simple cylinder reduction when f = Sd(g) for a map
g : X → Y of non-singular simplicial sets, and more generally, when f = B(g) for
g : X → Y a map of op-regular simplicial sets. See also Lemma 2.7.4. In these
cases, then, M(f) is really a reduced version of T (f).

Let f : X → Y be a map of simplicial sets. The definition of the reduced mapping
cylinder M(f) will be parallel to that of the normal subdivision functor. First we
consider the local case of a map of simplices Nϕ : ∆n → ∆m, and define M(Nϕ)
in a combinatorial fashion. Thereafter we glue these building blocks together by
means of a colimit construction. For M(f) to contain Y as a simplicial subset, the
simplices of Y that are not in the image of f must be dealt with separately. We
shall arrange this by means of the following convention on empty (−1)-simplices,
which will be in effect throughout this section.

Definition 2.4.1. Let [−1] be the empty set with its unique total ordering, and
let ∆−1 = N [−1] be the empty simplicial set. Let ∆+ be the skeleton category of
finite ordinals, with objects the [n] for n ≥ −1 and morphisms the order-preserving
functions. For each simplicial set X we interpret the unique map η̄ : ∆−1 → X as
the representing map of a unique (−1)-simplex η ∈ X−1. Then each simplicial set
X extends uniquely to a contravariant functor from ∆+ to sets, whose value at [−1]
is the one-point set X−1 = {η}, and conversely, all contravariant functors from ∆+

to sets with value {η} at [−1] arise in this way.

Definition 2.4.2. Let simp(f) be the category with objects the commutative
squares

∆n x̄ //

ϕ

²²

X

f

²²

∆m
ȳ

// Y

with n,m ≥ −1, briefly denoted (ϕ : [n] → [m], x, y). Here ϕ is any order-preserving
function, x ∈ Xn and y ∈ Ym are simplices and f(x) = ϕ∗(y). A morphism
(α, β) from (ϕ′ : [n′] → [m′], x′, y′) to (ϕ, x, y) is a pair of order-preserving functions
α : [n′] → [n], β : [m′] → [m] such that α∗(x) = x′, β∗(y) = y′ and ϕα = βϕ′. In
other words, simp(f) = Υ/f is the left fiber at f : X → Y of the Yoneda embedding
Υ of the category of arrows in ∆+ into the category of arrows in simplicial sets.

In the following three definitions, we discuss both forward and backward cases,
without making this explicit in the notation. The context should make it clear
which case is at hand.
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Definition 2.4.3. For each order-preserving function ϕ : C → D of partially or-
dered sets let P (ϕ) = C ⊔ϕ D be the forward (resp. backward) partially ordered set
obtained from the disjoint union of C and D by adjoining the relations c < ϕ(c)
(resp. c > ϕ(c)) for all c ∈ C.

Let π : P (ϕ) → [1] = {0 < 1} be the order-preserving function that takes each
c ∈ C to 0 (resp. to 1) and each d ∈ D to 1 (resp. to 0).

Definition 2.4.4. For the map Nϕ : ∆n → ∆m of nerves induced by an order-
preserving function ϕ : [n] → [m] let

M(Nϕ) = NP (ϕ) = N([n] ⊔ϕ [m])

be the nerve of the forward (resp. backward) partially ordered set.

The rule that takes the object (ϕ, x, y) of simp(f) to M(Nϕ), and the morphism
(α, β) to the nerve of the order-preserving function P (α, β) = α⊔β : P (ϕ′) → P (ϕ),
defines a functor from simp(f) to simplicial sets. The forward (resp. backward)
reduced mapping cylinder M(f) of f : X → Y is defined to be the colimit

M(f) = colim
simp(f)

(
(ϕ, x, y) 7→ M(Nϕ)

)

of this functor.

The backward partially ordered set P (ϕ) has the partial ordering opposite to
that of the forward partially ordered set P (ϕop). Hence the backward reduced
mapping cylinder M(f) of f : X → Y is the simplicial opposite of the forward
reduced mapping cylinder of fop : Xop → Y op.

We get a commutative diagram of partially ordered sets and order-preserving
functions,

C
ϕ

//

in2

²²

D

in2

²²

=

##GG
GG

GG
GG

GG

C ⊔id C
id⊔ϕ

// C ⊔ϕ D
ϕ∨id

//

π

²²

D

[1]

where the square is a pushout, and we can identify C ⊔id C ∼= C × [1].

Passing to nerves, the square induces a cylinder reduction map from the pushout
T (Nϕ) = NC × ∆1 ∪NC ND to M(Nϕ), where NC → NC × ∆1 has the form
id× δ0 (resp. id× δ1). The folded map ϕ∨ id induces a reduced cylinder projection
pr : M(Nϕ) → ND, and the composite map is the ordinary cylinder projection
T (Nϕ) → ND. The front inclusion NC → T (Nϕ) (derived from the inclusion
id × δ1 : NC → NC × ∆1, resp. id × δ0) and the back inclusion ND → T (Nϕ)
compose with the cylinder reduction map to give front and back inclusion maps to
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M(Nϕ), respectively.

T (Nϕ)

²²

NC

;;vvvvvvvvv
//

Nϕ
$$IIIIIIIII

M(Nϕ)

pr

²²

ND

ddHHHHHHHHH
oo

=
zzuu

uu
uu

uu
uu

ND

Definition 2.4.5. The diagram above is natural in ϕ, so we may form a colimit
over simp(f) to obtain the following commutative diagram

T (f)

²²

X

==zzzzzzzz
//

f
""EE

EE
EE

EE
E M(f)

pr

²²

Y

aaCCCCCCCC
oo

=
||zz

zz
zz

zz
z

Y

of simplicial sets. The maps from X to T (f) and M(f) are the front inclusions,
the maps from Y to T (f) and M(f) are the back inclusions, and the maps
from T (f) and M(f) to Y are the ordinary and reduced cylinder projections,
respectively. We call T (f) → M(f) the cylinder reduction map. There is also a
cylinder coordinate projection π : M(f) → ∆1, compatible with the one from
T (f).

Remark 2.4.6. The q-simplices of M(f) can be explicitly described as the commu-
tative diagrams

[p]

µ

²²

x̄ // X

f

²²

[q]
ȳ

// Y

for −1 ≤ p ≤ q, where µ : [p] ⊂ [q] is a front face, x ∈ Xp and y ∈ Yq. We omit the
proof.

We have already remarked in Section 2.1 that the ordinary cylinder projection
T (f) → Y is always simple, since its geometric realization has point inverses that
are cones, hence contractible. The reduced cylinder projection M(f) → Y shares
this property. (We shall see in Lemma 2.4.11(c) that M(f) is a finite simplicial set
when X and Y are finite.) For the proof we shall use the following notion.

Definition 2.4.7. A map f : X → Y of finite simplicial sets is called a homo-
topy equivalence over the target if it has a section s : Y → X such that sf
is homotopic to the identity map on X, by a homotopy over Y . The homotopy
provides a contraction of each point inverse, so such a map f is simple. Technically
there are several versions of this concept, in that one can allow for the existence of
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the homotopy, or even the section, only after geometric realization. The strongest
notion is what we will refer to as a simplicial homotopy equivalence over the
target, meaning that the section s : Y → X exists as a map of simplicial sets, and
the composite map sf : X → X is homotopic to the identity on X by a chain of
simplicial homotopies over Y .

Lemma 2.4.8. Let f : X → Y be a map of finite simplicial sets. Then the reduced
cylinder projection pr : M(f) → Y is a simple map.

Proof. We prove that pr is a simplicial homotopy equivalence over the target, with
section the back inclusion Y → M(f). For each object (ϕ : [n] → [m], x, y) of
simp(f) the composite map M(Nϕ) → ∆m → M(Nϕ) is induced by the order-
preserving function ψ : [n] ⊔ϕ [m] → [n] ⊔ϕ [m] that maps [n] to [m] by ϕ and
is the identity on [m]. Then x ≤ ψ(x) for all x ∈ [n] ⊔ [m] in the forward case
(resp. x ≥ ψ(x) in the backward case), so there is a one-step simplicial homotopy
over ∆m between the identity on M(Nϕ) and Nψ. These maps and the simplicial
homotopy are natural in the object (ϕ, x, y), so we may pass to their colimit over
simp(f) to obtain the required simplicial homotopy over Y between the identity on
M(f) and the composite map M(f) → Y → M(f). ¤

Definition 2.4.9. A map f : X → Y of finite simplicial sets has simple cylinder
reduction if the (backward) cylinder reduction map T (f) → M(f) is simple.

Lemma 2.4.10. If the vertical maps in the commutative square

X
f

//

²²

Y

²²

X ′
f ′

// Y ′

are simple, then the induced map T (f) → T (f ′) is simple. If furthermore f and
f ′ have simple cylinder reduction, then the induced map M(f) → M(f ′) is also
simple.

Proof. The case of T (f) → T (f ′) is immediate by the gluing lemma for simple
maps. With the added hypothesis, it implies the case of M(f) → M(f ′) by the
composition and right cancellation properties of simple maps, applied to the maps
in the commutative square

T (f) //

²²

T (f ′)

²²

M(f) // M(f ′) .

¤

Lemma 2.4.11. Let f : X → Y be a map of simplicial sets.
(a) There is a natural isomorphism M(X → ∗) ∼= cone(X) (in the forward case,

and similarly in the backward case).
(b) The natural map

(c, pr) : M(X → Y ) → cone(X) × Y
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is a cofibration, where c : M(X → Y ) → cone(X) is the natural map induced by
idX and Y → ∗.

(c) If X and Y are both finite, or both non-singular, then M(f) has the same
property.

Proof. (a) For f : X → ∗, there is a cofinal embedding j : simp(X) → simp(f) that
takes the object ([n], x) with x ∈ Xn to the object (ǫ : [n] → [0], x, ∗), i.e., the
commutative diagram

∆n x̄ //

ǫ

²²

X

f

²²

∆0 // ∗ .

The composite of j and the functor (ϕ, x, y) 7→ M(Nϕ) from the definition of M(f)
is naturally isomorphic to the functor ([n], x) 7→ cone(∆n) from the definition of
cone(X), via the obvious isomorphism [n] ⊔ǫ [0] ∼= [n] ∪ {v}. By cofinality [ML71,
IX.3.1], the induced map

M(f) = colim
simp(f)

(
(ϕ, x, y) 7→ M(Nϕ)

) ∼=
−→ colim

simp(X)

(
([n], x) 7→ cone(∆n)

)
= cone(X)

is an isomorphism. In the backward case, M(X → ∗) is isomorphic to coneop(X) =
cone(Xop)op.

(b) Each q-simplex z in M(f) is represented by some q-simplex γ in M(Nϕ) =
N([n]⊔ϕ [m]), i.e., an order-preserving function γ : [q] → [n]⊔ϕ [m], at some object
(ϕ, x, y) of simp(f). Let β : [q] → [m] be the composite of γ with ϕ∨id : [n]⊔ϕ [m] →
[m], and let α : [p] → [n] be the pullback of γ along in1 : [n] → [n]⊔ϕ [m]. We obtain
a commutative diagram

∆p α //

µ

²²

∆n x̄ //

ϕ

²²

X

f

²²

∆q
β

// ∆m
ȳ

// Y ,

where −1 ≤ p ≤ q and µ : [p] ⊂ [q] is a front face (in the forward case). The left
hand square defines a morphism (α, β) in simp(f), so z in M(f) is also represented
by the q-simplex χ in M(Nµ) = N([p]⊔µ [q]), given by a canonical order-preserving
function χ : [q] → [p]⊔µ [q], at the object (µ, α∗(x), β∗(y)) of simp(f). Here χ maps
j ∈ [q] to in1(j) for 0 ≤ j ≤ p and to in2(j) for p < j ≤ q.

This canonical representative for z is in fact determined by the image of z in
cone(X) × Y . The image c(z) of z in M(X → ∗) ∼= cone(X) forgets the maps to
Y , but remembers α∗(x) and µ. The image pr(z) of z in Y equals β∗(y). Taken
together, these certainly determine the object (µ, α∗(x), β∗(y)). Thus (c, pr) is
injective in each simplicial degree q.

The backward case is quite similar, replacing front faces by back faces µ =
(δ0)q−p : [p] → [q].

(c) If X and Y are both finite or non-singular, then cone(X), cone(X) × Y and
M(f) all have the same property, by Lemma 2.2.15 and case (b). ¤

In the remainder of this section we study the reduced mapping cylinder for
simplicial maps of the form Nϕ : NC → ND, associated to an order-preserving
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function ϕ : C → D of partially ordered sets. One source of such examples is the
function ϕ = f# : X# → Y # associated to a map f : X → Y of simplicial sets,
with Nϕ = B(f) : B(X) → B(Y ). When X and Y are non-singular, this equals
the subdivided map Nϕ = Sd(f) : Sd(X) → Sd(Y ). For another kind of example,
see Lemma 2.7.4.

Recall from Definition 2.4.3 that P (ϕ) = C ⊔ϕ D, with either the forward (c <
ϕ(c)) or backward (c > ϕ(c)) partial ordering, according to the context.

Lemma 2.4.12. Let ϕ : C → D be an order-preserving function of partially ordered
sets. Then

M(Nϕ) ∼= NP (ϕ) = N(C ⊔ϕ D) ,

where Nϕ : NC → ND is the induced map of nerves.

In particular, M(B(f)) ∼= N(X#⊔f# Y #) for each map f : X → Y of simplicial

sets, and M(Sd(f)) ∼= N(X# ⊔f# Y #) for each map f : X → Y of non-singular
simplicial sets.

Proof. By the Yoneda lemma, the objects of simp(Nϕ) correspond bijectively to
commutative diagrams

[n]
x //

ψ

²²

C

ϕ

²²

[m]
y

// D

of partially ordered sets and order-preserving functions, briefly denoted (ψ, x, y).
The colimit of the induced maps NP (ψ) → NP (ϕ) is the natural map M(Nϕ) →
NP (ϕ) that we assert is an isomorphism.

A q-simplex of NP (ϕ) is represented by an order-preserving function w : [q] →
C ⊔ϕ D. Let y : [q] → D be its composite with ϕ ∨ id : C ⊔ϕ D → D, and let
x : [p] → C be the pullback of w along in1 : C → C ⊔ϕ D. Then the canonical map
χ : [q] → [p] ⊔µ [q], where µ : [p] ⊂ [q] is the front face (in the forward case), is a
q-simplex of NP (µ) at the object (µ, x, y) of simp(Nϕ). The image of χ in the
colimit M(Nϕ) maps to w in NP (ϕ), proving surjectivity.

To prove injectivity, we argue that a q-simplex z of M(Nϕ) is determined by
its image w in NP (ϕ). Let γ : [q] → [n] ⊔ψ [m] be a q-simplex in NP (ψ), at some
object (ψ, x, y) of simp(Nϕ), that represents z in the colimit. Define α, β and
µ : [p] → [q] as in the proof of Lemma 2.4.11(b). Then χ : [q] → P (µ) is a q-simplex
in NP (µ), at the object (µ, α∗(x), β∗(y)) of simp(Nϕ), that also represents z. The
image simplex w is then equal to the composite map

[q]
χ
−→ P (µ)

α⊔β
−−−→ P (ψ)

x⊔y
−−→ P (ϕ) ,

which determines β∗(y) : [q] → D by composition along pr : P (ϕ) → D, and
µ : [p] → [q] and α∗(x) : [p] → C by pullback along in1 : C → P (ϕ). Thus the
canonical representative χ at (µ, α∗(x), β∗(y)) of z is, indeed, determined by w.

The backward case is similar, replacing front faces µ by back faces. ¤

We can also iterate the mapping cylinder construction.
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Definition 2.4.13. For a chain of r composable maps

X0
f1
−→ . . .

fr
−→ Xr

of simplicial sets, the forward r-fold iterated reduced mapping cylinder, de-
noted M(f1, . . . , fr), is recursively defined as the forward reduced mapping cylinder
M(fr ◦ pr) of the composite map

M(f1, . . . , fr−1)
pr
−→ Xr−1

fr
−→ Xr .

The iterated cylinder projection pr : M(f1, . . . , fr) → Xr then equals the reduced
cylinder projection from M(fr ◦ pr).

Dually, for a chain of r composable maps

Xr
fr
−→ . . .

f1
−→ X0

the backward r-fold iterated reduced mapping cylinder M(f1, . . . , fr) is defined
as the backward reduced mapping cylinder of the composite map

M(f2, . . . , fr)
pr
−→ X1

f1
−→ X0 .

The iterated projection pr : M(f1, . . . , fr) → X0 equals the cylinder projection from
M(f1 ◦ pr).

There is a cylinder coordinate projection π : M(f1, . . . , fr) → ∆r, induced by
naturality with respect to the terminal map of chains from X0 → · · · → Xr to
∗ → · · · → ∗, in the forward case, and similarly in the backward case. The fiber
π−1(i) of this map is Xi in the forward case, and Xr−i in the backward case, for
each i ∈ [r] viewed as a vertex of ∆r. The lemmas above imply that if each Xi is
finite (resp. non-singular) then M(f1, . . . , fr) is also finite (resp. non-singular).

One can also give a direct definition of the r-fold iterated reduced mapping
cylinder M(f1, . . . , fr), as the colimit of a functor to simplicial sets. The relevant
functor takes an object in the category simp(f1, . . . , fr), which is a commutative
diagram of the form

∆n0
ϕ1 //

x̄0

²²

. . . ϕr // ∆nr

x̄r

²²

X0
f1 // . . . fr // Xr ,

to the nerve of the partially ordered set

P (ϕ1, . . . , ϕr) = [n0] ⊔ϕ1 · · · ⊔ϕr
[nr]

(which comes in forward and backward versions). In the forward case its q-simplices
can be explicitly described as the commutative diagrams

∆q0
µ1 //

x̄0

²²

. . .
µr−1

// ∆qr−1
µr //

x̄r−1

²²

∆q

x̄r

²²

X0
f1 // . . .

fr−1
// Xr−1

fr // Xr

in which the maps µ1, . . . , µr are front faces. In the backward case, these maps
must be back faces.
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Lemma 2.4.14. Let

C0
ϕ1
−→ . . .

ϕr
−→ Cr

be a chain of r order-preserving functions of partially ordered sets. Then

M(Nϕ1, . . . , Nϕr) ∼= NP (ϕ1, . . . , ϕr) = N(C0 ⊔ϕ1 · · · ⊔ϕr
Cr) ,

and similarly in the backward case.

Proof. By induction on r and Lemma 2.4.12 we can compute M(Nϕ1, . . . , Nϕr) =
M(Nϕr ◦ pr) = M(Nψ) ∼= N(P (ϕ1, . . . , ϕr−1) ⊔ψ Cr) = NP (ϕ1, . . . , ϕr). Here
ψ : C0⊔ϕ1 · · ·⊔ϕr

Cr−1 → Cr folds together the composite maps ϕr◦· · ·◦ϕi : Ci−1 →
Cr for 1 ≤ i ≤ r. ¤

To conclude this section, we shall address the question of when the cylinder
reduction map T (f) → M(f) is simple. The example f = δ0 : ∆0 → ∆1 shows that
T (f) → M(f) (in the backward versions) needs not be surjective, and the example
f = σ0|∂ : ∂∆2 → ∆1 shows that T (f) → M(f) (again, in the backward versions)
can be surjective but not simple.

The applications we have in mind will always concern the backward versions
of these mapping cylinders. Therefore, from here on and in the remainder of the
paper, we will always mean the backward reduced mapping cylinder when we
write M(f).

Definition 2.4.15. A subset A ⊂ C of a partially ordered set will be called a left
ideal if it is closed under passage to predecessors, i.e., whenever a < b in C and
b ∈ A then a ∈ A. For each element v ∈ C let C/v = {c ∈ C | c ≤ v} be the left
ideal generated by v. An order-preserving function ϕ : C → D restricts to another
such function C/v → D/ϕ(v). When v is maximal in C, N(C/v) = St(v,NC) is
the star neighborhood of v in the simplicial complex NC.

Proposition 2.4.16. Let ϕ : C → D be an order-preserving function of finite
partially ordered sets. Then the following conditions are equivalent:

(a) For each element v ∈ C the induced map of nerves of left ideals N(C/v) →
N(D/ϕ(v)) is simple;

(b) The map Nϕ : NC → ND has simple backward cylinder reduction.

Proof. We prove that (a) implies (b) by induction over the left ideals A ⊂ C. The
inductive statement is that N(ϕ|A) : NA → ND has simple (backward, as always)
cylinder reduction. Note that A/v = C/v for each left ideal A ⊂ C and v ∈ A, so
the hypothesis (a) for ϕ implies the corresponding hypothesis for ϕ|A. To start the
induction, with A = ∅, note that T (∅ → ND) ∼= M(∅ → ND) ∼= ND.

For the inductive step, let A ⊂ C be a non-empty left ideal, and assume that
N(ϕ|A′) has simple cylinder reduction for each left ideal A′ ⊂ C properly contained
in A.

Choose a maximal element v ∈ A and let A′ = A \ {v}. For brevity let K = A/v
and K ′ = K ∩ A′, so that NK = St(v,NA) is the star neighborhood of v in NA
and NK ′ = Lk(v,NA) its link, see Definition 3.2.11. Then NA = NK ∪NK′ NA′

and NK = cone(NK ′) with vertex at v. Let L = D/ϕ(v). Then there are two
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pushout squares

(2.4.17) T (NK ′ → NK) //

²²

T (NK ′ → NL) //

²²

T (NA′ → ND)

²²

T (NK → NK) // T (NK → NL) // T (NA → ND)

where T (NK → NK) = N(K ⊔ K) is the cone with vertex v on T (NK ′ →
NK) = N(K ′ ⊔ K) (since we are dealing with the backward mapping cylinders).
In particular, the vertical maps are cofibrations.

The vertex v is also maximal in the backward partially ordered set P (ϕ|A) =
A ⊔ D, with left ideal P (ϕ|A)/v = K ⊔ L, so there is one more pushout square

(2.4.18) M(NK ′ → NL) //

²²

M(NA′ → ND)

²²

M(NK → NL) // M(NA → ND)

where M(NK → NL) is the cone with vertex v on M(NK ′ → NL). Again, the
vertical maps are cofibrations.

We shall use the gluing lemma for simple maps for the map from the outer
pushout square (2.4.17) to the pushout square (2.4.18). By our inductive hypothesis
the cylinder reduction maps T (NA′ → ND) → M(NA′ → ND) (in the upper right
hand corner) and T (NK ′ → ND) → M(NK ′ → ND) are simple. The formulas

T (NK ′ → ND) = T (NK ′ → NL) ∪NL ND

and
M(NK ′ → ND) = M(NK ′ → NL) ∪NL ND

(in the backward case) let us deduce that also the restricted map T (NK ′ → NL) →
M(NK ′ → NL) is simple. By our hypothesis, condition (a) for v ∈ A ⊂ C, the
map NK → NL is simple, so by the gluing lemma the map T (NK ′ → NK) →
T (NK ′ → NL) is simple. Thus the composite map T (NK ′ → NK) → M(NK ′ →
NL) (in the upper left hand corner) is simple. The map T (NK → NK) →
M(NK → NL) (in the lower left hand corner) is the cone on the latter map,
with vertex v, hence also this third map is simple. Thus, by the gluing lemma, the
map T (NA → ND) → M(NA → ND) (in the lower right hand corner) is a simple
map.

This proves that N(ϕ|A) has simple cylinder reduction. By induction, we are
done with the proof that (a) implies (b).

For the converse implication (which we will not make any use of), suppose that
T (NC → ND) → M(NC → ND) is simple and consider any element v ∈ C, with
notation as above. By pullback, the cylinder reduction map T (NK → NL) →
M(NK → NL) is also simple. Considering its source as a mapping cone, and its
target as a cone with vertex v, we may restrict to the subspace (after geometric
realization) where the cone coordinate is 1/2. By the pullback property, we deduce
that the map T (NK ′ → NK) → M(NK ′ → NL) is simple. At the back end
of these cylinders we recover the map NK → NL, which must therefore also be
simple. This verifies condition (a). ¤
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Definition 2.4.19. We say that a map f : X → Y of finite simplicial sets is simple
onto its image if f : X → f(X) is a simple map, where f(X) ⊂ Y is the image
of f .

Lemma 2.4.20. Let K be the simplicial subset generated by an n-simplex x of X,
so K is the image of x̄ : ∆n → X. Then B(K) is the image of B(x̄) in B(X), and
Sd(K) is the image of Sd(x̄).

Proof. Each simplex y of K has the form α∗(x), for some simplicial operator α, so
the map Sd(ȳ) : Sd(∆m) → Sd(K) factors through Sd(x̄). As y varies, these maps
cover Sd(K), hence Sd(x̄) maps onto Sd(K). The Barratt nerve case follows by
the surjectivity of Sd(K) → B(K), see Lemma 2.2.10. ¤

Lemma 2.4.21. Let f : X → Y be a map of finite simplicial sets. Suppose that for
each non-degenerate simplex x ∈ X# the map B(x̄) : B(∆n) → B(X) is simple onto
its image, and likewise for each non-degenerate simplex of Y . Then B(f) : B(X) →
B(Y ) has simple backward cylinder reduction.

For example, the lemma shows that Sd(f) : Sd(X) → Sd(Y ) has simple cylin-
der reduction whenever X and Y are non-singular simplicial sets. But see also
Lemma 2.5.6 and Corollary 2.5.7.

Proof. Let C = X#, D = Y # and ϕ = f#. For each non-degenerate simplex
v = x ∈ X# the left ideal C/v = X#/x is the partially ordered set of non-
degenerate faces of x, i.e., the non-degenerate simplices K# of the simplicial subset
K of X generated by x, so N(C/v) = B(K) equals the image of B(x̄) in B(X).

The image ϕ(v) = y ∈ Y # satisfies f(x) = ρ∗(y), with ρ : [n] → [m] a degeneracy
operator, and N(D/ϕ(v)) = B(L) where L is the simplicial subset of Y generated
by y. Then in the commutative square

B(∆n)
B(x̄)

//

B(ρ)

²²

B(K)

B(f)

²²

B(∆m)
B(ȳ)

// B(L)

the left hand vertical map B(ρ) is a simplicial homotopy equivalence over the tar-
get (with simplicial section B(ρ̂)), thus simple. The upper and lower horizontal
maps B(x̄) and B(ȳ) are simple onto their images by hypothesis, so the right hand
vertical map Nϕ = B(f) : B(K) → B(L) is simple by the composition and right
cancellation properties of simple maps.

It therefore follows from Proposition 2.4.16 that the natural map T (B(f)) →
M(B(f)) is simple. ¤

2.5. Making simplicial sets non-singular

In this section, we show that finite simplicial sets can be replaced by non-singular
ones, up to simple maps. We first offer an inductive, non-functorial construction,
in Proposition 2.5.1. Thereafter, in Theorem 2.5.2, we provide a functorial con-
struction I(X) = B(Sd(X)), called the improvement functor, with a natural
simple map to X. The verification that I preserves simple maps relies on the more
complicated part of Proposition 2.3.3, for not necessarily non-singular simplicial
sets.
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Proposition 2.5.1. (a) Let Y be a finite simplicial set. There exists a finite non-
singular simplicial set Z, and a simple map f : Z → Y .

(b) More generally, let X and Y be finite simplicial sets. Let X be non-singular,
and let y : X → Y be a cofibration. Then there exists a cofibration z : X → Z, to a
finite non-singular simplicial set Z, and a simple map Z → Y with fz = y. If y is
a weak homotopy equivalence, then so is z.

Proof. (a) By induction, we may assume that the lemma is proved for Y , so that
we have a simple map f : Z → Y with Z finite and non-singular, and we need to
prove the lemma for Y ′ = ∆n ∪∂∆n Y . Let W = ∂∆n ×Y Z, and write g and h
for the structure maps to ∂∆n and Z, respectively. Then there is a commutative
diagram

cone(Sd(W ))
cone(d)

// cone(W )
cone(g)

// cone(∂∆n) // ∆n

Sd(W )
dW //

OO
i

OO

Sd(h)

²²

ww

wwooooooooooo
W

OO
i

OO

g
//

h

²²

∂∆n

OO
i

OO

::

::ttttttttt

²²

M(Sd(h))
pr

// Sd(Z)
dZ // Z

f
// Y

where the horizontal maps are simple, by Proposition 2.2.17 and Lemma 2.4.8. By
the gluing lemma, the induced map f ′ : Z ′ → Y ′ of pushouts is simple, where

Z ′ = cone(Sd(W )) ∪Sd(W ) M(Sd(h)) .

Here Z ′ is a finite non-singular simplicial set, since i and the front inclusion from
Sd(W ) are both cofibrations.

(b) In the relative case, we keep the notation above and assume given a finite cofi-
bration z : X → Z. The subdivided cofibration Sd(z) : Sd(X) → Sd(Z), followed by
the back inclusion of Sd(Z) in M(Sd(h)), defines a cofibration Sd(X) → M(Sd(h)).
The front inclusion Sd(X) → M(dX) to the reduced mapping cylinder of the last
vertex map dX : Sd(X) → X defines a second cofibration. There is a commutative
diagram, extending the one above,

M(Sd(h))
pr

// Sd(Z)
dZ // Z

f
// Y

Sd(X)

ff

ffLLLLLLLLL OO
Sd(z)

OO

dX //

²²

²²

X

OO
z

OO

@@
y

@@¡¡¡¡¡¡¡

=

²²

M(dX)
pr

// X

where the horizontal maps are simple. We replace Z ′ from (a) by the pushout

Z ′′ = Z ′ ∪Sd(X) M(dX) ,

with the induced simple map Z ′′ → Y ′ ∪X X = Y ′. The required cofibration
X → Z ′′ is obtained from the back inclusion X → M(dX).

Finally, if y : X → Y is a weak homotopy equivalence, and f : Z → Y is simple,
then any z : X → Z with fz = y is a weak homotopy equivalence, by the 2-out-of-3
property. ¤
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Theorem 2.5.2. There is an improvement functor I : C → D, which takes each
finite simplicial set X to the finite non-singular simplicial set

I(X) = B(Sd(X)) = B(Sdop(X)) ,

and a natural simple map sX : I(X) → X. The latter map is characterized by the
commutative square

Sd(Sdop(X))
dSdop(X)

//

bSdop(X)

²²

Sdop(X)

d
op
X

²²

B(Sdop(X))
sX // X

of simple maps. The functor I preserves simple maps, weak homotopy equivalences
and cofibrations.

The proof will be given at the end of this section. The non-degenerate simplices
of Sd(X) and Sdop(X) are the same, hence the equality B(Sd(X)) = B(Sdop(X)).
Proposition 2.5.1 would follow immediately from Theorem 2.5.2, taking Z = I(Y )
with its (natural) simple map to Y in case (a), and

Z = I(Y ) ∪I(X) M(I(X) → X)

in case (b), but the inductive argument we gave above is more direct.

Not every CW-complex is triangulable, i.e., homeomorphic to the underlying
polyhedron of some simplicial complex. See [FP90, §3.4] for an example due to
W. Metzler [Me67] of a non-triangulable finite CW-complex. A sufficient condition
for a CW-complex X to be triangulable is that it is regular, i.e., that the closure
of each open n-cell in X is an n-ball and its boundary in the closure is an (n − 1)-
sphere. If desired, see §1.1, §1.2 and Theorem 3.4.1 of [FP90] for more details.

There is also a notion of regularity for simplicial sets [FP90, p. 208], and the
geometric realization of a regular simplicial set is a regular CW-complex and thus
triangulable [FP90, Prop. 4.6.11]. The normal subdivision of any simplicial set is a
regular simplicial set [FP90, Prop. 4.6.10].

We shall instead make use of the simplicial opposite of the normal subdivision,
the op-normal subdivision, which produces simplicial sets with the property
opposite to regularity. We shall call this property op-regularity, so that X is
op-regular if and only if the opposite of X is regular.

Definition 2.5.3. Let x be a non-degenerate n-simplex in a simplicial set X, with
n ≥ 1, and consider the simplicial subsets Y ⊂ X and Z ⊂ Y , generated by x and
its 0-th face z = d0(x), respectively. The n-simplex x is op-regular if Y is obtained
from Z by attaching ∆n along its 0-th face δ0 : ∆n−1 → ∆n via the representing
map z̄ : ∆n−1 → Z. In other words, x is op-regular if the diagram

∆n−1 δ0
//

z̄

²²

∆n

x̄

²²

Z // Y
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is a pushout square. (We can then write Y = ∆n ∪∆n−1 Z, but this hides the
assumption that ∆n−1 is included as the 0-th face.) By definition, every 0-simplex
is op-regular. A simplicial set X is op-regular if every non-degenerate simplex of
X is op-regular.

Any non-singular simplicial set is op-regular, but not conversely, since the non-
degenerate simplices of an op-regular simplicial set may fail to be embedded along
their 0-th face.

Remark 2.5.4. Simplicial subsets and arbitrary products of op-regular simplicial
sets are again op-regular. It follows that to each simplicial set X there is an initial
map X → RopX onto an op-regular simplicial set, which we might call its op-
regularization. Compare Remark 2.2.12.

To see the claim concerning products, let (x, y) be a non-degenerate simplex of
X×Y , with X and Y op-regular. Then x generates a simplicial subset ∆n∪∆n−1 Z
of X and y generates a simplicial subset ∆m ∪∆m−1 W of Y , with conventions as
above. Then (x, y) is the image under

∆n × ∆m → (∆n ∪∆n−1 Z) × (∆m ∪∆m−1 W )

of a non-degenerate (n + m)-simplex s in the source. Only its 0-th face lies in
∆n × δ0(∆m−1)∪ δ0(∆n−1)×∆m, so (x, y) is op-regular. The argument for general
products is similar.

Lemma 2.5.5. For every simplicial set X, the op-normal subdivision Sdop(X) is
an op-regular simplicial set.

Proof. This is the opposite to [FP90, Prop. 4.6.10]. We may inductively assume
that X = ∆m∪∂∆m X ′ for some map ȳ : ∆m → X, and that Sdop(X ′) is op-regular.
Each non-degenerate n-simplex x in Sdop(X) that is not in Sdop(X ′) is in the image
from Sdop(∆m), but not in the image from Sdop(∂∆m). Hence x is the image under
Sdop(ȳ) of a unique non-degenerate n-simplex (ιm = µ0 > · · · > µn) in Sdop(∆m),
with 0-th vertex at the “barycenter” (ιm) and 0-th face in Sdop(∂∆m). Then the
simplicial subset Y ⊂ Sdop(X) generated by x is the pushout of the diagram

∆n δ0

←− ∆n−1 −→ Z

where Z ⊂ Y ∩ Sdop(X ′) is the image of the face (µ1 > · · · > µn). Hence x is
op-regular. ¤

This lemma will provide our source of op-regular simplicial sets.

Lemma 2.5.6. Let X be an op-regular simplicial set and x a simplex of X. Then
each of the maps x̄ : ∆n → X, B(x̄) : B(∆n) → B(X) and Sd(x̄) : Sd(∆n) →
Sd(X) is simple onto its image.

Proof. In each case we may assume that x is non-degenerate, for if x = ρ∗(x#)
with ρ : [n] → [m] a degeneracy operator, then each of ρ, B(ρ) and Sd(ρ) is a
simplicial homotopy equivalence over the target, with section (induced by) ρ̂, and
therefore a simple map. The conclusion for x then follows from the one for x# by
the composition property.

Suppose, then, that x is a non-degenerate n-simplex in the op-regular simplicial
set X. The image Y of x̄ is a pushout ∆n ∪∆n−1 Z. By induction on n, we may
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assume that z̄ : ∆n−1 → Z is simple. Hence x̄ is simple, by the gluing lemma for
simple maps.

The same argument works for the map Sd(x̄) and its image.
In the Barratt nerve case, we may also assume by induction that

B(z̄) : B(∆n−1) → B(Z)

is a simple map. Consider the decomposition

B(∆n) ∼= cone(B(∆n−1)) ∪B(∆n−1) B(∆n−1) × ∆1 ,

where the cone point corresponds to the vertex 0 in ∆n. There is a similar decom-
position

B(Y ) ∼= cone(B(∆n−1)) ∪B(∆n−1) M(B(z̄)) ,

coming from a poset decomposition Y # ∼= {0} ⊔ (∆n−1)# ⊔ Z#. The map B(x̄) is
the identity on the cone, and maps the cylinder by the composite map

B(∆n−1) × ∆1 → T (B(z̄)) → M(B(z̄)) .

The first map is a pushout along B(z̄), which is simple by our inductive hypothe-
sis. The second map is the natural cylinder reduction map of backward mapping
cylinders for the map B(z̄), which is simple by Lemma 2.4.21. The hypothesis of
that lemma is satisfied in this case, again by the inductive hypothesis, since each
non-degenerate simplex of Z is of dimension < n. ¤

Corollary 2.5.7. If f : X → Y is a map of op-regular simplicial sets, then g =
B(f) : B(X) → B(Y ) has simple backward cylinder reduction.

Proof. This is immediate from Lemmas 2.4.21 and 2.5.6. ¤

We now turn to a closer comparison of the normal subdivision and Barratt
nerve of (op-)regular simplicial sets. Some assumption like op-regularity is required
for the following factorization. For example, there is no such factorization for
X = ∆n/∂∆n with n ≥ 1.

Proposition 2.5.8. Let X be a finite op-regular simplicial set. The last vertex map
dX : Sd(X) → X factors uniquely through the canonical map bX : Sd(X) → B(X),
by a map cX : B(X) → X.

Sd(X)
bX //

dX
""FFFFFFFF

B(X)

cX

||y
y

y
y

X

All three maps in this diagram are simple.

Proof. For the last assertion it suffices to prove that bX is simple, because the last
vertex map dX is simple by Proposition 2.2.17, so the simplicity of the third map
cX will follow by the right cancellation property of simple maps. Uniqueness of the
factorization is also immediate once we know that bX is simple, hence surjective.
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The proof proceeds by induction on the dimension n of the op-regular simplicial
set X, and a second induction on the number of non-degenerate simplices of X.
Let x ∈ Xn be non-degenerate. There is a decomposition

X = Y ∪Y ′ X ′

where Y ⊂ X is the simplicial subset generated by x, and Y ′ = Y ∩ X ′ is of
dimension < n. Then Sd(X) = Sd(Y ) ∪Sd(Y ′) Sd(X ′) and B(X) = B(Y ) ∪B(Y ′)

B(X ′).
If Y is properly contained in X, then by induction the proposition holds for Y ,

Y ′ and X ′. The uniqueness of the factorization for Y ′ ensures that we can define
cX as the union of cY and cX′ along cY ′ . The simplicity of the map bX follows
from that of bY , bY ′ and bX′ by the gluing lemma for simple maps.

It remains to consider the special case when X is generated by a single n-simplex,
so X = Y . Then X is the pushout of a diagram

∆n δ0

←− ∆n−1 z̄
−→ Z

as in the definition of “op-regular”, where Z ⊂ X is op-regular of lower dimension.
We consider the decomposition

Sd(∆n) = cone(Sd(∆n−1)) ∪Sd(∆n−1) Sd(∆n−1) × ∆1

where the cone point corresponds to the vertex 0 of ∆n. On the part Sd(∆n−1)×∆1

of Sd(∆n) the last vertex map d∆n factors as the composite

Sd(∆n−1) × ∆1 pr1
−−→ Sd(∆n−1)

d∆n−1

−−−−→ ∆n−1 δ0

−→ ∆n .

From Sd(X) = Sd(∆n)∪Sd(∆n−1) Sd(Z) we obtain the corresponding decompo-
sition

(2.5.9) Sd(X) = cone(Sd(∆n−1)) ∪Sd(∆n−1) X ′′

where
X ′′ = Sd(∆n−1) × ∆1 ∪Sd(∆n−1) Sd(Z)

is the backward version of the mapping cylinder T (Sd(z̄)) of the subdivided map
Sd(z̄) : Sd(∆n−1) → Sd(Z). It follows (from the factorization above) that on the
part X ′′ of Sd(X) the last vertex map dX factors as the composite

X ′′ = T (Sd(z̄))
pr
−→ Sd(Z)

dZ−→ Z −→ X

Here pr denotes the cylinder projection induced by pr1 and the map Z → X is the
inclusion induced by δ0.

There is a similar decomposition of B(X) = N(X#), where X# is the partially
ordered set of non-degenerate simplices in X. Let v ∈ X# be the image under
x̄ : ∆n → X of the vertex 0, i.e., the cone point considered above. Then we can
decompose X# as

X# ∼= {v} ⊔ (∆n−1)# ⊔ Z# ,
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where (∆n−1)# corresponds to the non-degenerate simplices of X that properly
contain the vertex v. The partial ordering on X# is such that v < µ for each
element µ of (∆n−1)#, and µ > (z̄#)(µ), where z̄# : (∆n−1)# → Z#. Hence

(2.5.10) B(X) = cone(B(∆n−1)) ∪B(∆n−1) B′′

where B′′ = NP (z̄#) is the nerve of the backward version of the partially ordered
set

P (z̄#) = (∆n−1)# ⊔z̄# Z# .

By Lemma 2.4.12, we can write B′′ = M(B(z̄)) as the backward version of the
reduced mapping cylinder of the Barratt nerve map B(z̄) : B(∆n−1) → B(Z).

The canonical map bX takes X ′′ to B′′, and comparing (2.5.9) and (2.5.10) we
see that the left hand square in the following diagram is a pushout.

(2.5.11) Sd(X)

bX

²²

X ′′ = T (Sd(z̄))
pr

//

²²

oo Sd(Z)
dZ //

bZ

²²

Z

²²

B(X) B′′ = M(B(z̄))
pr

//oo B(Z)

cZ

<<zzzzzzzzz

X

The unlabeled vertical map X ′′ → B′′ is the composite of two simple maps. The
first map X ′′ = T (Sd(z̄)) → T (B(z̄)) is the natural map of mapping cylinders
induced by the commutative square

Sd(∆n−1)
Sd(z̄)

//

=

²²

Sd(Z)

bZ

²²

B(∆n−1)
B(z̄)

// B(Z) ,

and is simple by the gluing lemma and the inductive hypothesis that bZ is simple.
The second map T (B(z̄)) → M(B(z̄)) = B′′ is the natural cylinder reduction map
of backward mapping cylinders, and is simple by Corollary 2.5.7, since ∆n−1 is
non-singular and Z is op-regular.

It follows that the composite map X ′′ → B′′ is simple, so by the gluing lemma for
simple maps applied to the pushout square in (2.5.11), it follows that bX : Sd(X) →
B(X) is a simple map. Next, the compatibility of the cylinder projections from
the ordinary and the reduced mapping cylinder ensures that the middle square
in (2.5.11) commutes. By the inductive hypothesis on Z there is a map cZ that
factors dZ through bZ . Hence the restriction of the last vertex map dX to X ′′, which
is given by the composite along the upper and right hand edge of (2.5.11), factors
through the simple map X ′′ → B′′. By the universal property of a categorical
pushout, it follows that dX : Sd(X) → X itself factors through bX : Sd(X) → B(X),
as claimed. ¤

Proof of Theorem 2.5.2. The improvement functor I is defined as the composite
B◦Sd = B◦Sdop. It preserves cofibrations, since B and Sd do. It also preserves sim-
ple maps. For if f : X → Y is simple, then Sdop(f) : Sdop(X) → Sdop(Y ) is a simple
map by Proposition 2.3.3 and the remark that Sd(X) and Sdop(X) have naturally
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homeomorphic geometric realizations. Hence also Sd(Sdop(f)) : Sd(Sdop(X)) →
Sd(Sdop(Y )) is simple, by Proposition 2.3.3 again. The vertical maps in the com-
mutative square

Sd(Sdop(X))
Sd(Sdop(f))

//

bSdop(X)

²²

Sd(Sdop(Y ))

bSdop(Y )

²²

B(Sdop(X))
I(f)

// B(Sdop(Y ))

are simple, by Proposition 2.5.8 applied to the finite simplicial sets Sdop(X) and
Sdop(Y ), respectively, which are op-regular by Lemma 2.5.5. Thus I(f) : I(X) →
I(Y ) (the lower horizontal map) is simple, by the composition and right cancellation
properties of simple maps.

Finally, there is a natural transformation sX : I(X) → X. It is defined as the
composite map

sX : I(X) = B ◦ Sdop(X)
cSdop(X)
−−−−−→ Sdop(X)

d
op
X−−→ X ,

where the first map cSdop(X) is provided by the factorization in Proposition 2.5.8 of
the last vertex map for the op-regular simplicial set Sdop(X), and the second map
dop

X is the first vertex map for X, from Definition 2.2.19. Each of these is simple, so
also sX is a simple map. It follows by the 2-out-of-3 property that I also preserves
weak homotopy equivalences. ¤

2.6. The approximate lifting property

The following study of the ALP will be useful in Section 2.7 when we relate Serre
fibrations to simple maps.

Definition 2.6.1. Let f : X → Y be a map of topological spaces. We say that f
has the approximate lifting property for polyhedra, abbreviated ALP, if for
each commutative diagram of solid arrows of the following kind

Q × {0} ∪ P × (0, 1]

''O
O

O
O

O
O

O

²²

Q

77ooooooooooooo
//

²²

X

f

²²

P × [0, 1]

''O
O

O
O

O
O

O

P

77ooooooooooooo
// Y

the dashed arrows can always be filled in, keeping the diagram commutative. Here
P is a compact polyhedron and Q a compact subpolyhedron, we identify P with
P × {0} ⊂ P × [0, 1] and Q with Q × {0}, and (0, 1] is the half-open interval
containing 1 but not 0.
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In other words, given any map P → Y and a lift Q → X over f : X → Y of
its restriction to Q ⊂ P , there exists a map P × (0, 1] → X such that (i) the
union of its composite with f and the given map P → Y is a continuous map
P × [0, 1] → Y , and (ii) its union with the given lift Q → X is a continuous map
Q×{0}∪P ×(0, 1] → X. We thus ask (for Q = ∅) that each map P ∼= P ×{0} → Y
is one end-point of a path P × [0, 1] → Y of such maps, for which the remainder of
the path admits a lift P × (0, 1] → X over f : X → Y .

Definition 2.6.2. Once more, let f : X → Y be a map of topological spaces.
We say that f is a simple map if for each open subset U ⊂ Y the restricted
map f−1(U) → U is a weak homotopy equivalence, i.e., if f is a hereditary weak
homotopy equivalence.

By Proposition 2.1.2 a map f : X → Y of finite simplicial sets is simple, in the
sense that its geometric realization |f | : |X| → |Y | has contractible point inverses,
if and only if |f | is a simple map of topological spaces in the sense just defined.
However, a general simple map of topological spaces needs not even be surjective, as
the example of the inclusion (0, 1] ⊂ [0, 1] illustrates (but the image will be dense).

The approximate lifting property for polyhedra implies the property of being
simple, and for maps to metric spaces the two notions are equivalent, as we shall
momentarily prove.

The ALP can also be motivated by considering what is required for the cylinder
coordinate projection π : T (f) = X × [0, 1] ∪X Y → [0, 1] to be a Serre fibration.
For details, see the proof of Proposition 2.6.9 below.

Our emphasis on Serre fibrations (rather than Hurewicz fibrations) also explains
the restriction to maps from polyhedral pairs (P,Q) in the definition of the ALP,
and the focus on weak homotopy equivalences in the definition of simple maps.

Lemma 2.6.3. If f : X → Y has the ALP, then it is simple.

Proof. Let U ⊂ Y be an open subset. Given any commutative square of solid
arrows

Sn−1 //

²²

f−1(U)

²²

Dn //

::u
u

u
u

u

U

we shall show that there is a map Dn → f−1(U) such that the resulting upper
triangle commutes and the lower triangle commutes up to homotopy. This implies
that the restricted map f−1(U) → U is a weak homotopy equivalence, and that f
is a simple map.

We apply the ALP for f : X → Y and polyhedral pair (P,Q) homeomorphic to
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(Dn, Sn−1), to obtain the dashed arrows in the following commutative diagram.

Sn−1 //

$$HHHHHHHHH

²²

Sn−1
0 ∪ Dn × (0, ǫ] //

ww

²²

Sn−1
0 ∪ Dn × (0, 1]

xxq
q

q
q

q
q

²²

f−1(U) //

²²

X

f

²²

Dn //

$$JJJJJJJJJJ
Dn × [0, ǫ] //

vv

Dn × [0, 1]

wwo
o

o
o

o
o

U // Y

Here we have abbreviated Sn−1 × {0} to Sn−1
0 two times in the top row, for typo-

graphical reasons. Next we note that these dashed arrows to X and Y will restrict
to dotted arrows mapping to f−1(U) and U , respectively, provided we make ǫ > 0
sufficiently small. The required map can then be obtained as the composite

Dn → Sn−1 × {0} ∪ Dn × (0, ǫ] → f−1(U) ,

where the first map is chosen to extend the identification Sn−1 ∼= Sn−1 × {0}. ¤

Proposition 2.6.4. If f : X → Y is simple and (Y, d) is a metric space then f
has the ALP.

Proof. Let P be a compact polyhedron and g : P → Y a map. For the purpose of
this proof let an ǫ-lifting of g be a map h : P → X such that for each point x ∈ P
the distance in Y from g(x) to f(h(x)) is less than ǫ. Let T be a triangulation of P ,
i.e., an ordered simplicial complex (or if preferred, a non-singular simplicial set)
with a PL homeomorphism |T | ∼= P . By a (T, ǫ)-lifting of g we shall mean a map
h : P → X such that for each simplex S ⊂ P in T the image f(h(S)) is contained
in the open ǫ-neighborhood in Y of g(S).

Let the mesh of (P, T, g) be the number τ given as the maximum of the distances
d(g(x1), g(x2)), where x1 and x2 are any two points in P that are contained in a
single simplex in T . So τ is the maximum of the diameters of the images g(S) ⊂ Y
as S ⊂ P ranges through the simplices of the triangulation T . Then any (T, ǫ)-
lifting will be a (τ + ǫ)-lifting, by the triangle inequality. Conversely, an ǫ-lifting is
a (T, ǫ)-lifting for any triangulation T .

We claim that for any triangulation T of P and any ǫ > 0 it is possible to find
a (T, ǫ)-lifting of g : P → Y . Moreover, any given (T, ǫ)-lifting on a subcomplex P ′

of P (triangulated by a subcomplex T ′ of T ) can be extended to one on all of P .
By induction it will suffice to prove this claim in the case when P ′ is all of P

except from the interior of a top-dimensional simplex. This case again follows from
the special case where P is a simplex and P ′ is its boundary.

In this case, let U be the open ǫ-neighborhood in Y of the image g(P ). The
partial (T, ǫ)-lifting on P ′ may be regarded as a map to f−1(U), in view of the very
definition of a (T, ǫ)-lifting. We are assuming that f is a simple map, so that that
the restricted map f−1(U) → U is a weak homotopy equivalence. Hence we can
find a map P → f−1(U) extending the given map on P ′. This gives the desired
(T, ǫ)-lifting on P , proving the claim.
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To prove that f has the ALP we shall construct a map P × (0, 1] → X by
piecing together liftings of the kind just discussed on the parts P × {an} and
P × [an+1, an]. Here {an}

∞
n=1 is some sequence of numbers in (0, 1] starting with

a1 = 1 and decreasing monotonically to zero, for example an = 1/n. We must
arrange this so that the union maps Q × {0} ∪ P × (0, 1] → X and P × [0, 1] → Y
are continuous.

First, for any n we choose a triangulation Tn of P × {an} whose mesh, in the
above sense, is at most 1/n. We may certainly arrange that Q ∼= Q × {an} is
triangulated by a subcomplex of Tn. Then we use the claim above to define a map
P ∼= P × {an} → X, extending the given map Q → X to a (Tn, 1/n)-lifting of
g : P → Y .

Next, we choose a triangulation T ′
n of P × [an+1, an] of mesh ≤ 1/n. Again we

may assume that Q × [an+1, an] is a subcomplex in this triangulation. The n-th
and (n+1)-th lifting just constructed may then be regarded as a single (2/n)-lifting
defined on P ×{an+1, an}, which we may extend to P ×{an+1, an}∪Q× [an+1, an]
by insisting that the lifting on Q × [an+1, an] must be independent of the interval
coordinate. By the claim above, again, the lifting may be further extended to a
(T ′

n, 2/n)-lifting on all of P × [an+1, an].

We have thus obtained, for every n, a (3/n)-lifting on P × [an+1, an], and these
liftings are compatible as n varies. Thus they assemble to a map P × (0, 1] → X.
In view of its construction, this map is compatible with the given maps Q → X
and P → Y in the way required by the ALP. ¤

Definition 2.6.5. Let p : E → B be a map of topological spaces, so (E, p) is a
space over B. We say that (E, p) is trivial up to a simple map if there is a
proper and simple map over B from a product fibration (B × F, pr1) to (E, p). In
other words, there is a space F and a commutative diagram

B × F
f

//

pr1
##FF

FF
FF

FF
F E

p
ÄÄ~~

~~
~~

~

B

where f is proper and simple.

We say that (E, p) is locally trivial up to simple maps if each point in B has
a neighborhood over which the restriction of (E, p) is trivial up to a simple map.

Proposition 2.6.6. Let (E, p) be a space over B that is locally trivial up to simple
maps and suppose that E is a locally compact metric space. Then p : E → B is a
Serre fibration.

Proof. We must show that p has the homotopy lifting property for polyhedra, that
is, given any commutative square of solid arrows

(2.6.7) P
g

//

²²

E

p

²²

P × [0, 1]
H

//

::v
v

v
v

v

B
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where P is a polyhedron and P is identified with P × {0}, the dashed arrow can
always be filled in while keeping the diagram commutative. The first step will be
to reduce to the case when (E, p) is (globally) trivial up to a simple map.

The base B is covered by open subsets over each of which the restriction of (E, p)
is trivial up to a simple map. We can find subdivisions of P and [0, 1] such that
each of the blocks S× [a, b], where S is a simplex of the subdivision of P and [a, b] a
simplex of the subdivision of [0, 1], is mapped by the homotopy H into one of these
open subsets of B. By induction over these blocks it will then suffice to establish
that p has the (seemingly stronger, but actually equivalent) relative form of the
homotopy lifting property for polyhedra. This relative form asks, in particular,
that the dashed arrow can always be filled in the following solid arrow diagram

S × {a} ∪ ∂S × [a, b] //

²²

E

p

²²

S × [a, b]
H

//

77o
o

o
o

o
o

o

B .

Here ∂S ⊂ S is the boundary of the simplex S ⊂ P . The homotopy H maps into
one of the open subsets of B where (E, p) is trivial up to simple maps, so we may
replace (E, p) by its restriction over this subset.

After this reduction, we may restrict to the absolute version of the homotopy
lifting property again, for there is a homeomorphism of pairs

(S × [a, b], S × {a} ∪ ∂S × [a, b]) ∼= (S × [a, b], S × {a}) .

Summarizing, we are only required to fill in the dashed arrow in (2.6.7) when (E, p)
is trivial up to a simple map.

Choose such a (proper, simple) trivialization f : B × F → E over B, as in
Definition 2.6.5. The simple map f has the ALP by Proposition 2.6.4 (E is metric).
Therefore the map g : P → E has an approximate lifting (β, ϕ) : P × (0, 1] → B×F
so that the union map g∪f(β, ϕ) : P×[0, 1] → E is continuous. Here we have written
the approximate lifting as (β, ϕ), in terms of its component maps β : P ×(0, 1] → B
and ϕ : P × (0, 1] → F .

P × (0, 1]
(β,ϕ)

//

¿¿

B × F

f

²²

P
g

//

²²

E

p

²²

P × [0, 1]
H

//

99r
r

r
r

r
r

B

However, the map g ∪ f(β, ϕ) has no reason to be a lift over p of the given homo-
topy H. Nonetheless this can be arranged, as follows.

Let η : P × (0, 1] → B be the restriction of H away from P , and replace (β, ϕ) by
the map (η, ϕ) : P × (0, 1] → B ×F . We claim that the union map g∪ f(η, ϕ) : P ×
[0, 1] → E is continuous. It is then clear from its definition that it provides the
dashed arrow in diagram (2.6.7), as required.
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It suffices to prove continuity of g ∪ f(η, ϕ) at (x, 0) in P × [0, 1] for each x ∈ P .
Each neighborhood of the image point g(x) ∈ E contains a compact neighborhood
N of g(x), since E is assumed to be locally compact. The preimage f−1(N) in
B × F is compact, since f is proper, so its projection K = pr2f

−1(N) ⊂ F is also
compact.

Assume for a contradiction that there is no neighborhood of (x, 0) ∈ P × [0, 1]
that is mapped into N by the union of g and f(η, ϕ). Then there is a sequence of
points (xn, tn) in P × [0, 1] converging to (x, 0), whose images in E are never in
N . By the continuity of g we may assume that none of the tn = 0, so (xn, tn) is a
sequence of points in P × (0, 1], with f(η, ϕ)(xn, tn) not in N .

Momentarily switching back from (η, ϕ) to (β, ϕ), by continuity of the map P ×
[0, 1] → E in the ALP the sequence f(β, ϕ)(xn, tn) converges to g(x), hence eventu-
ally lies within N . Passing to a subsequence we may assume that all (β, ϕ)(xn, tn)
lie within f−1(N), so all ϕ(xn, tn) lie within K. The latter space is compact, so by
passing to a subsequence once more we may assume that ϕ(xn, tn) converges to a
point y ∈ K.

We also know that β(xn, tn) and η(xn, tn) converge to the same point b = p(g(x))
in B, by the continuity of the map in the ALP and the homotopy H, respectively.
Thus (β, ϕ)(xn, tn) and (η, ϕ)(xn, tn) both converge to (b, y) in B×F , and so their
image sequences under f have the same limit in E. (These limits are unique, since
E is metric.) In the first case this limit is g(x), by the continuity of the map in
the ALP. In the second case f(η, ϕ)(xn, tn) never enters the neighborhood N . This
contradiction proves the claim of continuity for the union map g ∪ f(η, ϕ). ¤

For a map of simplicial sets π : Z → ∆q we shall obtain a converse to Proposi-
tion 2.6.6 in Proposition 2.7.6 below. For a PL map p : E → |∆q|, we obtain the
converse in Proposition 2.7.7.

Definition 2.6.8. We say that a map of simplicial sets is a Serre fibration if its
geometric realization is a Serre fibration in the topological category, i.e., if it has
the homotopy lifting property for continuous maps from compact polyhedra.

In the following we consider the ordinary and reduced mapping cylinders T (f)
and M(f) (in their backward versions) as simplicial sets over ∆1, by means of the
cylinder coordinate projection π from Definition 2.4.5.

Proposition 2.6.9. Let f : X → Y be a map of finite simplicial sets, and sup-
pose that the cylinder reduction map T (f) → M(f) is simple. Then the following
conditions are equivalent:

(a) f is a simple map;
(b) π : T (f) → ∆1 is a Serre fibration;
(c) π : M(f) → ∆1 is a Serre fibration.

Proof. If f is simple then the canonical map |X| × |∆1| → |T (f)| provides a trivi-
alization up to a simple map of |π| : |T (f)| → |∆1|, by the gluing lemma for simple
maps, so (a) implies (b) by Proposition 2.6.6. Similarly (a) implies (c) since the
composite map |X| × |∆1| → |T (f)| → |M(f)| is simple by the hypothesis on the
cylinder reduction map.

Conversely, we shall show that if π : T (f) → ∆1 is a Serre fibration then the
geometric realization |f | has the ALP, so (b) implies (a) by Lemma 2.6.3. Similarly,
we shall show that if π : M(f) → ∆1 is a Serre fibration then |f | has the ALP, so
also (c) implies (a).
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Suppose first that |π| : |T (f)| → |∆1| = [0, 1] is a Serre fibration. Let Q ⊂ P
be a pair of compact polyhedra, and suppose that we are given compatible maps
g : P → |Y | and Q → |X| as in Definition 2.6.1. We obtain an induced map of
mapping cylinders P ∪Q Q× [0, 1] → |T (f)| (constant in the cylinder direction) and
a commutative square

P ∪Q Q × [0, 1] //

≃

²²

|T (f)|

|π|

²²

P × [0, 1]

77p
p

p
p

p
p

pr2 // [0, 1]

of solid arrows, as in the relative form of the homotopy lifting property for polyhe-
dra. By hypothesis, |π| is a Serre fibration, so there is a map P × [0, 1] → |T (f)|
over [0, 1] (the dashed arrow) that extends the given map on P ∪Q Q × [0, 1]. It
restricts over (0, 1] to a map

P × (0, 1] → |T (f)| \ |Y | ∼= |X| × (0, 1] ,

whose composite with the projection |X| × (0, 1] → |X| provides a map P ×
(0, 1] → |X| with the continuity properties demanded by the ALP. The verifica-
tion is straightforward, using that the composite map |f | ◦ pr1 : |X| × (0, 1] → |Y |
extends continuously to the cylinder projection |pr| : |T (f)| → |Y |.

Finally, suppose that |π| : |M(f)| → [0, 1] is a Serre fibration. We have not
checked that |M(f)| is homeomorphic to |T (f)|, so we cannot quite conclude as in
the previous case. However, we can bypass this problem in the following way. We
use that |T (f)| → |M(f)| is simple, and thus has the ALP.

The given maps g : P → |Y | and Q → |X| induce P ∪Q Q × [0, 1] → |T (f)| as
above, which we compose with the cylinder reduction map to get a map P ∪Q Q×
[0, 1] → |M(f)| and a commutative square

P ∪Q Q × [0, 1] //

≃

²²

|M(f)|

|π|

²²

P × [0, 1]

77p
p

p
p

p
p

pr2 // [0, 1]

as above. The Serre fibration hypothesis provides the lift and extension P × [0, 1] →
|M(f)|. By the ALP for |T (f)| → |M(f)| in the case of the polyhedral pair (P ×
[0, 1], Q × [0, 1]), we can find a suitable map

(2.6.10) P × [0, 1] × (0, 1] → |T (f)| .

Restricting to the diagonal (0, 1] → [0, 1]×(0, 1] we obtain from it a map P×(0, 1] →
|X| × (0, 1], and hence, by projecting to |X| as before, the desired approximate
lifting. The verification is again quite straightforward, using the ALP conditions
satisfied by (2.6.10). ¤
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2.7. Subdivision of simplicial sets over ∆q

In Section 3.1 we shall study simplicial categories whose objects in simplicial
degree q can be thought of as suitably continuous q-parameter families of simplicial
sets. More precisely, the objects will be Serre fibrations π : Z → ∆q of simplicial
sets. Recall that we say that a map of simplicial sets is a Serre fibration if its
geometric realization is a Serre fibration (of topological spaces).

The purpose of the present section is to use the iterated reduced mapping cylinder
of Section 2.4 to obtain combinatorial control of the property that π : Z → ∆q

is a Serre fibration, in terms of simple maps. In Proposition 2.7.2 we recognize
the part of Sd(Z) sitting over a given simplex in the target of the subdivided
map Sd(π) : Sd(Z) → Sd(∆q) as a naturally occurring iterated reduced mapping
cylinder. This leads to the construction in Proposition 2.7.5 of a natural map t to Z
from a product bundle over ∆q, and the study of the approximate lifting property
from Section 2.6 lets us conclude in Proposition 2.7.6 that π is a Serre fibration if
and only if t is a simple map. For use in §3.3, we prove a similar statement for PL
Serre fibrations (of compact polyhedra) in Proposition 2.7.7.

We prove “fiber” and “base” gluing lemmas for Serre fibrations of simplicial sets
in Propositions 2.7.10 and 2.7.12, respectively.

Definition 2.7.1. Let π : Z → ∆q be any map of simplicial sets. Each face µ of
∆q corresponds to a vertex (µ) of Sd(∆q). The preimage Sd(π)−1(µ) of this vertex
under the subdivided map Sd(π) : Sd(Z) → Sd(∆q) is a simplicial subset of Sd(Z),
which we call the preimage of the barycenter of the face µ. The name may
be justified, to some extent, by passage to geometric realization.

In the special case when µ = β (for “barycenter”) is the maximal (q-dimensional)
face of ∆q, we simply call the simplicial set Sd(π)−1(β) the preimage of the
barycenter associated to π : Z → ∆q. When q = 0, Sd(π)−1(β) = Sd(Z).

Proposition 2.7.2. Let π : Z → ∆q be any map of simplicial sets.
(a) Let µ ≤ ν be two comparable faces of ∆q, or what is the same, two vertices

of Sd(∆q) that are connected by an edge. Then there is a natural pullback map

g = gµν : Sd(π)−1(ν) → Sd(π)−1(µ)

(along that edge) between the preimages of the barycenters of these faces.
(b) Let λ ≤ µ ≤ ν be comparable faces of ∆q. Then

gλν = gλµ ◦ gµν : Sd(π)−1(ν) → Sd(π)−1(λ) .

(c) Let s = (µ0 ≤ · · · ≤ µr) be an r-simplex in Sd(∆q). Then the part of Sd(Z)
over the simplicial subset generated by s is naturally isomorphic to the r-fold iterated
backward reduced mapping cylinder of the resulting chain of pullback maps

Sd(π)−1(µr) → · · · → Sd(π)−1(µ0) .

Proof. (a) It suffices to construct the natural pullback map when Z is non-singular,
since the preimage of the barycenter functors commute with colimits. So we assume
that Z is non-singular, in which case Sd(Z) = B(Z) = N(Z#).

By hypothesis, µ : [k] → [q] is a face of ν : [ℓ] → [q], so there is a unique face
operator λ : [k] → [ℓ] such that µ = νλ. The preimage Sd(π)−1(ν) equals the nerve
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NC of the partially ordered subset C ⊂ Z# of non-degenerate simplices v ∈ Zn

for n ≥ 0 such that π(v)# = ν, i.e., such that π ◦ v̄ factors as ν ◦ ρ for some
degeneracy operator ρ. Similarly, Sd(π)−1(µ) equals ND where D ⊂ Z# consists
of the non-degenerate simplices w ∈ Zm for m ≥ 0 such that π(w)# = µ.

Given v ∈ C, let the face operator λ1 : [m] → [n] and the degeneracy operator
ρ1 : [m] → [k] be the pullbacks of λ and ρ, as in the following diagram:

(2.7.3) [m]
λ1

//

w̄

""

ρ1

²²

[n]
v̄

//

ρ

²²

Z

π

²²

[k]
λ //

µ

;;
[ℓ]

ν // [q]

There is then an order-preserving function

ψ : C → D

v 7→ w = λ∗
1(v)

given by pullback along λ. Note that w = λ∗
1(v) is already non-degenerate, because

Z is non-singular. The natural pullback map in question is defined as the nerve
map g = Nψ : NC → ND.

In other words, when Z is non-singular, g is a map of nerves and is determined
by its effect on vertices. A vertex of Sd(π)−1(ν) is a non-degenerate simplex v of
Z that maps onto ν in ∆q, meaning that ν is the non-degenerate part of π(v). The
maximal face w of v that lies over the face µ of ν is then a non-degenerate simplex
of Z and represents a vertex of Sd(π)−1(µ). The pullback map g takes v to this
vertex w.

(b) This is clear from the construction in (a).
(c) We may again assume that Z is non-singular, since the preimage of the

barycenter functors, the natural pullback maps and the iterated reduced mapping
cylinder all commute with colimits. At first, we shall also assume that the simplex
s = (µ0 < · · · < µr) is non-degenerate, since this makes the following argument a
little clearer.

The part of Sd(Z) = N(Z#) over s is the nerve of the partially ordered subset
P of Z# that consists of the non-degenerate simplices v ∈ Zn, n ≥ 0, such that the
image of π ◦ v equals the image of one of the µ0, . . . , µr. The µj are all different,
since s is non-degenerate, so this partially ordered subset is a disjoint union P =
Dr ⊔ · · · ⊔ D0, where Dj is the set of v ∈ Z# with π(v)# = µj , for each j ∈ [r].
The subset partial ordering on P is such that v > w for v ∈ Dj , w ∈ Dj−1 if and
only if w is a face of the image ψ(v) of v in Dj−1, due to the universal property of
pullbacks. Thus

P ∼= P (Dr → · · · → D0)

is an isomorphism of partially ordered sets, inducing the claimed isomorphism

NP ∼= M(NDr → · · · → ND0)



SPACES OF PL MANIFOLDS AND CATEGORIES OF SIMPLE MAPS 73

of simplicial sets, by Lemma 2.4.14.
Finally, any simplex of Sd(∆q) has the form α∗(s) = (µα(0) ≤ · · · ≤ µα(p)) for a

degeneracy operator α : [p] → [r] and a non-degenerate r-simplex s, as above. By
definition, the part of Sd(Z) over α∗(s) is the pullback along α of the part of Sd(Z)
over s. Since nerves commute with pullbacks, this is the same as the nerve of the
pullback

Dα(0) ⊔ · · · ⊔ Dα(p) //

²²

D0 ⊔ · · · ⊔ Dr

²²

[p]
α // [r] ,

i.e., the p-fold iterated backward reduced mapping cylinder of the chain of pullback
maps

Sd(π)−1(µα(p)) → · · · → Sd(π)−1(µα(0)) .

¤

Lemma 2.7.4. Let π : Z → ∆q be a map of finite simplicial sets, and let µ ≤ ν be
faces of ∆q. Then the natural pullback map

g : Sd(π)−1(ν) → Sd(π)−1(µ)

has simple backward cylinder reduction T (g) → M(g).

We first prove this for non-singular Z, which is what is needed for the proof of
Theorem 1.2.6 in Part 3. Then we give the extra arguments needed for general Z.
See also Lemma 2.7.9 for a related result.

Proof of Lemma 2.7.4, the non-singular case. Suppose first that Z is finite and non-
singular. We keep the notations C, D, ψ from the proof of Proposition 2.7.2(a),
so that Sd(π)−1(ν) = NC, Sd(π)−1(µ) = ND and g = Nψ. We shall verify that
Nψ : N(C/v) → N(D/w) is a simple map, for each v ∈ C and w = ψ(v) ∈ D. The
conclusion of the lemma then follows by Proposition 2.4.16.

An element v ∈ C is a non-degenerate simplex v ∈ Zn such that π ◦ v̄ = ν ◦ ρ for
some degeneracy operator ρ. See (2.7.3). The left ideal C/v consists of the faces
ν∗
1 (v) of v, for ν1 : [n1] → [n] injective, such that ρν1 remains surjective. Its nerve

N(C/v) =
∏

i∈[ℓ]

N(ρ−1(i))

is the product of the simplices spanned by the (non-empty) preimages of ρ.
The image w = ψ(v) = λ∗

1(v) ∈ D is a non-degenerate simplex w ∈ Zm such
that π ◦ w̄ = µ ◦ ρ1. The left ideal D/w consists of the faces µ∗

1(w) of w, for
µ1 : [m1] → [m] injective, such that ρ1µ1 remains surjective. Its nerve

N(D/w) =
∏

j∈[k]

N(ρ−1
1 (j))

is the product of the simplices spanned by the (non-empty) preimages of ρ1.
Furthermore, for each j the map λ1 identifies ρ−1

1 (j) ⊂ [m] with ρ−1(λ(j)) ⊂ [n],
so that the map of nerves Nψ : N(C/v) → N(D/w) is the projection from the
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product indexed over i ∈ [ℓ] onto the subset of factors indexed over j ∈ [k]. In
other words, this is the projection away from the factors indexed by the i not in
the image of λ. So each point inverse after geometric realization is a product of
simplices, and therefore contractible. ¤

Proof of Lemma 2.7.4, the general case. Let Z be a general finite simplicial set.
Write Z = ∆n∪∂∆n Z ′, where z̄ : ∆n → Z is the representing map of an n-simplex z,
let π′ = π|Z ′, ϕ = πz̄ : ∆n → ∆q and ϕ′ = ϕ|∂∆n.

We want to show that the pullback map g : X = Sd(π)−1(ν) → Sd(π)−1(µ) = Y
has simple cylinder reduction. By the non-singular case, and induction, we may
assume that the pullback maps g′ : X ′ = Sd(π′)−1(ν) → Sd(π′)−1(µ) = Y ′, f : A =
Sd(ϕ)−1(ν) → Sd(ϕ)−1(µ) = B and f ′ : A′ = Sd(ϕ′)−1(ν) → Sd(ϕ′)−1(µ) = B′ all
have simple cylinder reduction. Then A∪A′ X ′ ∼= X, B∪B′ Y ′ ∼= Y and T (f)∪T (f ′)

T (g′) ∼= T (g). The maps T (f ′) → T (f) and M(f ′) → M(f) are cofibrations (the
latter follows easily from Lemma 2.4.11(b)), so by the gluing lemma T (f) ∪T (f ′)

T (g′) → M(f) ∪M(f ′) M(g′) is also simple.
To prove that T (g) → M(g) is simple, it therefore suffices to show that the

pushout map M(f) ∪M(f ′) M(g′) → M(g) is an isomorphism. We prove this by
showing that composition with Sd(z̄) induces a bijection

M(f)ℓ \ M(f ′)ℓ

∼=
−→ M(g)ℓ \ M(g′)ℓ

in each simplicial degree ℓ.
We use the description of an ℓ-simplex of M(g) as a triple (λ, x, y), where λ : [k] →

[ℓ] is a back face, k ≥ −1, x ∈ Xk and y ∈ Yℓ, with g(x) = λ∗(y). The ℓ-simplices
with k = −1 amount to the ℓ-simplices of Y .

If x ∈ X ′
k ⊂ Xk and k ≥ 0, then g(x) = λ∗(y) ∈ Y ′

k ⊂ Sd(Z ′)k, so the last vertex
of y is not the unique vertex (z, ιn) in Sd(Z)0 \ Sd(Z ′)0. Hence all of y lies in
Sd(Z ′)ℓ, and thus y ∈ Y ′

ℓ . It follows that M(g)ℓ \M(g′)ℓ consists of the (λ, x, y) as
above, where x ∈ Xk \X ′

k (for k ≥ 0), together with Yℓ \Y ′
ℓ (for k = −1). Likewise,

M(f)ℓ \ M(f ′)ℓ consists of the (λ, a, b), with λ : [k] → [ℓ] a back face, a ∈ Ak \ A′
k,

b ∈ Bℓ and f(a) = λ∗(b) (for k ≥ 0), together with Bℓ \ B′
ℓ (for k = −1).

Composition with Sd(z̄) induces a bijection Ak \A′
k → Xk \X ′

k, since A∪A′ X ′ ∼=
X. It therefore remains to prove that for each pair (λ, a) with a ∈ Ak \A′

k, mapping
by Sd(z) to (λ, x) with x ∈ Xk \X ′

k, the set of b ∈ Bℓ \B′
ℓ with λ∗(b) = f(a) maps

bijectively to the set of y ∈ Yℓ \ Y ′
ℓ with λ∗(y) = g(x). But this is a map of vertical

fibers in the commutative square

Bℓ \ B′
ℓ

∼= //

λ∗

²²

Yℓ \ Y ′
ℓ

λ∗

²²

Bk \ B′
k

∼= // Yk \ Y ′
k

where the horizontal functions are bijections, since B ∪B′ Y ′ ∼= Y . To see that the
vertical maps λ∗ are well defined, note that y ∈ Yℓ \Y ′

ℓ ⊂ Sd(Z)ℓ \Sd(Z ′)ℓ, so such
a simplex y has last vertex equal to (z, ιn). Thus also its back face λ∗(y) ∈ Yk has
last vertex (z, ιn), so λ∗(y) /∈ Y ′

k. ¤
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Proposition 2.7.5. There is a natural transformation (of endofunctors of the cat-
egory of simplicial sets over ∆q) which to an object π : Z → ∆q associates a map

t : Sd(π)−1(β) × ∆q → Z

over ∆q with the following two properties:
(a) The map t is simple over the interior of |∆q|;
(b) For each face µ : ∆p → ∆q, the diagram

Sd(π)−1(β) × ∆p
id×µ

//

g×id

²²

Sd(π)−1(β) × ∆q t // Z

Sd(π)−1(µ) × ∆p t′ // Z ×∆q ∆p

OO

commutes.

In (a), “simple over the interior” is in the sense of Remark 2.1.9, i.e., the preim-
age |t|−1(z) is contractible for each point z ∈ |Z| with |π|(z) in the interior of
|∆q|. In (b), t′ is the natural map for the restricted map π : Z ×∆q ∆p → ∆p, and
g : Sd(π)−1(β) → Sd(π)−1(µ) is the pullback map of Proposition 2.7.2(a). Prop-
erty (a) describes t over the interior of |∆q|, while (b) describes it over the boundary.
When q = 0, the map t will be equal to the last vertex map dZ : Sd(Z) → Z.

Proof. As the preimage of the barycenter functor commutes with pushouts, the
construction of the natural map t needs only be given in the “local” case where
Z = ∆n is a simplex. The verification of properties (a) and (b) needs also be given
in that case only. This is clear for (b), and uses the gluing lemma for simple maps
in its modified version (Remark 2.1.9) for property (a). So assume from now on
that π = Nϕ : ∆n → ∆q is induced by an order-preserving function ϕ : [n] → [q].

If ϕ is not surjective, then Sd(π)−1(β) is empty, so the asserted natural map
t : ∅ → ∆n exists for trivial reasons. The asserted simplicity over the interior of
|∆q| is also a trivial fact, for π maps ∆n entirely into the boundary ∂∆q.

We can therefore assume that ϕ : [n] → [q] is a surjective map. The transforma-
tion t to be constructed will be a simple map in this case, not just a simple map
over the interior of |∆q|. For each j = 0, . . . , q let Ej = ϕ−1(j) ⊂ [n]. Then each
Ej is a non-empty totally ordered set, NEj is a simplex, and [n] = E0 ⊔ · · · ⊔Eq is
a decomposition as a disjoint union.

There is a natural isomorphism

Sd(π)−1(β) ∼= Sd(NE0) × · · · × Sd(NEq) .

For Sd(π)−1(β) = NC is the nerve of the partially ordered set C of (non-empty)
faces of ∆n that map onto ∆q by π, i.e., the subsets of [n] that intersect each
Ej non-trivially. We naturally identify C with the product over j = 0, . . . , q of
the partially ordered set of non-empty subsets of Ej , i.e., of (non-empty) faces of
the simplex NEj . The nerve of each factor is the Barratt nerve of NEj , which is
isomorphic to Sd(NEj). Thus NC is isomorphic to the nerve of the product, which
is the product above.
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For each j there is a last vertex map d = dNEj
: Sd(NEj) → NEj , which is

simple by Proposition 2.2.17. Hence their product

dq : Sd(NE0) × · · · × Sd(NEq) → NE0 × · · · × NEq

is also a simple, natural map. We shall in a moment construct a natural map

Nτ : NE0 × · · · × NEq × ∆q → ∆n

over ∆q, which is a simplicial homotopy equivalence over the target (as in Defini-
tion 2.4.7), and therefore simple. The composite map

t : Sd(π)−1(β) × ∆q ∼= Sd(NE0) × · · · × Sd(NEq) × ∆q

dq×id
−−−−→ NE0 × · · · × NEq × ∆q Nτ

−−→ ∆n

will then be the required simple map t over ∆q.

We define Nτ as the nerve of the order-preserving function

τ : E0 × · · · × Eq × [q] → [n]

given by

τ(i0, . . . , iq, j) = ij .

Here each ij ∈ Ej ⊂ [n].

We define an order-preserving section σ : [n] → E0 × · · · × Eq × [q] by

σ(ij) = (maxE0, . . . ,max Ej−1, ij ,minEj+1, . . .min Eq, j) .

(The minima and maxima exist since each Ej is non-empty.) Note that τσ = id[n].
There is a chain of two natural inequalities relating the other composite στ and the
identity on E0 × · · · × Eq × [q], as follows:

(i0, . . . , iq, j) ≤ (maxE0, . . . ,max Ej−1, ij , ij+1, . . . , iq, j)

≥ (maxE0, . . . ,max Ej−1, ij ,min Ej+1, . . . ,minEq, j) .

Passing to nerves, these define a chain of two simplicial homotopies over ∆n from
id to Nσ ◦Nτ . Thus Nτ is a simplicial homotopy equivalence over the target, and
in particular, a simple map.

From ϕ(ij) = j we see that τ is a function over [q], so Nτ and t are maps over
∆q. A morphism from ϕ : [n] → [q] to ϕ′ : [n′] → [q] defines functions Ej → E′

j ,
and τ is natural with respect to these. For each face operator µ : [p] → [q] the
pullback map g is compatible under the last vertex maps with the projection from
E0 × · · · × Eq to the factors corresponding to the image of µ. A review of the
definitions therefore shows that the map t satisfies properties (a) and (b), and is
natural in π = Nϕ. This completes the proof of the proposition. ¤



SPACES OF PL MANIFOLDS AND CATEGORIES OF SIMPLE MAPS 77

Proposition 2.7.6. Let π : Z → ∆q be a map of finite simplicial sets. Then the
following conditions are equivalent:

(a) π is a Serre fibration;
(b) The pullback map

g : Sd(π)−1(β) → Sd(π)−1(µ)

is simple, for each face µ of the maximal face β of ∆q;
(c) The natural map

t : Sd(π)−1(β) × ∆q → Z

over ∆q is simple.

Proof. First suppose that π is a Serre fibration. In Theorem 2.3.2 we showed
that the homeomorphism hZ : |Sd(Z)| ∼= |Z| of Fritsch and Puppe [FP67] can be
adjusted to a quasi-natural homeomorphism hπ, so as to make the square

|Sd(Z)|
hπ

∼=
//

|Sd(π)|

²²

|Z|

|π|

²²

|Sd(∆q)|
hq

∼=
// |∆q|

commute. It results that the map

Sd(π) : Sd(Z) → Sd(∆q)

is a Serre fibration, since this is a topological property of its geometric realization.
Consequently, for each face µ of ∆q the restriction of Sd(π) to the part over the
1-simplex s = (µ ≤ ιq) in Sd(∆q) is also a Serre fibration. By Proposition 2.7.2(c)
that part may be identified with the reduced mapping cylinder M(g) of the pullback
map g : Sd(π)−1(β) → Sd(π)−1(µ). Hence, using the Serre fibration hypothesis, we
conclude from Lemma 2.7.4 and Proposition 2.6.9 that the map g is simple.

Next, suppose that g is simple for each face µ of ∆q. Then the left vertical map
g × id in the diagram in property (b) of Proposition 2.7.5 is simple. The bottom
map t′ is simple over the interior of ∆p, in view of property (a) of that proposition.
Using the commutativity of the diagram, we see therefore that the map t is simple
over the interior of the face µ(∆p) of ∆q. But that face was arbitrary. Hence t is
simple.

Finally, if t is simple, then its geometric realization provides a trivialization
of |π| : |Z| → |∆q| up to a simple map, so π is a Serre fibration by Proposi-
tion 2.6.6. ¤

We shall also need a PL version of this simplicial result. We say that a finite
non-singular simplicial set X is simplicially collapsible if for some vertex v of
X there is a simplicial expansion {v} ⊂ X, cf. Definition 3.2.1(d). By [Wh39,
Thms. 6 and 7], any triangulation of |∆q| admits a subdivision that is simplicially
collapsible. Hence any PL map E → |∆q| admits a triangulation Y → X with X
simplicially collapsible.



78 FRIEDHELM WALDHAUSEN, BJØRN JAHREN AND JOHN ROGNES

Proposition 2.7.7. Each PL Serre fibration p : E → |∆q| can be trivialized up to
a simple map.

More precisely, given a triangulation π : Y → X of p by finite non-singular
simplicial sets, with X simplicially collapsible, there exists a functorially defined
finite non-singular simplicial set LX and a natural simple map

tX : LX × X → Y

over X. Its polyhedral realization |tX | : |LX |×|∆q| → E over |∆q| then trivializes p
up to a simple map.

Proof. For each non-degenerate simplex x in X, with representing map x̄ : ∆m →
X, let Φ(x) = Sd(π)−1(βx) be the preimage of the barycenter βx of that simplex.
If x is a face of another non-degenerate simplex y in X, so x ≤ y in X#, then
there is a natural pullback map g : Φ(y) → Φ(x), as in Proposition 2.7.2(a). By
Proposition 2.7.2(b) it makes sense to form the limit

LX = lim
x∈(X#)op

Φ(x) .

It is a finite non-singular simplicial set, because it is contained in the corresponding
finite product of finite non-singular simplicial sets Φ(x) ⊂ Sd(Y ). This construction
is clearly functorial in (finite, non-singular) simplicial sets over X.

Let prx : LX → Φ(x) be the canonical projection from the limit. We shall prove
in Lemma 2.7.8 below that each prx is a simple map. Assuming this, we can
construct the desired simple map tX : LX × X → Y over X by gluing together the
composite maps

LX × ∆m prx×id
−−−−→ Φ(x) × ∆m tx−→ Y ×X ∆m ⊂ Y ,

for all non-degenerate x in X. Here Z = Y ×X ∆m → ∆m is the pullback of
π : Y → X along x̄ : ∆m → X, and t = tx : Φ(x) × ∆m → Z is the natural map of
Proposition 2.7.6. By hypothesis Y → X is a Serre fibration, so Z → ∆m is also a
Serre fibration, and tx is a simple map by the same proposition. The naturality of
tX follows from the naturality of the maps tx.

To see that these maps glue together, we need to know that the outer rectangle
of the following diagram commutes whenever x ≤ y in X#, so x = µ∗(y) for some
face operator µ : [m] → [n].

LX × ∆m

id×µ

²²

prx×id
//

pry×id
''NNNNNNNNNNN

Φ(x) × ∆m tx // Y ×X ∆m

id×µ

²²

Φ(y) × ∆m

g×id

OO

id×µ

²²

LX × ∆n
pry×id

// Φ(y) × ∆n
ty

// Y ×X ∆n

The triangle commutes by the definition of LX as a limit over the pullback maps g,
the left hand quadrilateral obviously commutes, and the right hand part of the
diagram commutes by Proposition 2.7.5(b). Hence the glued map LX × X → Y
over X is well-defined, and is simple by the gluing lemma. ¤
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Lemma 2.7.8. Let π : Y → X be a Serre fibration of finite non-singular simplicial
sets, with X simplicially collapsible. Then each projection prx : LX → Φ(x) =
Sd(π)−1(βx) is a simple map.

Proof. When X is a point, there is nothing to prove. Otherwise, we may write
X = ∆n ∪Λn

i
X ′ where Λn

i ⊂ ∆n is the i-th horn. We define L∆n , LΛn
i

and LX′

by analogy with LX , for the restriction of π : Y → X to ∆n, Λn
i and X ′ ⊂ X,

respectively. By induction we may assume that prx : LX′ → Φ(x) is a simple map
for each x ∈ (X ′)#. Note also that if x ≤ y are the two non-degenerate simplices
in X that are not contained in X ′, with ȳ : ∆n → X and x the i-th face of y, then
pry : L∆n → Φ(y) is an isomorphism and prx : L∆n → Φ(x) can be identified with
the map g : Φ(y) → Φ(x). The isomorphism is obviously a simple map, and g is
a simple map by Proposition 2.7.6, since π restricted to ∆n is a Serre fibration.
There is a pullback diagram of limits

LX
//

²²

LX′

²²

L∆n

f
// LΛn

i
.

Given the observations above, it will suffice to show that LX → LX′ and LX → L∆n

are simple maps. By the pullback property of simple maps (Proposition 2.1.3(c))
and a second induction, this will follow once we show that the lower horizontal map
f : L∆n → LΛn

i
is simple. For X can be obtained from ∆n by filling finitely many

embedded horns.
We need to introduce some notation. Let π : Z = Y ×X ∆n → ∆n be the

restriction of π : Y → X to ∆n. For each face µ of ∆n, let Z#
µ ⊂ Z# be the

partially ordered set of non-degenerate simplices z of Z such that π(z)# = µ, so

Sd(π)−1(µ) = NZ#
µ . Let C = Z#

β , where β is the maximal non-degenerate face of

∆n, and let D = limi∈µ6=β Z#
µ , where µ ranges over the non-degenerate simplices of

Λn
i , so L∆n = NC and LΛn

i
= ND. The limit is formed over the order-preserving

functions ψ : Z#
ν → Z#

µ with g = Nψ, for µ ≤ ν. The canonical order-preserving
function ϕ : C → D induces f = Nϕ at the level of nerves.

We can then identify

Z#
β ⊔ϕ ( lim

i∈µ6=β
Z#

µ ) ∼= lim
i∈µ6=β

(Z#
β ⊔ψ Z#

µ )

as partially ordered sets, where the limit on the right is formed over the order-
preserving functions id ⊔ ψ. Passing to nerves, we obtain an isomorphism

M(f) = M(Φ(β) → lim
i∈µ6=β

Φ(µ)) ∼= lim
i∈µ6=β

M(Φ(β) → Φ(µ))

of simplicial sets over ∆1. Hence we can identify the cylinder projection M(f) → ∆1

with the limit of the cylinder projections M(g) = M(Φ(β) → Φ(µ)) → ∆1. Each of
the latter cylinder projections is a Serre fibration, by the hypothesis, so also their
limit is a Serre fibration. Hence f is a simple map, by Proposition 2.6.9, once we
know that the cylinder reduction map T (f) → M(f) is simple. But that is the
content of the following lemma, in view of Proposition 2.4.16. ¤
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Lemma 2.7.9. For each v ∈ C = Z#
β , and w = ϕ(v) ∈ D = limi∈µ6=β Z#

µ , the
limit map

Nϕ : N(C/v) → N(D/w)

is simple.

Proof. The composite ρ = π ◦ v̄ is a degeneracy operator with target [n]. Thus

N(C/v) =
∏

j∈[n]

N(ρ−1(j))

is a product of (non-empty) simplices. The image ϕ(v) = w = (wµ)i∈µ6=β is a
compatible family of elements wµ ∈ Z#

µ . Here wµ is the face of v spanned by the
vertices that lie over µ. So

N(Z#
µ /wµ) ∼=

∏

j∈µ

N(ρ−1(j))

and N(C/v) → N(Z#
µ /wµ) is the projection onto the factors indexed by the vertices

of µ. It follows that

N(D/w) = lim
i∈µ6=β

∏

j∈µ

N(ρ−1(j)) ∼=
∏

j

N(ρ−1(j))

where now j ranges over the vertices of Λn
i . When n ≥ 2, the horn Λn

i contains all
the vertices of ∆n, so

Nϕ : N(C/v) → N(D/w)

is an isomorphism, and thus simple. When n = 1, the horn is a single vertex, and
Nϕ is the projection from a product of two simplices to one of these simplices,
which is also simple. ¤

Proposition 2.7.10 (Fiber gluing lemma for Serre fibrations). Let

Z1

π1
!!B

BB
BB

BB
B

Z0
oooo //

π0

²²

Z2

π2
}}||

||
||

||

∆q

be a commutative diagram of finite simplicial sets, where πi : Zi → ∆q is a Serre
fibration for each i = 0, 1, 2, and Z0 → Z1 is a cofibration. Then the induced map

π : Z1 ∪Z0 Z2 → ∆q

is a Serre fibration.

Proof. The simple maps ti : Sd(πi)
−1(β) × ∆q → Zi of Proposition 2.7.6 combine,

by naturality, to give a map

t1 ∪t0 t2 :
(
Sd(π1)

−1(β) ∪Sd(π0)−1(β) Sd(π2)
−1(β)

)
× ∆q → Z1 ∪Z0 Z2

which, by the gluing lemma, is simple again. We have thus obtained a trivialization
of π up to a simple map. Hence (Proposition 2.6.6) the map π : Z1 ∪Z0 Z2 → ∆q is
a Serre fibration. ¤
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Definition 2.7.11. We say that a map π : E → B of simplicial sets is a simplex-
wise Serre fibration if for each simplex y of B, with representing map ȳ : ∆q → B,
the pulled-back map ȳ∗π : ∆q ×B E → ∆q is a Serre fibration.

Pullbacks preserve Serre fibrations, so any Serre fibration is a simplex-wise Serre
fibration, and if π : E → B pulls back to a Serre fibration over each non-degenerate
simplex of B, then it is a simplex-wise Serre fibration. For non-singular B, this
amounts to asking that π restricts to a Serre fibration over each cofibration ∆q → B,
for q ≥ 0.

Proposition 2.7.12 (Base gluing lemma for Serre fibrations). Let π : E →
B be a map of simplicial sets, with B finite and non-singular. If π is a simplex-wise
Serre fibration then π is a Serre fibration.

Proof. It follows easily from Theorem 2.3.2 that π is a simplex-wise Serre fibration
only if Sd(π) : Sd(E) → Sd(B) is a simplex-wise Serre fibration, and that π is a
Serre fibration if (and only if) Sd(π) is a Serre fibration, so it will be enough to
prove the lemma for Sd(π). Hence we may assume, from the outset, that B is a
finite ordered simplicial complex.

Being a Serre fibration is a local property, by the argument after diagram (2.6.7),
so it suffices to find an open cover of |B| such that |π| restricts to a Serre fibration
over each subset in that cover. We shall show that π restricts to a Serre fibration
over the star neighborhood St(v,B) of each vertex v in B (see Definition 3.2.11).
The required open cover is then given by the interiors of these stars, i.e., by the
open stars of all the vertices of B.

To simplify the notation, we assume that B = St(v,B) is itself the star of a
vertex, and that π : E → B is a simplex-wise Serre fibration. Then B ∼= cone(L),
with vertex v and base L = Lk(v,B), the link of v. (This uses that B is a simplicial
complex.) By a subcone of B, we mean a cone with vertex v and base a simplicial
subset of L.

The strategy of proof will be to show that |π| is a retract of the product fibration
pr : |E × B| → |B|, from which it formally follows that π is a Serre fibration. Let

i = (id, π) : E → E × B .

We will construct a continuous left inverse to |i| over |B|, i.e., a map r : |E×B| → |E|
with r ◦ |i| = id and |π| ◦ r = pr, by induction over the subcones of B.

Write B = ∆ ∪Λ A as a union of subcones, where ∆ (resp. Λ) is the cone on
a non-degenerate (q − 1)-simplex of L (resp. on its boundary). Let Ev = π−1(v),
E∆ = π−1(∆) and EΛ = π−1(Λ).

By hypothesis, the restriction π∆ : E∆ → ∆ of π to ∆ is a Serre fibration. It
follows that the inclusion EΛ ⊂ E∆ is a weak homotopy equivalence. By induction
over the non-degenerate simplices of L, and the gluing lemma, it also follows that
the inclusion Ev ⊂ E is a weak homotopy equivalence.

By induction over the subcones A of B, we may assume that there is a map

rA : |i(E) ∪ E × A| → |E|

over |B|, with rA ◦ |i| = id. We wish to extend rA to the map r, i.e., to fill in the
dashed arrow at the right hand side of the following box, while keeping the diagram
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commutative.

|i(E∆) ∪ E × Λ| //

))RRRRRRRRRRRRRRR

²²

|i(E) ∪ E × A|

rA

))RRRRRRRRRRRRRRRR

²²

|E∆| //

|π∆|

²²

|E|

|π|

²²

|E × ∆|

55llllllll
//

pr

))RRRRRRRRRRRRRRRR
|E × B|

r

55llllllll

pr

))RRRRRRRRRRRRRRRR

|∆| // |B|

The back rectangle is a pushout diagram of cofibrations, and the front rectangle is
a pullback diagram, so it suffices to fill in the dashed arrow at the left hand side of
the box. But π∆ is a Serre fibration, by hypothesis, and i(E∆)∪E ×Λ → E ×∆ is
a cofibration and a weak homotopy equivalence, by what we noted above and the
gluing lemma, so such a lift does exist.

To get the induction started, we must extend the map |i(E)| → |E| that takes
|i|(e) to e, over |i(E)∪E×v|, as a map over |B|. It suffices to extend the restricted
map |i(Ev)| = |Ev|×v → |E| over |E|×v, as a map over |B|. Here |E|×v sits over
v ∈ |B|, so what is required is a retraction |E| → |Ev|. But such a (deformation)
retraction exists, since the inclusion Ev ⊂ E is a cofibration and a weak homotopy
equivalence. ¤

We will not need to know whether a simplex-wise Serre fibration over a singular
base must always be a Serre fibration.
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3. The non-manifold part

In this part, let ∆q denote the simplicial q-simplex, the simplicial set represented
by [q] in ∆, and let |∆q| denote its geometric realization, the standard affine q-
simplex.

3.1. Categories of simple maps

Definition 3.1.1. Let C be the category of finite simplicial sets X and simplicial
maps f : X → Y . Let D be the full subcategory of C of finite non-singular simplicial
sets, and write i : D → C for the inclusion functor. Let E be the category of compact
polyhedra K and PL maps f : K → L, and write r : D → E for the polyhedral
realization functor. We also write i and r for other variants of these functors,
which appear below.

The letter E might allude to Euclidean polyhedra, the non-singular simplicial
sets in D may have been desingularized (see Remark 2.2.12), and the relative
category C(X) to be introduced in Definition 3.1.6 below is a category of cofibra-
tions under X. For mnemonic reasons we shall use the letters (c), (d) and (e) to
enumerate these three contexts, even if we have not used the letters (a) and (b)
before.

In more detail, the polyhedral realization of a finite non-singular simplicial
set X is its geometric realization |X|, which is compact, with the polyhedral struc-
ture for which the geometric realization |x̄| : |∆q| → |X| of the representing map of
each simplex x ∈ Xq is a PL map. See also Definition 3.4.1 below. For a singular
(= not non-singular) simplicial set X, this prescription does not in general define
a polyhedral structure on |X|.

Definition 3.1.2. By a PL bundle π : E → B, we mean a PL map of compact
polyhedra that admits a PL local trivialization.

(d) Let D• be the simplicial category that in simplicial degree q consists of the
finite non-singular simplicial sets over ∆q, i.e., the simplicial maps π : Z → ∆q

whose polyhedral realization |π| : |Z| → |∆q| is a PL bundle, and the simplicial
maps f : Z → Z ′ over ∆q.

(e) Let E• be the simplicial category of PL bundles π : E → |∆q|, and PL bundle
maps f : E → E′ over |∆q|, in each simplicial degree q. The simplicial structure is
given by pullback of PL bundles along the base.

We do not define a simplicial category C•, since it makes little sense to ask that
|π| : |Z| → |∆q| is a PL bundle when |Z| is not a polyhedron.

Definition 3.1.3. A map of topological spaces is a Serre fibration if it has the
homotopy lifting property for continuous maps from compact polyhedra. A map
of simplicial sets is called a Serre fibration if its geometric realization is a Serre
fibration of topological spaces. By a PL Serre fibration π : E → B, we mean a
PL map of compact polyhedra that is a Serre fibration in the topological category.

(c) Let C̃• be the simplicial category with objects the Serre fibrations of finite
simplicial sets π : Z → ∆q, and with morphisms the simplicial maps f : Z → Z ′

over ∆q, in each simplicial degree q.

(d) Let D̃• be the simplicial category of Serre fibrations of finite non-singular
simplicial sets π : Z → ∆q, and simplicial maps f : Z → Z ′ over ∆q, in each
simplicial degree q.
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(e) Let Ẽ• be the simplicial category of PL Serre fibrations π : E → |∆q|, and PL
maps f : E → E′ over |∆q|, in each simplicial degree q. The simplicial structure is
given by pullback of PL Serre fibrations along the base.

There are canonical identifications C ∼= C̃0, D ∼= D0 = D̃0 and E ∼= E0 = Ẽ0. The

inclusion of 0-simplices, via degeneracies, induces functors ñ : C → C̃•, n : D → D•,

ñ : D → D̃•, n : E → E• and ñ : E → Ẽ• (n for “null”). For example, n : E → E•

takes a compact polyhedron K to the product PL bundle pr : K × |∆q| → |∆q|,

and ñ : E → Ẽ• takes K to the product PL Serre fibration pr : K × |∆q| → |∆q|.

There are full embeddings v : D• → D̃• and v : E• → Ẽ• that view PL bundles as
PL Serre fibrations, and ñ = vn in these two cases.

Definition 3.1.4. Let sC ⊂ C and sD ⊂ D be the subcategories with morphisms
the simple maps f : X → Y of finite (non-singular) simplicial sets, and let sE ⊂ E be
the subcategory with morphisms the simple maps f : K → L of compact polyhedra.

Likewise, let sC̃• ⊂ C̃•, sD• ⊂ D• and sD̃• ⊂ D̃• be the subcategories with
morphisms the simple maps f : Z → Z ′ of finite simplicial sets, and let sE• ⊂ E•

and sẼ• ⊂ Ẽ• be the subcategories with morphisms the simple maps f : E → E′ of
compact polyhedra, always in each simplicial degree q.

Similarly, let hC ⊂ C, etc., be the subcategory with morphisms the weak ho-
motopy equivalences f : X → Y of finite simplicial sets, and let hE ⊂ E, etc., be
the subcategory with morphisms the homotopy equivalences f : K → L of compact

polyhedra. Write j : sC → hC, j : sẼ• → hẼ•, etc., for the inclusion functors that
view simple maps as (weak) homotopy equivalences.

By Proposition 2.1.3(a), simple maps of finite simplicial sets can be composed,
and therefore form a category. We can assemble the s-prefixed categories in a
commutative diagram:

(3.1.5) sC

ñ ≃

²²

sD
i

≃
oo r //

n≃

²²

sE

n

²²

sD•
r

≃
//

v≃

²²

sE•

v

²²

sC̃• sD̃•
ioo r

≃
// sẼ•

It maps by many variants of the functor j to a similar diagram with h-prefixes. We
shall show in Proposition 3.1.14 that i in the top row is a homotopy equivalence, in
Proposition 3.4.4 that r in the middle and lower rows are homotopy equivalences,
and in Proposition 3.5.1 that n and v in the middle column, as well as ñ in the
left hand column, are homotopy equivalences. It follows that v in the right hand
column and i in the bottom row are homotopy equivalences. These results apply
equally well in the s- and h-cases.

We do not know whether r : sD → sE and n : sE → sE• are homotopy equiv-
alences. This is equivalent to the statement of [Ha75, Prop. 2.5], which remains
unproven.

Our principal interest is in the corresponding diagram of homotopy fibers of j
at a finite non-singular simplicial set X, or at its polyhedral realization |X|. The
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strategy for studying these homotopy fibers is to use Quillen’s Theorem B [Qu73,
p. 97] in its form for right fibers X/j, or the simplicial version Theorem B′ from
[Wa82, §4] in the cases where we are dealing with simplicial categories. These
theorems are recalled in Section 3.6 below.

To accomplish this study we shall make use of approximations to these right
fibers, with names like sCh(X), that have better covariant functoriality properties
than the right fibers themselves, but still retain some of the contravariant functo-
riality properties of the latter. We now introduce these approximations, which are
relative forms of the categories introduced so far.

Definition 3.1.6. (c) To each finite simplicial set X, we associate a category
C(X) of finite cofibrations under X. Its objects are the cofibrations y : X → Y
of finite simplicial sets, and the morphisms from y to y′ : X → Y ′ are the maps
f : Y → Y ′ of simplicial sets under X, i.e., the simplicial maps such that fy = y′.
Let sCh(X) ⊂ C(X) be the subcategory where the objects y : X → Y are required
to be weak homotopy equivalences, and the morphisms f : Y → Y ′ are required to
be simple maps.

(d) Let D(X) ⊂ C(X) be the full subcategory of cofibrations y : X → Y of
finite non-singular simplicial sets. This is only of real interest when X itself is non-
singular, since otherwise D(X) is the empty category. Let sDh(X) ⊂ sCh(X) be
the full subcategory generated by the objects y : X → Y where Y is non-singular.

(e) To each compact polyhedron K, we associate a category E(K) of compact
polyhedra containing K. Its objects are the PL embeddings ℓ : K → L of compact
polyhedra, and the morphisms from ℓ to ℓ′ : K → L′ are the PL maps f : L → L′

that restrict to the identity on K, i.e., such that fℓ = ℓ′. Let sEh(K) ⊂ E(K) be
the subcategory where the PL embedding ℓ : K → L is required to be a homotopy
equivalence (for the objects), and f : L → L′ is required to be a simple map (for
the morphisms).

If desired, one may adjust these definitions to ask that the cofibration y : X → Y
is an inclusion X ⊂ Y , and similarly that the embedding ℓ : K → L is the inclusion
of a subpolyhedron K ⊂ L. The resulting categories are canonically equivalent.

Definition 3.1.7. (c) To each finite simplicial set X, we associate a simplicial

category C̃•(X). Its objects in simplicial degree q are commutative diagrams of
finite simplicial sets

X × ∆q // z //

pr
$$IIIIIIIII Z

π
~~}}

}}
}}

}}

∆q

where z is a cofibration and π is a Serre fibration. The morphisms in simplicial
degree q, to a similar object more briefly denoted

pr : X × ∆q z′

−→ Z ′ π′

−→ ∆q ,

are the simplicial maps f : Z → Z ′ over ∆q that restrict to the identity on X ×∆q,
i.e., such that π′f = π and fz = z′.

Let sC̃h
•(X) ⊂ C̃•(X) be the simplicial subcategory where z : X × ∆q → Z is

required to be a weak homotopy equivalence (for the objects), and f : Z → Z ′ is
required to be a simple map (for the morphisms).
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(d) Let D•(X) (resp. D̃•(X)) be the full simplicial subcategory of C̃•(X) with
objects the commutative diagrams of finite non-singular simplicial sets

X × ∆q // z //

pr
$$IIIIIIIII Z

π
~~}}

}}
}}

}}

∆q

where z is a cofibration, and |π| : |Z| → |∆q| is a PL bundle relative to the product
subbundle pr : |X| × |∆q| → |∆q| (resp. a PL Serre fibration).

Let sDh
•(X) ⊂ D•(X) and sD̃h

•(X) ⊂ D̃•(X) be the simplicial subcategories
with objects such that z is a weak homotopy equivalence, and morphisms such that
f is a simple map, in each simplicial degree. As before, these constructions are only
of real interest when X is non-singular.

(e) To each compact polyhedron K, we associate two simplicial categories E•(K)

and Ẽ•(K). The objects in simplicial degree q of E•(K) (resp. Ẽ•(K)) are the
commutative diagrams of compact polyhedra and PL maps

K × |∆q| // e //

pr
$$IIIIIIIII

E

π
~~}}

}}
}}

}}

|∆q|

where e is a PL embedding, and π is a PL bundle relative to the product subbundle
pr : K × |∆q| → |∆q| (resp. a PL Serre fibration). The morphisms in simplicial
degree q, to a similar object more briefly denoted

pr : K × |∆q|
e′

−→ E′ π′

−→ |∆q| ,

are PL maps f : E → E′ over |∆q| that restrict to the identity on K × |∆q|, i.e.,
such that π′f = π and fe = e′.

Let sEh
•(K) ⊂ E•(K) and sẼh

•(K) ⊂ Ẽ•(K) be the simplicial subcategories
where for the objects the embedding e : K×|∆q| → E is required to be a homotopy
equivalence, and for the morphisms the PL map f : E → E′ is required to be a
simple map.

Recall from Section 1.1 that for π to be a PL bundle relative to a given prod-
uct subbundle means that π admits a PL local trivialization that agrees with the
identity map on the embedded subbundle. In each case, a homotopy equivalence
e : K×|∆q| → E is also a fiberwise homotopy equivalence over |∆q|, and conversely,
since pr and π are Serre fibrations. So the objects in simplicial degree q of sEh

•(K)

or sẼh
•(K) are really q-parameter families of objects of sEh(K). Similar remarks

apply in the (d)-case.

For each finite non-singular simplicial set X, these categories fit together in a
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commutative diagram

(3.1.8) sCh(X)

ñ ≃

²²

sDh(X)
i

≃
oo

vn

≃

ÂÂ

r //

n

²²

sEh(|X|)

n

²²

sDh
•(X)

r //

v

²²

sEh
•(|X|)

v

²²

sC̃h
•(X) sD̃h

•(X)
ioo r

≃
// sẼh

•(|X|)

that maps to diagram (3.1.5) by functors that forget the structure map from X
or |X|. The composite functor to the h-prefixed version of (3.1.5) is then canon-
ically homotopic to the constant functor to the object X or |X|, by the natural
transformation represented by the structure map to be forgotten. Hence there are
well-defined maps

(3.1.9) sCh(X) → X/j → hofib(j : sC → hC, X)

from (the nerve of) the relative category at X, via (the nerve of) the right fiber
of j at X, to the homotopy fiber of j at X, viewed as an object of hC. There are
analogous maps from each of the other categories in (3.1.8). In Proposition 3.3.1 and
Lemma 3.3.3 we shall show that both maps in (3.1.9) are homotopy equivalences,

for each of the categories sCh(X), sDh(X), sEh(K) in the top row, and sC̃h
•(X),

sD̃h
•(X) and sẼh

•(K) in bottom row.
It follows from (3.1.5), its h-analogue, and these homotopy fiber sequences, that

the indicated functors i, vn, r and ñ are homotopy equivalences. This will be
spelled out in the proofs of Theorems 1.2.5 and 1.2.6.

Remark 3.1.10. We have also written down a proof that v : sDh
•(X) → sD̃h

•(X) is
a homotopy equivalence. Thus each of the functors v and n in the middle column
of (3.1.8), not just their composite, is a homotopy equivalence. Together with part
of Proposition 3.5.1(d), this implies that the composite map from sDh

•(X) to the
homotopy fiber of j : sD• → hD• at X is a homotopy equivalence. However, the
details of our argument are unpleasant, and so we omit this proof since we do not
need to use the result anyway. We do not know whether the composite map from
sEh

•(K) to the homotopy fiber of j : sE• → hE• at K is a homotopy equivalence.

Definition 3.1.11. (c) The categories C(X) and sCh(X) are covariantly functorial
in X. A map x : X → X ′ of simplicial sets induces a (forward) functor

x∗ : C(X) → C(X ′)

that takes y : X → Y to the pushout y′ : X ′ → X ′∪X Y . For any map x′ : X ′ → X ′′

there is a coherent natural isomorphism (x′x)∗ ∼= x′
∗x∗. (Strictly speaking, for

X 7→ C(X) to be a functor, this isomorphism should be the identity. This can be
arranged by a careful definition of the pushout.) By the gluing lemmas for simple
maps and for weak homotopy equivalences of simplicial sets, the functor x∗ restricts
to a functor

x∗ : sCh(X) → sCh(X ′) .
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Corresponding gluing lemmas are not available to define a functor x∗ : X/j → X ′/j
of right fibers for j : sC → hC.

There is also a functor

x∗ : sC̃h
•(X) → sC̃h

•(X ′)

that takes an object pr : ∆q×X
z
−→ Z

π
−→ ∆q to the object pr : ∆q×X ′ z′

−→ Z ′ π′

−→ ∆q

with total space

Z ′ = (X ′ × ∆q) ∪(X×∆q) Z .

The induced map of pushouts, π′ : Z ′ → ∆q, remains a Serre fibration by the fiber
gluing lemma for Serre fibrations, Proposition 2.7.10.

(d) The categories D(X), sDh(X), sDh
•(X) and sD̃h

•(X) are also covariantly
functorial in X, but only along cofibrations. A cofibration x : X → X ′ of simplicial
sets induces a functor

x∗ : D(X) → D(X ′)

that takes y : X → Y to the pushout y′ : X ′ → Y ∪X X ′. We need to assume that x
and y are cofibrations to be sure that Y ∪X X ′ remains non-singular. By the same
gluing lemmas as before, there is a restricted functor

x∗ : sDh(X) → sDh(X ′) .

By the assumption of PL local triviality of π relative to pr : X × ∆q → ∆q, after
polyhedral realization, there is a functor x∗ : sDh

•(X) → sDh
•(X ′) that takes an

object pr : ∆q ×X
z
−→ Z

π
−→ ∆q to the object pr : ∆q ×X ′ z′

−→ Z ′ π′

−→ ∆q with total
space

Z ′ = (X ′ × ∆q) ∪(X×∆q) Z .

The local trivializations can be glued to make π′ PL locally trivial relative to the
trivial subbundle, after polyhedral realization, as required. There is also a functor

x∗ : sD̃h
•(X) → sD̃h

•(X ′) ,

by the fiber gluing lemma for Serre fibrations.
(e) For a compact polyhedron K, the categories E(K), sEh(K), sEh

•(K) and

sẼh
•(K) are also covariantly functorial in X, but only along PL embeddings. A PL

embedding k : K → K ′ induces the basic functor

k∗ : E(K) → E(K ′)

that takes ℓ : K → L to the union ℓ′ : K ′ → K ′ ∪K L. As usual, we need that both
k and ℓ are embeddings to have a canonical PL structure on the pushout. By the
same arguments as in the D-case, there are variants for sEh(K), sEh

•(K) and

k∗ : sẼh
•(K) → sẼh

•(K ′) .
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Definition 3.1.12. We can extend the definition of C(X), D(X), etc., to infinite
simplicial sets X. By a finite cofibration y : X → Y we mean a cofibration such
that Y only contains finitely many non-degenerate simplices that are not in the
image of X.

For a general simplicial set X, we let C(X) be the category of finite cofibrations
y : X → Y , and simplicial maps f : Y → Y ′ under X. Since Y and Y ′ will no
longer be finite simplicial sets, we must specify what we mean by a simple map
f : Y → Y ′. There is a canonical identification

colim
α

C(Xα) ∼= C(X) ,

where Xα ranges over the set of finite simplicial subsets of X, partially ordered by
inclusion. We then interpret sCh(X) as the subcategory

colim
α

sCh(Xα) .

An object of sCh(X) is thus a finite cofibration and weak homotopy equivalence
y : X → Y , and a morphism f from y to y′ : X → Y ′ restricts to the identity
on X and has contractible point inverses after geometric realization. From the
interpretation as a colimit, it is clear that such morphisms can be composed, so
that sCh(X) is indeed a category.

The right fiber X/j, for j : sC → hC, say, is contravariantly functorial in the
object X of hC. So each weak homotopy equivalence x : X → X ′ induces a functor
x∗ : X ′/j → X/j, known as a transition map. The relative categorical construc-
tions are also contravariantly functorial in X, but only in a slightly more limited
sense.

Definition 3.1.13. (c) A finite cofibration x : X → X ′ induces a backward functor

x∗ : C(X ′) → C(X)

that takes a finite cofibration y′ : X ′ → Y to the composite y′x : X → Y . The
relation (x′x)∗ = x∗x′∗ holds for any finite cofibration x′ : X ′ → X ′′. If x is also a
weak homotopy equivalence, then there is also a restricted functor

x∗ : sCh(X ′) → sCh(X) .

Similarly for the constructions C̃•(−) and sC̃h
•(−).

(d) If X and X ′ are finite non-singular simplicial sets, there are backward func-
tors x∗ : D(X ′) → D(X) (when x is a cofibration) and x∗ : sDh(X ′) → sDh(X)
(when x is also a weak homotopy equivalence), and likewise for the constructions

D•(−), D̃•(−), sDh
•(−) and sD̃h

•(−).
(e) A PL embedding k : K → K ′ of compact polyhedra induces a backward

functor
k∗ : E(K ′) → E(K)

that takes a PL embedding ℓ′ : K ′ → L to the composite ℓ′k : K → L. A PL
embedding and homotopy equivalence k : K → K ′ induces a restricted functor

k∗ : sEh(K ′) → sEh(K) .

There are similar backward functors k∗ in the cases E•(−), Ẽ•(−), sEh
•(−) and

sẼh
•(−).

We can now prove the part of the stable parametrized h-cobordism theorem that
compares general and non-singular simplicial sets, i.e., Theorem 1.2.5.
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Proposition 3.1.14. Let X be a finite non-singular simplicial set. The full inclu-
sion functors induce homotopy equivalences i : sD → sC, i : hD → hC and

i : sDh(X) → sCh(X) .

We offer two proofs, one using Quillen’s Theorem A, and one using the improve-
ment functor I = B ◦ Sd from Section 2.5. The former proof is essentially the
same as that given in [St86, Thm. 3.1], except that we include more details. The
latter proof depends on the more difficult parts of Sections 2.3 and 2.5, but has the
advantage that it provides a functorial homotopy inverse to i.

First proof. We first prove that i : sD → sC is a homotopy equivalence. Using
Quillen’s Theorem A, it suffices to show that the left fiber i/Y is contractible,
for each finite simplicial set Y . By Proposition 2.5.1(a), there exists a finite non-
singular simplicial set Z and a simple map f : Z → Y . Let f∗ : i/Z → i/Y be given
by composition with f , and define f∗ : i/Y → i/Z to be the functor taking a simple
map W → Y (from a finite non-singular W ) to the pullback Z ×Y W → Z.

Z ×Y W //

²²

W

²²

Z
f

// Y

The fiber product Z×Y W is finite and non-singular, being contained in the product
Z ×W , and the map to Z is simple by the pullback property of simple maps. The
map Z ×Y W → W is also simple, for the same reason, and defines a natural
transformation f∗f

∗ → id of endofunctors of i/Y . Hence i/Y is a retract, up to
homotopy, of i/Z. The latter category has a terminal object, namely idZ , hence is
contractible. Thus also i/Y is contractible.

The proof that i : hD → hC is a homotopy equivalence is similar. To see that
the pullback Z ×Y W → Z of a weak homotopy equivalence W → Y is a weak
homotopy equivalence, note that f and its pullback Z ×Y W → W are simple, and
use the 2-out-of-3 property of weak homotopy equivalences.

To prove that i : sDh(X) → sCh(X) is a homotopy equivalence, it suffices to
show that i/(X → Y ) is contractible, for any object X → Y of sCh(X). By
Proposition 2.5.1(b) there exists a second such object X → Z, with Z non-singular,
and a simple map f : Z → Y , relative to X. By the same constructions as above,
there are functors f∗ : i/(X → Z) → i/(X → Y ) and f∗ : i/(X → Y ) → i/(X →
Z), and a natural transformation f∗f

∗ → id. The required finite cofibration and
weak homotopy equivalence X → Z ×Y W is obtained as the pullback of the maps
X → Z and X → W (over X → Y ), of the same kind. As before, i/(X → Z) has
a terminal object and is contractible, so also its homotopy retract i/(X → Y ) is
contractible. ¤

Alternatively, we could have deduced the claim for sDh(X) → sCh(X) from the
other two claims and the map of horizontal fiber sequences

(3.1.15) sDh(X) //

i

²²

sD
j

//

i

²²

hD

i

²²

sCh(X) // sC
j

// hC
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from Proposition 3.3.1(c) and (d). Conversely, Propositions 3.1.14 and 3.3.1(c),
provide a proof of the sDh(X)-part of Proposition 3.3.1(d), which does not depend
on the somewhat complicated non-singular simplicial case (d) of Lemma 3.2.9. We

do not know if the sD̃h
•(X)-part of Proposition 3.3.1(d) can be deduced in this way.

Second proof. The improvement functor I of Theorem 2.5.2 defines a homotopy
inverse I : sC → sD to the full inclusion i : sD → sC, because the natural simple
map sX : I(X) → X defines a natural transformation from each of the composites
iI and Ii to the respective identities. Similarly, I defines a homotopy inverse
I : hC → hD to i : hD → hC.

For the relative case, we define a homotopy inverse functor sCh(X) → sDh(X)
to i : sDh(X) → sCh(X) by

(X → Y ) 7−→ (X → M(sX) ∪I(X) I(Y )) .

Here M(sX) is the reduced mapping cylinder of the simple map sX : I(X) → X,
which contains X and I(X) via the back and front inclusions, respectively. The
pushout M(sX) ∪I(X) I(Y ) is finite and non-singular by Lemma 2.2.9 and Theo-
rem 2.5.2, and X maps to it by a cofibration and weak homotopy equivalence, so it
really does define an object of sDh(X). The cylinder projection pr : M(sX) → X is
simple by Lemma 2.4.8, so by the gluing lemma its pushout with the simple maps
sX : I(X) → X and sY : I(Y ) → Y is a simple map

M(sX) ∪I(X) I(Y ) → X ∪X Y = Y .

It defines a natural transformation from the composite functor sCh(X) → sCh(X)
to the identity, and restricts to a similar natural transformation from the composite
functor on sDh(X), since the latter is a full subcategory. Thus the full inclusion
i : sDh(X) → sCh(X) is a homotopy equivalence. ¤

3.2. Filling horns

Definition 3.2.1. Following [Ka57, §10], we define the i-th horn Λn
i , for n ≥ 1

and 0 ≤ i ≤ n, to be the simplicial subset of ∆n generated by all the proper
faces that contain the i-th vertex. It is the cone in ∆n with vertex i and base the
boundary of the i-th face. The inclusion Λn

i ⊂ ∆n is a weak homotopy equivalence.
(c) A simplicial map h : Λn

i → X will be called a horn in X. If X ′ = ∆n ∪Λn
i

X
is the pushout of maps

∆n ⊃ Λn
i

h
−→ X ,

then we say that X ′ is obtained from X by filling a horn. We say that a finite
cofibration x : X → X ′ can be obtained by filling finitely many horns if it factors as
the composite of finitely many such inclusions X ⊂ ∆n ∪Λn

i
X, up to isomorphism.

(d) A cofibration h : Λn
i → X will be called an embedded horn in X. If X is a

non-singular simplicial set and h is an embedded horn in X, then X ′ = ∆n ∪Λn
i

X
will also be non-singular, and we say that X ′ is obtained from X by filling an
embedded horn, or that X ⊂ X ′ is an elementary simplicial expansion. A finite
composite of elementary simplicial expansions is called a simplicial expansion.
We also say that such a map is obtained by filling finitely many embedded horns.

(e) If K is a compact polyhedron, and h : |Λn
i | → K is a PL embedding, then

K ′ = |∆n| ∪|Λn
i | K is also a compact polyhedron, and we say that K ⊂ K ′ is an
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elementary expansion. If there is a finite chain of elementary expansions from
K to K ′, we say that K ⊂ K ′ is an expansion.

An early study of elementary expansions, elementary collapses (their formal in-
verses) and finite compositions of these, was made by I. Johansson [Jo32]. A deeper
study, founding the subject of simple homotopy theory, was made by J. H. C. White-
head [Wh39].

Proposition 3.2.2. (c) If X is a simplicial set and x : X → X ′ is obtained by
filling finitely many horns, then the functors

x∗ : sCh(X) → sCh(X ′) and x∗ : sCh(X ′) → sCh(X)

are mutually inverse homotopy equivalences, and similarly for the construction

sC̃h
•(−).
(d) If X is a non-singular simplicial set and x : X → X ′ is a simplicial ex-

pansion, then the functors x∗ : sDh(X) → sDh(X ′) and x∗ : sDh(X ′) → sDh(X)
are mutually inverse homotopy equivalences, and similarly for the constructions

sDh
•(−) and sD̃h

•(−).
(e) If K is a compact polyhedron and k : K → K ′ is an expansion, then the

functors

k∗ : sẼh
•(K) → sẼh

•(K ′) and k∗ : sẼh
•(K ′) → sẼh

•(K)

are mutually inverse homotopy equivalences, and similarly for the constructions
sEh(−) and sEh

•(−).

The proof will be given below, after Lemmas 3.2.6 through 3.2.8.

Proposition 3.2.3. (c) If x : X → X ′ is a finite cofibration of simplicial sets, and
a weak homotopy equivalence, then the functors

x∗ : sCh(X) → sCh(X ′) and x∗ : sCh(X ′) → sCh(X)

are both homotopy equivalences, and similarly for the construction sC̃h
•(−).

(d) If x : X → X ′ is a finite cofibration of non-singular simplicial sets, and
a weak homotopy equivalence, then the functors x∗ : sDh(X) → sDh(X ′) and
x∗ : sDh(X ′) → sDh(X) are both homotopy equivalences, and similarly for the

constructions sDh
•(−) and sD̃h

•(−).
(e) If k : K → K ′ is a PL embedding of compact polyhedra, and a homotopy

equivalence, then the functors

k∗ : sẼh
•(K) → sẼh

•(K ′) and k∗ : sẼh
•(K ′) → sẼh

•(K)

are both homotopy equivalences, and similarly for the constructions sEh(−) and
sEh

•(−).

The proof is given below, after Lemma 3.2.9. In this generality, the homotopy
equivalences x∗ and x∗ are not usually mutually inverse, as the proof of the follow-
ing corollary makes clear.

There is a categorical sum pairing sCh(X)×sCh(X) → sCh(X), which takes two
finite cofibrations y : X → Y and y′ : X → Y ′ to their pushout y∪y′ : X → Y ∪X Y ′,
and which induces a commutative monoid structure on π0sC

h(X). The following
result was used in the proof of [Wa85, Prop. 3.1.1].
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Corollary 3.2.4. The commutative monoid of path components π0sC
h(X) is a

group.

Proof. For each object y : X → Y in sCh(X) the endofunctor y∗y∗ is represented
by pushout with y, and is a homotopy equivalence by the proposition above. Thus
the monoid sum in π0sC

h(X) with the class of y is an isomorphism. In particular,
the class of y has an inverse in π0sC

h(X). ¤

For connected X with fundamental group π, the group in question is the White-
head group Wh1(π) = K1(Z[π])/(±π). This follows from the homotopy fiber se-
quence (1.3.2) and the isomorphism π1A(X) ∼= K1(Z[π]).

The homotopy invariance of sCh(−) can be extended as follows.

Proposition 3.2.5. If x : X → X ′ is a weak homotopy equivalence of (arbitrary)
simplicial sets, then the forward functor x∗ : sCh(X) → sCh(X ′) is a homotopy
equivalence.

The proof will be given at the end of the section, after the long, three-part proof
of Lemma 3.2.9. We now turn to the postponed proofs.

Lemma 3.2.6. For each n ≥ 1 and 0 ≤ i ≤ n there exists a finite non-singular
simplicial set A and a commutative diagram

Λn
i

=

~~}}
}}

}}
}} ²²

²²

ÃÃ

ÃÃB
BB

BB
BB

Λn
i A≃s

oo
≃s

// ∆n

in which the two maps originating from A are simple, the map Λn
i → Λn

i is the
identity and the map Λn

i → ∆n is the standard inclusion.

Proof. We can define a cone v∆n with vertex v and base ∆n as the nerve of the
disjoint union [n] ⊔ {v}, with a total ordering extending that of [n] = {0 < 1 <
· · · < n}. The simplicial set A = vΛn

i is then defined as the subcone with vertex v
and base Λn

i .
To explain how the ordering relates v to the elements of [n], we make a case

distinction. For 0 ≤ i < n we declare that i < v < i + 1, let A → Λn
i take v to i,

and let A → ∆n take v to i + 1. For i = n we stipulate that n − 1 < v < n, let
A → Λn

i take v to n, and let A → ∆n take v to n − 1. The point inverses of the
geometric realizations of these maps are either single points or closed intervals, so
the maps originating from A are indeed simple. ¤

Lemma 3.2.7. (c) If x : X → X ′ is a map of simplicial sets given by filling a

horn, then x∗x∗ is homotopic to the identity on sCh(X), and similarly for sC̃h
•(X).

(d) If x : X → X ′ is a map of non-singular simplicial sets given by filling an
embedded horn, then x∗x∗ is homotopic to the identity on sDh(X), and similarly

for sDh
•(X) and sD̃h

•(X).
(e) If k : K → K ′ is a map of polyhedra given by an elementary expansion, then

k∗k∗ is homotopic to the identity on sẼh
•(K), and similarly for sEh(K) and sEh

•(K).

Proof. (c) The endofunctor x∗x∗ on sCh(X) is given by pushout with the inclusion
Λn

i → ∆n. Let Φ be the endofunctor on the same category given by pushout with
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the map Λn
i → A of Lemma 3.2.6. By the gluing lemma for simple maps, the two

simple maps A → Λn
i and A → ∆n of that lemma induce natural transformations

Φ → id and Φ → x∗x∗, respectively. These combine to give the required homotopy.

The same argument applies for endofunctors of the simplicial category sC̃h
•(X).

(d) Since A is non-singular, the same proof applies in the non-singular case.
(e) The proof in the polyhedral case is similar, using the polyhedral realization

of the diagram in the lemma above. ¤

Lemma 3.2.8. For each n ≥ 1 and 0 ≤ i ≤ n there is a finite non-singular
simplicial set B and a diagram

∆n
in1 //

in2

// ∆
n ∪Λn

i
∆n

²²

²²

∇ // ∆n

B

≃s

99sssssssssss

in which ∆n ∪Λn
i

∆n → B is a simplicial expansion, B → ∆n is a simple map, the
triangle commutes and the fold map ∇ restricts to the identity on each copy of ∆n.

Proof. We take B to be a cone with vertex v and base ∆n∪Λn
i
∆n, obtained by gluing

together two copies of the cone v∆n with vertex v and base ∆n along the subcone
A = vΛn

i from Lemma 3.2.6, with vertex v and base Λn
i . Then ∆n ∪Λn

i
∆n → B

can be obtained by filling finitely many embedded horns.
In each of the two cones v∆n to be glued together, the ordering of the vertex

v with respect to the vertices [n] of ∆n is given by the same case distinction as in
the cited lemma. The map B → ∆n is then given by gluing together two copies
of a simple map v∆n → ∆n along the simple map A = vΛn

i → ∆n from the same
lemma, hence is also a simple map. ¤

Proof of Proposition 3.2.2. (c) By induction, it suffices to consider the case of filling
a single horn x : X → X ′ = ∆n ∪Λn

i
X. By Lemma 3.2.7, we have left to show that

x∗x
∗ is homotopic to the identity on sCh(X ′). Let

X ′′ = ∆n ∪Λn
i

X ′ = (∆n ∪Λn
i

∆n) ∪Λn
i

X

and let x1, x2 : X ′ → X ′′ denote the two finite cofibrations that are induced from
the two standard inclusions in1, in2 : ∆n → ∆n ∪Λn

i
∆n by pushout along Λn

i → X.
Then x∗x

∗ = x∗
2x1∗. Let

X ′′′ = B ∪(∆n∪Λn
i

∆n) X ′′

with B as in Lemma 3.2.8, and let x3 : X ′′ → X ′′′ denote the inclusion. By
the same lemma, x3 can be obtained by filling finitely many embedded horns,
so by Lemma 3.2.7 the composite x∗

3x3∗ (i.e., pushout with x3) is homotopic to
the identity on sCh(X ′′). Consequently, x∗

2x1∗ is homotopic to x∗
2x

∗
3x3∗x1∗ =

(x3x2)
∗(x3x1)∗.

The latter composite may be identified with the endofunctor Φ of sCh(X ′) given
by pushout with x3x1 : X ′ → X ′′′ followed by switching the embedding of X ′ to
x3x2, or what is the same, pushout with

∆n in1−−→ ∆n ∪Λn
i

∆n −→ B
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and switching the embedding of ∆n to in2. Therefore the simple map B → ∆n in-
duces a natural transformation from Φ to the identity, giving the desired homotopy
(x3x2)

∗(x3x1)∗ ≃ id.

The same argument applies for the construction sC̃h
•(−).

(d) Since B is non-singular, the same proof applies in the non-singular case.
(e) The proof in the polyhedral case is similar, using the polyhedral realization

of the diagram in the lemma above. ¤

To pass from maps obtained by filling finitely many horns, to general finite
cofibrations that are weak homotopy equivalences, we use the following lemma.
The three cases of its proof rely on rather different background material, so we first
deduce Proposition 3.2.3 from it, and then recall the various concepts needed for
the proof.

Lemma 3.2.9. (c) Let y : X → Y be a finite cofibration and a weak homotopy
equivalence of simplicial sets. Then there exists another finite cofibration (which is
necessarily a weak homotopy equivalence) z : Y → Z, such that zy : X → Z can be
obtained by filling finitely many horns.

(d) Let y : X → Y be a finite cofibration and a weak homotopy equivalence of non-
singular simplicial sets. Then there exists another finite cofibration of non-singular
simplicial sets z : Y → Z, such that zy : X → Z is a simplicial expansion.

(e) Let ℓ : K → L be a PL embedding and homotopy equivalence of compact
polyhedra. Then there exists another PL embedding m : L → M , such that mℓ : K →
M is an expansion.

Proof of Proposition 3.2.3. We begin with the general simplicial case. Applying
Lemma 3.2.9(c) twice, first to x : X → X ′ yielding x′ : X ′ → X ′′, and then to
x′ : X ′ → X ′′ yielding x′′ : X ′′ → X ′′′, we obtain a commutative diagram

X ′ //

x′

!!CC
CC

CC
CC

X ′′′

X

x

>>}}}}}}}}
// X ′′

x′′

<<yyyyyyyy

where the two horizontal arrows are inclusions obtained by filling finitely many
horns. Applying Proposition 3.2.2 to these maps, we deduce that the forward
functors (x′x)∗ ∼= x′

∗x∗ and (x′′x′)∗ ∼= x′′
∗x′

∗ are homotopy equivalences. Hence
x′
∗ has a right and a left homotopy inverse, and must therefore be a homotopy

equivalence. Using again that (x′x)∗ is a homotopy equivalence, we conclude that
x∗ is one, too. The dual argument applies for the backward functors.

The proofs in the non-singular and polyhedral cases are very similar, using
Lemma 3.2.9(d) and (e), respectively. ¤

For the proof of the general simplicial case (c) of Lemma 3.2.9, we will use a
particular fibrant replacement functor for simplicial sets.

A simplicial set is fibrant (or a Kan complex, or satisfies the extension
property [Ka57, (1.1)]), if every horn can be filled within X, i.e., if every map
h : Λn

i → X can be extended over the inclusion Λn
i → ∆n. One way to enlarge a

given simplicial set to a fibrant one is by repeatedly filling all horns [GZ67, IV.3.2].
The following notation is meant to correspond to that for Kan’s extension functor
Ex, which was defined in [Ka57, §4], and its infinite iteration Ex∞. The left adjoint
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of the extension functor Ex is the normal subdivision functor Sd studied in Part 2
above.

Definition 3.2.10. For each simplicial set X form Fx(X) by filling all horns,
i.e., by forming the pushout

∐
n,i,h Λn

i
// //

²²

∐
n,i,h ∆n

²²

X //
fX // Fx(X)

where n ≥ 1, 0 ≤ i ≤ n and h ranges over all simplicial maps h : Λn
i → X. This

construction is functorial in X, because for any map f : X → Y and horn h in X to
be filled in Fx(X), the composite fh is a horn in Y to be filled in Fx(Y ). By the
gluing lemma for weak homotopy equivalences, the cofibration fX : X → Fx(X) is
a weak homotopy equivalence, since each inclusion Λn

i → ∆n is one.
Let Fx0(X) = X, Fxr+1(X) = Fx(Fxr(X)) for r ≥ 0 and define Fx∞(X) =

colimr Fxr(X) as the colimit of the diagram

X
fX
−−→ Fx(X)

fF x(X)
−−−−→ . . . −→ Fxr(X)

fF xr(X)
−−−−−→ Fxr+1(X) −→ . . . .

There is then a natural cofibration and weak homotopy equivalence

f∞
X : X → Fx∞(X) ,

and Fx∞(X) is fibrant. For any horn h : Λn
i → Fx∞(X) factors through Fxr(X)

for some finite r, so h can be filled in Fxr+1(X), and therefore also in Fx∞(X).
In other words, Fx∞ is a fibrant replacement functor.

Proof of Lemma 3.2.9(c). Fx∞(X) is a fibrant simplicial set, so the map f∞
X ex-

tends over the cofibration and weak homotopy equivalence y : X → Y , see [GJ99,
Thm. I.11.3]. Since y is a finite cofibration, the resulting image of Y in Fx∞(X) is
contained in a simplicial subset W of Fx∞(X) that is generated by X and finitely
many other simplices, and which can be obtained from X by filling finitely many
horns.

Y

w

²² $$IIIIIIIII

X

y

>>~~~~~~~~
// //

##

f∞
X

::
W // // Fx∞(X)

To turn w : Y → W into a cofibration, we use the relative mapping cylinder

Z = TX(w) = X ∪X×∆1 (Y × ∆1) ∪Y W ,

obtained from T (w) = Y ×∆1 ∪Y W by compressing X ×∆1 along the projection
map to X. The front inclusion z : Y → Z is a finite cofibration. The back inclusion
W → Z can be obtained by filling finitely many horns, hence so can its composite
with wy : X → W . This composite equals zy. ¤
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The non-singular simplicial case (d) of Lemma 3.2.9 is not really needed for the
stable parametrized h-cobordism theorem, as we explain in Remark 3.5.5, after
the proof of Theorem 1.2.6. However, it allows us to make some more uniform
statements. We therefore include the following discussion, for completeness.

The proof of this case uses results on stellar subdivisions and their traces. Our
understanding of these matters was greatly helped by a letter from Siebenmann,
which explained the claims on pages 480 and 484 of his paper [Si70]. The following
definition, lemmas and proof are adapted from the argument given in Siebenmann’s
letter.

Definition 3.2.11. Let Y be a finite ordered simplicial complex, viewed as a
simplicial set, and let p ∈ |Y | be any point. The star St(p, Y ) ⊂ Y is the simplicial
subset generated by the simplices y such that p is in the image of |ȳ| : |∆n| →
|Y |, and the link Lk(p, Y ) ⊂ St(p, Y ) is the simplicial subset consisting of the
simplices y in St(p, Y ) such that p is not in the image of |ȳ|. Then |St(p, Y )| is PL
homeomorphic to the cone on Lk(p, Y ) with vertex p.

We can write Y = St(p, Y ) ∪Lk(p,Y ) Z with Z ⊂ Y . Form cone(St(p, Y )) as a
cone on St(p, Y ) with last vertex v, and define the result of starring Y at p as the
pushout

Sp(Y ) = cone(Lk(p, Y )) ∪Lk(p,Y ) Z .

There is a PL homeomorphism | cone(Lk(p, Y ))| ∼= |St(p, Y )|, which takes the new
cone point v to p. The induced PL homeomorphism |Sp(Y )| ∼= |Y | exhibits Sp(Y )
as a subdivision of Y . Let

Tp(Y ) = cone(St(p, Y )) ∪St(p,Y ) Z

be the trace of this (elementary stellar) subdivision. More generally, for a finite
sequence of points p1, . . . , pr in |Y |, the result

Sp1...pr
(Y ) = Spr

(. . . Sp1(Y ) . . . )

of starring Y at p1, . . . , pr, in order, is called a stellar subdivision of Y . The
trace of this stellar subdivision is the pushout Tp1...pr

(Y ) of the diagram

Y ⊂ Tp1(Y ) ⊃ Sp1(Y ) ⊂ · · · ⊃ Sp1...pr−1(Y ) ⊂ Tpr
(Sp1...pr−1(Y )) ⊃ Sp1...pr

(Y ) ,

i.e., the union of the traces of the individual starring operations, glued together
along the intermediate stellar subdivisions.

Lemma 3.2.12. Let p ∈ |Y |. The inclusions Y ⊂ Tp(Y ) and Sp(Y ) ⊂ Tp(Y ) are
both simplicial expansions.

Let X ⊂ Y and p ∈ |X|. The relative inclusion Tp(X) ∪Sp(X) Sp(Y ) ⊂ Tp(Y ) is
also a simplicial expansion.

Proof. It suffices to prove that the standard inclusions St(p, Y ) ⊂ cone(St(p, Y )),
cone(Lk(p, Y )) ⊂ cone(St(p, Y )) and

cone(St(p,X)) ∪cone(Lk(p,X)) cone(Lk(p, Y )) ⊂ cone(St(p, Y ))

are simplicial expansions.
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The second and third cases are special cases of the easy result that cone(X ′) ⊂
cone(Y ′) is a simplicial expansion whenever X ′ ⊂ Y ′, see the proof of Lemma 2.2.15.

To prove the first case, we temporarily work with unordered simplicial complexes.
The orderings can be put back in at the end. Write St(p, Y ) as the join y ∗ L of
the simplex y containing p in its interior and its link L = Lk(y, Y ) in Y . Then we
can write the first inclusion as y ∗ L ⊂ v ∗ y ∗ L. Here y ⊂ v ∗ y is an elementary
simplicial expansion, from which it follows that y ∗ L ⊂ v ∗ y ∗ L is a simplicial
expansion, by a straight-forward induction on the simplices in L. ¤

Lemma 3.2.13. Let X ⊂ Y and W be finite non-singular simplicial sets, and
let g : Y → W be a simplicial map. The inclusion M(Sd(g|X)) ⊂ M(Sd(g)) is a
simplicial expansion.

Proof. By induction, we may assume that the lemma holds for all Y of dimension
less than n, and that Y = ∆n ∪∂∆n X, where ∆n → Y is the representing map of
a simplex y ∈ Yn. Let g(y) = ρ∗(w) for a degeneracy operator ρ : [n] → [m] and a
non-degenerate simplex w ∈ Wm. Then M(Sd(g)) is obtained from M(Sd(g|X))
by attaching a copy of M(Sd(ρ)) along M(Sd(ρ|∂∆n)).

Here M(Sd(ρ)) = N((∆n)# ⊔ρ# (∆m)#) is the cone on M(Sd(ρ|∂∆n)) =

N((∂∆n)# ⊔ρ# (∆m)#) with vertex (ιn), so it suffices to show that the inclusion
(ιm) ⊂ M(Sd(ρ|∂∆n)) is a simplicial expansion. This factors as the composite of
(ιm) ⊂ Sd(∆m), which is obviously a simplicial expansion, and the inclusion

Sd(∆m) = M(Sd(∅ → ∆m)) ⊂ M(Sd(∂∆n → ∆m)) ,

which is a simplicial expansion by our inductive hypothesis, since ∂∆n has di-
mension less than n. Taking cones with vertex (ιn), along any finite sequence of
elementary simplicial expansions from (ιm) to M(Sd(ρ|∂∆n)), then yields a finite
sequence of elementary expansions from M(Sd(ρ|∂∆n)) union the edge (ιm < ιn)
to M(Sd(ρ)). ¤

Proof of Lemma 3.2.9(d). We assume first that y : X ⊂ Y is a weak homotopy
equivalence of finite ordered simplicial complexes. There exists a homotopy inverse
|Y | → |X|, which we may assume is the identity on |X|. By the relative simplicial
approximation theorem [Ze64, p. 40], there exists a stellar subdivision (see Defini-
tion 3.2.11 above) Y ′ = Sp1...pr

(Y ) of Y , obtained by starring Y at points of |Y |
not in |X|, and a simplicial map g : Y ′ → X, such that |g| is homotopic to the
chosen homotopy inverse relative to |X|. In particular, X ⊂ Y ′ is a subcomplex
and g|X = idX .

The normal subdivision Sd(Y ′) is a further stellar subdivision, obtained by star-
ring Y ′ at the barycenters of its non-degenerate simplices, in some order of decreas-
ing dimension. Let TY be the trace of the combined stellar subdivision Sd(Y ′) of
Y . It contains the trace TX of the stellar subdivision Sd(X) of X as a simplicial
subset. Hence we have the following commutative diagram

X //

²²

TX

²²

Sd(X)oo

²²

// M(Sd(idX))

²²

Sd(X)oo

=

²²

Y // TY Sd(Y ′)oo // M(Sd(g)) Sd(X)oo
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where all arrows are inclusions, and M(−) is the reduced mapping cylinder from
Section 2.4. Note that M(Sd(idX)) = Sd(X) × ∆1. Let

Z = TY ∪Sd(Y ′) M(Sd(g))

be the pushout of the lower row, and include z : Y → Z through TY .
We claim that the composite map zy : X → Z is a simplicial expansion. It suffices

to check that each of the maps X ⊂ TX , Sd(X) ⊂ M(Sd(idX)), M(Sd(idX)) ⊂
M(Sd(g)) and TX ∪Sd(X) Sd(Y ′) ⊂ TY are simplicial expansions. The first and
fourth of these follow by repeated application of Lemma 3.2.12 above. The second
and third follow from Lemma 3.2.13.

We now turn to the general case. If y : X → Y is a finite cofibration and a weak
homotopy equivalence of non-singular simplicial sets, then there exists a homotopy
inverse |Y | → |X| that is the identity on |X|. We can write Y ∼= X ∪Xα

Yα for
some finite non-singular simplicial set Xα ⊂ X, so that there is a finite cofibration
Xα ⊂ Yα that induces y upon pushout, and a retraction |Yα| → |Xα| that likewise
induces the homotopy inverse. Subdividing once, Sd(Xα) ⊂ Sd(Yα) is an inclusion
of finite ordered simplicial complexes, and |Sd(Yα)| → |Sd(Xα)| is a retraction.
Proceeding as before, we get a finite cofibration Sd(Yα) → Z ′

α with Sd(Xα) → Z ′
α

a simplicial expansion.
Let TYα

be the trace of the normal subdivision of Yα, which contains the trace
TXα

of the normal subdivision of Xα. Let Zα = TYα
∪Sd(Yα) Z ′

α, and note that
there are simplicial expansions

Xα ⊂ TXα
⊂ TXα

∪Sd(Xα) Z ′
α ⊂ TYα

∪Sd(Yα) Z ′
α = Zα .

Define Z = X ∪Xα
Zα. Then we have obtained a finite cofibration z : Y → Z such

that zy : X → Z is a simplicial expansion, as desired. ¤

Finally, we have the polyhedral case (e) of Lemma 3.2.9. This case is needed
for the non-manifold part Theorem 1.1.7 of the stable parametrized h-cobordism
theorem, by way of its consequence Proposition 3.3.1(e). In principle, this case
follows from the non-singular one by the possibility of triangulating polyhedra and
PL maps, but enough simplification is possible in the polyhedral case that we prefer
to give a direct argument. The proof uses Cohen’s (non-canonical) PL mapping
cylinder Cf for a PL map f : L → K, which depends on a choice of triangulation
of f , see Remark 4.3.2.

Proof of Lemma 3.2.9(e). We view the given PL embedding and homotopy equiv-
alence ℓ : K → L as the inclusion of a subpolyhedron. There exists a homotopy
inverse L → K, which we can choose to be the identity on K. By the relative simpli-
cial approximation theorem [Ze64], there exists a triangulation Y of L, containing
a triangulation X of K as a simplicial subset, and a simplicial map g : Y → X, such
that |g| is homotopic to the chosen homotopy inverse relative to K. In particular,
|g| restricts to the identity on K. Let M = C|g| = |M(Sd(g))| be the PL mapping
cylinder, and let m : L → M be the front inclusion.

Then K × |∆1| ⊂ C|g| is included as the PL mapping cylinder of idK , and this
inclusion is given by a finite sequence of elementary expansions. In more detail, we
can inductively build C|g| from K × |∆1| by attaching a polyhedron for each non-
degenerate simplex y of Y not in X, in order of increasing simplex-dimension n.
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Let g(y) = ρ∗(x), for ρ : [n] → [m] a degeneracy operator and x a non-singular m-
simplex in X. The polyhedron to be attached for y is the PL mapping cylinder C|ρ|

for |ρ| : |∆n| → |∆m|, and it is attached along the PL mapping cylinder C∂|ρ| of the
restriction ∂|ρ| : ∂|∆n| → |∆m| of |ρ| to the boundary. By [Co67, Thm. 7.1] applied
to the dual-collapsible map |ρ| : |∆n| → |∆m| (see op. cit.), and the observation
that C|ρ| is the cone on C∂|ρ| with vertex the barycenter of the source simplex |∆n|,
it follows that C|ρ| is a PL (n+1)-ball and that C∂|ρ| is a PL n-ball in its boundary.

Hence the inductive step in building C|g| from K × |∆1| is precisely an elementary
expansion.

More obviously, the end inclusion K ⊂ K × |∆1| is also the composite of finitely
many elementary expansions, say one for each non-degenerate simplex of any tri-
angulation of K, and mℓ therefore factors as the composite expansion

K ⊂ K × |∆1| ⊂ C|g| = M .

¤

To conclude the section, we will deduce Proposition 3.2.5 from the following
lemma. The argument in its proof was referred to in [Wa85, Lem. 3.1.4].

Lemma 3.2.14. Let Φ be a functor from simplicial sets to categories that (a)
commutes with filtered colimits, and (b) takes each map obtained by filling a horn
to a homotopy equivalence. Then Φ takes every weak homotopy equivalence to a
homotopy equivalence.

Proof. We use the fibrant replacement functor Fx∞ from Definition 3.2.10. Let
X → X ′ be any weak homotopy equivalence. In the commutative square

X //

²²

X ′

²²

Fx∞(X)
f

// Fx∞(X ′)

the vertical weak homotopy equivalence f∞
X : X → Fx∞(X) is a filtered colimit

of maps obtained by filling finitely many horns. Thus the two hypotheses on Φ
imply that the functor Φ(f∞

X ) : Φ(X) → Φ(Fx∞(X)) is a homotopy equivalence,
and similarly for X ′ in place of X. Considering the commutative square obtained
by applying Φ to the square above, we thus are reduced to showing that the functor
Φ(f) is a homotopy equivalence.

But f : Fx∞(X) → Fx∞(X ′) is a weak homotopy equivalence of fibrant simpli-
cial sets, by the 2-out-of-3 property. Hence it admits a simplicial homotopy inverse
g : Fx∞(X ′) → Fx∞(X) [FP90, Corollary 4.5.31(iii)]. Writing Z = Fx∞(X) and
Z ′ = Fx∞(X ′), this means that there is a simplicial homotopy H : Z × ∆1 → Z
from gf to idZ , and a similar simplicial homotopy from fg to idZ′ . Applying Φ we
have a commutative diagram:

Φ(Z)
Φ(i0)

//

Φ(gf)
%%KKKKKKKKKK

Φ(Z × ∆1)

Φ(H)

²²

Φ(Z)
Φ(i1)

oo

=
yyssssssssss

Φ(Z)
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Each inclusion i0, i1 : Z → Z × ∆1 can be obtained by filling horns, by filling
the cylinders over the non-degenerate simplices of Z in some order of increasing
dimension. So the hypotheses on Φ imply that the functors Φ(i0) and Φ(i1) are
homotopy equivalences. A diagram chase then shows that Φ(gf) is a homotopy
equivalence. Similarly, Φ(fg) is a homotopy equivalence, so Φ(f) is a homotopy
equivalence. ¤

Proof of Proposition 3.2.5. The functor Φ(X) = sCh(X) is so defined as to com-
mute with filtered colimits, so this now follows from Proposition 3.2.2(c) and
Lemma 3.2.14. ¤

3.3. Some homotopy fiber sequences

Proposition 3.3.1. (c) If X is a finite simplicial set, then there is a homotopy
cartesian square

sCh(X) //

²²

hCh(X)

²²

sC
j

// hC

with hCh(X) contractible. Hence sCh(X) is homotopy equivalent to the homotopy

fiber of j : sC → hC at X. Similarly for sC̃h
•(X).

(d) If X is a finite non-singular simplicial set, then there is a similar homotopy
cartesian square with hDh(X) contractible, and sDh(X) is homotopy equivalent to

the homotopy fiber of j : sD → hD at X. Similarly for sD̃h
•(X).

(e) If K is a compact polyhedron, then there is a homotopy cartesian square

sẼh
•(K) //

²²

hẼh
•(K)

²²

sẼ•

j
// hẼ•

with hẼh
•(K) contractible. Hence sẼh

•(K) is homotopy equivalent to the homotopy

fiber of j : sẼ• → hẼ• at K. Similarly for sEh(K).

Remark 3.3.2. The category hCh(X) is contractible, because it has the initial ob-
ject id : X → X, and the space of contractions of a contractible space is itself
contractible. Hence we can make a contractible choice of a null-homotopy of the
composite map sCh(X) → sC → hC, by choosing a contraction of hCh(X) and com-
posing it with the maps sCh(X) → hCh(X) and hCh(X) → hC. Similar remarks
apply in the other cases.

In order to make sure that (0.4) commutes, as a diagram of homotopy fiber
sequences, it is convenient to note that these null-homotopies can all be chosen
compatibly, since the preferred contraction of hCh(X) obtained from the initial ob-
ject is strictly compatible with the corresponding preferred contractions of hDh(X),

hDh
•(X) and hẼh

•(|X|).

We will give the proof of Proposition 3.3.1 below, after four preparatory lemmas.
See Section 3.6 for a review of the categorical definitions concerning right fibers,
transitions maps, etc.
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Lemma 3.3.3. (c) If X is a finite simplicial set, then the full embedding

sCh(X)
≃
−→ X/j

is a homotopy equivalence. Similarly for sC̃h
•(X).

(d) If X is a finite non-singular simplicial set, then the full embedding sDh(X) →

X/j is a homotopy equivalence. Similarly for sD̃h
•(X).

(e) If K is a compact polyhedron, then the full embedding

sẼh
•(K)

≃
−→ ([0],K)/j

is a homotopy equivalence. Similarly for sEh(K).

Proof. The embedding identifies sCh(X) with the full subcategory of X/j generated
by the objects y : X → Y that are not just weak homotopy equivalences of finite
simplicial sets, but also cofibrations. We define a homotopy inverse functor X/j →
sCh(X) that takes y : X → Y to the finite cofibration

X
(i,y)
−−−→ cone(X) × Y .

The projection pr : cone(X)×Y → Y is a simple map, under X, and simultaneously
defines the two required natural transformations to the identity endofunctor of
sCh(X) and X/j, respectively. The proofs in the non-singular and polyhedral cases
are identical.

In the case of simplicial categories, the embedding identifies sẼh
•(K) with the

full subcategory of ([0],K)/j generated in simplicial degree q by the objects

pr : K × |∆q|
e
−→ E

π
−→ |∆q|

where not only is π a PL Serre fibration and e a PL homotopy equivalence of
compact polyhedra, but e is also an embedding. Again we can define a homotopy

inverse functor ([0],K)/j → sẼh
•(K) by taking an object as above to

pr : K × |∆q|
(i,e)
−−→ cone(K × |∆q|) × E

π◦pr
−−−→ |∆q| .

It is clear that (i, e) is a PL embedding and a homotopy equivalence, and that π◦pr
is the composite of two Serre fibrations, and therefore again a Serre fibration. The
projection map

cone(K × |∆q|) × E
pr
−→ E

is a simple map of Serre fibrations, and commutes with the embeddings of K×|∆q|
and the projections to |∆q|, so it defines the two natural transformations to the
identity needed to exhibit the two given functors as mutual homotopy inverses. The
proof in the case of general, or non-singular, simplicial sets is identical. ¤

Remark 3.3.4. It is not clear that the analogue of Lemma 3.3.3 holds for the relative
PL bundle categories sDh

•(X) and sEh
•(K).
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Lemma 3.3.5. If j : sC → hC, and f : X → X ′ is a morphism in hC, then the
transition map

f∗ : X ′/j
≃
−→ X/j

is a homotopy equivalence. Similarly for j : sD → hD and for j : sE → hE.

If j : sẼ• → hẼ• and f : K → K ′ is a morphism in hẼ• in simplicial degree 0,
then the transition map

([0], f)∗ : ([0],K ′)/j
≃
−→ ([0],K)/j

is a homotopy equivalence. Similarly for j : sC̃• → hC̃• and for j : sD̃• → hD̃•.

Proof. We use the cone-product construction to factor the weak homotopy equiva-
lence f : X → X ′ as the composite

X
(i,f)
−−−→ cone(X) × X ′ pr

−→ X ′

of the front inclusion (i, f) and the projection pr. The back inclusion s : X ′ →
cone(X) × X ′ is a section to pr, and all of these maps are weak homotopy equiv-
alences. The induced transition maps satisfy f∗ = (i, f)∗pr∗ and s∗pr∗ = id, so it
suffices to prove the lemma for the cofibrations (i, f) and s, i.e., we may assume
from the outset that f is a cofibration (and a weak homotopy equivalence). Then
we have a commutative square

sCh(X ′)
f∗

//

²²

sCh(X)

²²

X ′/j
f∗

// X/j

where the vertical functors are homotopy equivalences by Lemma 3.3.3 and the
upper horizontal functor f∗ is a homotopy equivalence by Proposition 3.2.3. Hence
also the lower horizontal functor f∗ is a homotopy equivalence, as asserted. The
proof in the non-singular and polyhedral cases, as well as for the simplicial cate-
gories, is the same. ¤

Lemma 3.3.6. Let π : Z → ∆q be an object of hD̃• in simplicial degree q, and let
t : P = Φ × ∆q → Z be a trivialization up to a simple map. Then the transition
map

([q], t)∗ : ([q], Z)/j
≃
−→ ([q], P )/j

is a homotopy equivalence. Similarly for hC̃• and for hẼ•.

Proof. As we recall in Definition 3.6.6, the right fiber ([q], Z)/j is the simplicial
category

[n] 7−→
∐

γ : [n]→[q]

γ∗Z/jn ,

where γ ranges over the indicated morphisms in ∆, and γ∗Z is an object in the

target of jn : sD̃n → hD̃n.
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We first show that the (non-simplicial) transition map

t∗ : Z/jq → P/jq

of right fibers of jq : sD̃q → hD̃q is a homotopy equivalence. We cannot define a
covariant functor t∗ : P/jq → Z/jq on an object

pr : P
w
−→ W

π
−→ ∆q

as the pushout of Z
t
←− P

w
−→ W , since t is rarely a cofibration, but we can use

the cone-product construction from Section 2.4 to form the pushout of the two
cofibrations

cone(P ) × Z
(i,t)
←−− P

(i,w)
−−−→ cone(P ) × W ,

with Z mapping to ∗ ×Z on the left. We call this pushout t!(W ), for the duration
of this proof. It is a Serre fibration over ∆q after geometric realization, by the fiber
gluing lemma for Serre fibrations.

With this notation, t∗t!(W ) is the pushout above, viewed as an object under P
via t and the stated inclusion of Z. It receives a simple map (using t : P → Z on
the left) from the pushout of the two cofibrations

cone(P ) × P
(i,id)
←−−− P

(i,w)
−−−→ cone(P ) × W ,

and maps simply (using pr : cone(P ) × P → P ) to

cone(P ) × W

and by pr to W , always under P . So these pushouts define a chain of natural
transformations of endofunctors of P/jq, which relate t∗t! to the identity.

On the other hand, if

pr : Z
w
−→ W

π
−→ ∆q

is an object of Z/jq, then t!t
∗(W ) is the pushout of the two cofibrations

cone(P ) × Z
(i,t)
←−− P

(i,wt)
−−−→ cone(P ) × W ,

as an object under Z. There is a natural simple map (using t : P → Z in all places)
to the pushout of the two cofibrations

cone(Z) × Z
(i,id)
←−−− Z

(i,w)
−−−→ cone(Z) × W ,

and a second simple map (using pr : cone(Z) × Z → Z) to

cone(Z) × W

and by pr to W , always under Z. Hence there is a natural transformation of
endofunctors of Z/jq, from t!t

∗ to the identity. This proves that t∗ : Z/jq → P/jq

is a homotopy equivalence.
More generally, for each morphism γ : [n] → [q] in ∆ there is a pulled-back simple

map γ∗t : γ∗P → γ∗Z, with γ∗P = Φ × ∆n. By the argument above, applied over
∆n in place of ∆q, the functor (γ∗t)∗ : γ∗Z/jn → γ∗P/jn is a homotopy equivalence.
The disjoint union over these γ : [n] → [q] of the functors (γ∗t)∗ is, by definition,
the degree n part of ([q], t)∗. Hence the latter is also a homotopy equivalence, by
the realization lemma (which we recall below in Proposition 3.6.11).

The constructions used, i.e., cones, products and pushouts along pairs of cofi-
brations, are all available in the general simplicial and the polyhedral contexts, so
the same proof applies in these cases. ¤
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Lemma 3.3.7. Let f : Z → Z ′ be a morphism in hD̃• in simplicial degree q, and
let α : [p] → [q] be a morphism in ∆. To verify that all transition maps

([q], f)∗ : ([q], Z ′)/j → ([q], Z)/j

(of the first kind) and
α∗ : ([p], α∗Z)/j → ([q], Z)/j

(of the second kind) are homotopy equivalences, it suffices to do so for the transition

maps ([0], f)∗ of morphisms f in simplicial degree 0. Similarly for hC̃• and for hẼ•.

Proof. With Φ = Sd(π)−1(β) the preimage of the barycenter (Φ for “fiber”, see
Definition 2.7.1), we have a natural simple map

t : P = Φ × ∆q → Z

over ∆q. See Proposition 2.7.6. Here P = ǫ∗Φ for the unique map ǫ : [q] → [0] in ∆,
and similarly when decorated with primes. Letting ϕ : Φ → Φ′ be the restriction of
Sd(f) to Φ, we have a commutative diagram

([q], Z ′)/j
t′∗ //

([q],f)∗

²²

([q], P ′)/j
ǫ∗ //

([q],ǫ∗ϕ)∗

²²

([0],Φ′)/j

([0],ϕ)∗

²²

([q], Z)/j
t∗ // ([q], P )/j

ǫ∗ // ([0],Φ)/j .

The left hand square commutes by the naturality of t with respect to f . By
Lemma 3.3.6 the maps t∗ and t′∗ are homotopy equivalences. The maps ǫ∗ are
always homotopy equivalences, as in the proof of Addendum 3.6.10 below. Hence
([q], f)∗ is a homotopy equivalence if and only if the degree 0 transition map ([0], ϕ)∗

is a homotopy equivalence. Thus if the transition maps of the first kind in simplicial
degree 0 are homotopy equivalences, then so are all the transition maps of the first
kind.

Let η : [0] → [q] be any morphism from [0] in ∆, and let τ = η∗t : Φ = η∗P →
η∗Z. Then in the commutative diagram

([0], η∗Z)/j
η∗ //

([0],τ)∗

²²

([q], Z)/j

([q],t)∗

²²

([0],Φ)/j
η∗ // ([q], P )/j

ǫ∗ // ([0],Φ)/j

the lower composite map is the identity since ǫη = id, the map ǫ∗ is a homotopy
equivalence as before, and ([q], t)∗ is a homotopy equivalence by Lemma 3.3.6. Thus
the upper horizontal map η∗ is a homotopy equivalence if and only if the degree 0
transition map ([0], τ)∗ is one.

In other words, if all transition maps of the first kind in simplicial degree 0 are
homotopy equivalences, then so are all the transition maps of the second kind for
morphisms η from [0] in ∆. Now let α : [p] → [q] and η : [0] → [p] be any morphisms
in ∆. Then we have just shown that η∗ and (αη)∗ are homotopy equivalences, which
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implies that also the general transition map α∗ of the second kind is a homotopy
equivalence.

The general simplicial case follows by the same proof.

The polyhedral case also follows by the same argument, in view of the possibility
of triangulating a PL map f : E → E′ of PL Serre fibrations over |∆q|, by a map
Y → Y ′ of Serre fibrations over a simplicially collapsible base X. The use of
Proposition 2.7.6 must be replaced by an appeal to Proposition 2.7.7, the fiber Φ
must be replaced by the polyhedron |LX | of that proposition, and similarly for Φ′.
Otherwise, the argument proceeds in the same way. ¤

Proof of Proposition 3.3.1. The first part of Lemma 3.3.5 verifies the hypothesis
of Quillen’s Theorem B for the functor j : sC → hC. Hence the right hand square
below is homotopy cartesian.

sCh(X) //

²²

X/j //

²²

sC

j

²²

hCh(X) // X/hC // hC

The full embedding sCh(X) → X/j is a homotopy equivalence, by Lemma 3.3.3.
The categories hCh(X) and X/hC each have an initial object, and are therefore
contractible. It follows that also the outer rectangle is homotopy cartesian. The
same argument applies for j : sD → hD at X and for j : sE → hE at K.

The remaining part of Lemma 3.3.5, and Lemma 3.3.7, verify the hypotheses of

Theorem B′ for the simplicial functor j : sẼ• → hẼ•. Hence the right hand square
below is homotopy cartesian.

sẼh
•(K) //

²²

([0],K)/j //

²²

sẼ•

j

²²

hẼh
•(K) // ([0],K)/hẼ•

// hẼ•

The full embedding sẼh
•(K) → ([0],K)/j is a homotopy equivalence, by the re-

maining part of Lemma 3.3.3. The simplicial categories hẼh
•(K) and ([0],K)/hẼ•

each have an initial object in each degree, and are therefore contractible. It follows
that also the outer rectangle is homotopy cartesian. The same argument applies

for j : sC̃• → hC̃• and for j : sD̃• → hD̃• at X. ¤

3.4. Polyhedral realization

Definition 3.4.1. By a triangulation of a compact topological space K we will

mean a homeomorphism h : |X|
∼=
−→ K, where X is a finite non-singular simplicial

set. A second triangulation h′ : |X ′|
∼=
−→ K is a linear subdivision of the first if

each simplex of X ′ maps (affine) linearly into a simplex of X, in terms of barycentric
coordinates, after geometric realization. In other words, for each simplex x′ ∈ X ′

m

there is a simplex x ∈ Xn and a linear map ℓ : |∆m| → |∆n| such that the following
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diagram commutes.

|∆m|
ℓ //

|x̄′|

²²

|∆n|

|x̄|

²²

|X ′|
h′

∼=
// K |X|

h

∼=
oo

(If desired, one may restrict attention to non-degenerate simplices x and x′ in this
definition.) As regards the ordering of vertices, we shall furthermore assume that if
for some 0 ≤ i, j ≤ m the linear map ℓ : |∆m| → |∆n| takes the i-th vertex of |∆m|
to the boundary of |∆n| and the j-th vertex to the interior of |∆n|, then i < j. In
other words, the interior vertices are to have the bigger numbering.

Two triangulations are equivalent if they admit a common linear subdivision,
and a compact polyhedron is a compact space K together with a PL structure,
i.e., an equivalence class of triangulations. A PL map K → L of compact polyhedra

is one of the form h′|f |h−1, for some triangulations h : |X|
∼=
−→ K and h′ : |Y |

∼=
−→ L in

the respective PL structures, and f : X → Y a simplicial map. We let r : D → E be
the polyhedral realization functor, which takes a finite non-singular simplicial
set X to its geometric realization |X|, with the PL structure generated by the

identity triangulation id : |X|
∼=
−→ |X|.

Remark 3.4.2. These are the classical definitions, except that one usually asks
that X is a finite simplicial complex instead of a finite non-singular simplicial set
[FP90, §3.4]. But the barycentric subdivision X ′ of any finite simplicial complex X
is a finite ordered simplicial complex, and the normal subdivision Sd(X) of any fi-
nite non-singular simplicial set is a finite simplicial set in which each non-degenerate
simplex is uniquely determined by its set of vertices (= faces in simplicial degree 0).
We can canonically identify finite ordered simplicial complexes with the latter kind
of simplicial sets. It follows that each PL structure in the classical sense intersects
nontrivially with a unique PL structure in the present sense, and vice versa, so the
definitions are equivalent.

Explicitly, the classical PL structure generated by a triangulation h : |X|
∼=
−→

K for a simplicial complex X, corresponds to the PL structure generated by the

barycentrically subdivided triangulation h′ : |X ′|
∼=
−→ K, where X ′ is viewed as

a non-singular simplicial set. Conversely, the current PL structure generated by

a triangulation h : |X|
∼=
−→ K for a non-singular simplicial set X, corresponds to

the classical PL structure generated by the normally subdivided triangulation h ◦

hX : |Sd(X)|
∼=
−→ K, where Sd(X) is viewed as a simplicial complex.

Remark 3.4.3. For a given triangulation h : |X|
∼=
−→ K, the normal subdivision

Sd(X) provides a subdivided triangulation

h′ = h ◦ hX : |Sd(X)|
∼=
−→ K ,

where hX : |Sd(X)| → |X| is the canonical (but not natural) homeomorphism, as in
Theorem 2.3.1. In particular, the subdivided triangulation satisfies our convention
on the ordering of vertices. By [Hu69, Cor. 1.6], each linear subdivision X ′ of a finite
simplicial complex X admits a further linear subdivision X ′′ that is isomorphic to
an iterated normal subdivision Sdr(X), for some r.
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Proposition 3.4.4. The polyhedral realization functors r : sD• → sE• and

r : sD̃• → sẼ• ,

as well as their analogues r : hD• → hE• and r : hD̃• → hẼ•, are homotopy equiv-
alences.

Unlike for Proposition 3.5.1 below, we do not claim that these simplicial functors
are degreewise homotopy equivalences. In particular, we do not claim to know that
r : sD → sE is a homotopy equivalence.

Proof. We will concentrate on the case of the functor r : sD̃• → sẼ•. The other
cases differ only by trivial modifications. The claim is that the bisimplicial map of
nerves

[k], [q] 7−→ (skD̃q
r
−→ skẼq)

is a weak homotopy equivalence, where skD̃q is the simplicial degree k part of the

nerve of the category sD̃q, and similarly for skẼq. By the realization lemma (see
Proposition 3.6.11) it will be enough to show that the map of simplicial sets

r : skD̃• → skẼ•

is a weak homotopy equivalence for each k. Here skD̃• is the simplicial set with

q-simplices skD̃q, i.e., the sequences of k composable simple maps

Z0
f1
−→ Z1

f2
−→ . . .

fk−→ Zk

of Serre fibrations over ∆q, where each Zi is a finite non-singular simplicial set, and

similarly for skẼ•.

For any choice of base point in |skD̃•|, each element in the relative homotopy
group/set πi(r) can be represented by the geometric realization of a pair of maps
(e, d) as in the following lemma, with A ⊂ B a suitable subdivision of the pair
∂∆i ⊂ ∆i.

Lemma 3.4.5. Let A ⊂ B be a pair of finite non-singular simplicial sets and

A
d //

²²

²²

skD̃•

r

²²

B
e // skẼ•

a commutative square. Then there exists a finite non-singular simplicial set T
containing A, a weak homotopy equivalence h : T → B relative to A, and a map

g : T → skD̃•

such that g|A = d and eh is homotopic to rg relative to A.

A
d //

ÁÁ

ÁÁ
>>

>>
>>

>²²

²²

skD̃•

r

²²

T

h

≃

¡¡¡¡
¡¡

¡¡
¡¡

g

=={{{{{{{{

≃

B
e // skẼ•
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Granting this, we can now complete the proof of Proposition 3.4.4. Right com-
position with the homotopy equivalence (|h|, id) : (|T |, |A|) → (|B|, |A|) obtained
from the lemma induces a bijection on homotopy classes of maps, which takes the
homotopy class of (|e|, |d|) to that of (|eh|, |d|). Also by the lemma, the latter is
homotopic to (|rg|, |d|), which represents 0. Thus all the relative homotopy groups
πi(r) are 0, and therefore r is a weak homotopy equivalence. ¤

Proof of Lemma 3.4.5. We translate into more concrete terms what it means to

have a map like e : B → skẼ•. Suppose first that k = 0. A q-simplex of s0Ẽ•

is just a PL Serre fibration π : E → |∆q|. If we are given a map e : B → s0Ẽ•

we obtain a space over |B|, by gluing over the simplices of B. If B is finite and
non-singular then this space is a polyhedron, P say, and the map π : P → |B| is
piecewise-linear. To characterize P it suffices to say that if b is a q-simplex of B,
then the pullback by |b̄| : |∆q| → |B| of P is the polyhedron e(b) over |∆q|. By the
base gluing lemma for Serre fibrations (Proposition 2.7.12), π : P → |B| is also a
Serre fibration, and conversely, any PL Serre fibration π : P → |B| arises from a

unique map e : B → skẼ•, up to isomorphism. More generally, we obtain in this

fashion a correspondence between maps e : B → skẼ• and sequences of k simple
maps

(3.4.6) P0 −→ P1 −→ . . . −→ Pk

of PL Serre fibrations over |B|, where each Pi is a compact polyhedron.

For A ⊂ B, the restriction e|A : A → skẼ• then corresponds to the restricted
sequence of k simple maps

(3.4.7) Q0 −→ Q1 −→ . . . −→ Qk

of PL Serre fibrations over |A|, where each Qi = |A| ×|B| Pi is the restriction of

Pi → |B| to |A| ⊂ |B|. A map d : A → skD̃• with rd = e|A then corresponds to a
triangulation of the sequence above, i.e., a sequence of k simple maps

X0 −→ X1 −→ . . . −→ Xk

of Serre fibrations over A, where each Xi is a finite non-singular simplicial set,
whose polyhedral realization is the sequence (3.4.7) above. Here we again use the
base gluing lemma for Serre fibrations, to equate the Serre fibrations over A with
the simplicial maps that restrict to a Serre fibration over each simplex of A.

Now we appeal to the following (sub-)lemma.

Lemma 3.4.8. The sequence of polyhedra and PL maps

P0 −→ P1 −→ . . . −→ Pk −→ |B|

may be triangulated by a diagram

Y0 −→ Y1 −→ . . . −→ Yk
π
−→ B′

of finite non-singular simplicial sets, in such a way that:

(1) the triangulation B′ of |B| is a linear subdivision of B, and
(2) for every i, Qi ⊂ Pi is a subcomplex with an induced triangulation X ′

i ⊂ Yi

that is a linear subdivision of its original triangulation Xi.
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Proof. By triangulation theory, e.g. [Hu69, Thm. 1.11] or [RS72, Thm. 2.15], it is
always possible to triangulate a sequence of PL maps of polyhedra, and moreover
the triangulations can be chosen to be fine, in the sense that they refine given
triangulations and contain given subpolyhedra as subcomplexes. For the polyhedra,
subpolyhedra and simplices of the given triangulations can be assembled in a one-
way tree. Our convention on orderings may be forced true, if necessary, by an
additional (pseudo-)barycentric subdivision. ¤

Returning to the proof of Lemma 3.4.5, we let

|T | = |A × ∆1| ∪|A| |B|

be the mapping cylinder of the embedding |A| ⊂ |B|, and define

Ri = Qi × |∆1| ∪Qi
Pi

for each i. We obtain a sequence of k simple maps

(3.4.9) R0 −→ R1 −→ . . . −→ Rk

of PL Serre fibrations over |T |, namely that obtained from (3.4.6) by pullback along
the cylinder projection p : |T | → |B|.

The polyhedron |T | will be triangulated as T = A′′∪A′ B′, where B′ is the linear
subdivision of B from Lemma 3.4.8, A′ the induced subdivision of A, and A′′ is a
triangulation of the cylinder |A × ∆1| that extends the triangulations A and A′ at
the two ends. To be specific, A′′ is obtained by inductively starring each of the
convex blocks |∆m × ∆1| from some interior point, with one block for each non-
degenerate simplex ā : ∆m → A, in order of increasing dimension. In other words,
we have inductively triangulated the boundary of this block, and triangulate the
whole block as the cone on its boundary, with any interior point as the cone vertex.
As regards ordering, we always make the cone vertex the last vertex of the new
simplices.

The sequence (3.4.9) now represents the map that will be rg : T → skẼ•. To

define the lifting g : T → skD̃• we must triangulate the Ri and the maps between
them in a certain way. Lemma 3.4.8 provides triangulations Yi over B′ of the
parts Pi ⊂ Ri. We triangulate the subpolyhedron Qi ⊂ Ri (at the front end) by
the original triangulations Xi over A. This ensures that g|A = d. Finally, the
blocks |∆n × ∆1| of Qi × |∆1| are triangulated inductively, in order of increasing
n, by starring at suitable interior points. Here some care must be taken to ensure
that these interior points are chosen compatibly with the maps in (3.4.7) and the
bundle projection to |A|. This is done by triangulating from Qk back towards Q0,
and noting that for any surjective map |∆n| → |∆m| the interior of |∆n| maps onto
the interior of |∆m|. As before, the new cone vertex is always numbered as the last
vertex.

To complete the proof of the lemma, we must define the weak homotopy equiva-
lence h : T → B, and show that rg is homotopic to eh, in both cases relative to A.
The map h will be a variant last vertex map d′ from T = A′′ ∪A′ B′ to the block
complex A × ∆1 ∪A B that it subdivides (with A × ∆1 decomposed into blocks
∆m × ∆1, rather than into simplices), followed by the cylinder projection p to B.
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Instead of developing a theory of last vertex maps for block complexes, extending
Section 2.2, we just describe the composite map h = pd′ directly.

Each 0-simplex v ∈ T0 is a point of |T |, which maps under p : |T | → |B| to the
interior of a unique non-degenerate simplex b(v) of B, often called the support of
p(v). We define h(v) ∈ B0 to be the last vertex of this simplex b(v), and note that
after geometric realization, the convex linear path from p(v) to h(v) lies within b(v).
We then extend h linearly on each simplex, as we now explain. Let t ∈ Tn be any
n-simplex, with vertices v0, . . . , vn, in order. First, suppose that t lies in B′ ⊂ T .
Since B′ is a linear subdivision of B, t maps linearly to some non-degenerate simplex
b in B, after geometric realization. Second, suppose that t lies in A′′ ⊂ T . Since A′′

is a linear subdivision of the block complex A × ∆1, whose blocks project linearly
under p to the simplices of B, again t maps linearly under p to some non-degenerate
simplex b in B, all after geometric realization. If b has dimension m, then by our
convention on orderings, there is a well-defined morphism α : [n] → [m] in ∆ such
that h(vi) is the α(i)-th vertex of b, for each i, and then we let h(t) = α∗(b) ∈ Bn.
This defines the simplicial map

h : T = A′′ ∪A′ B′ → B .

(In the special case when B′ = Sd(B) is the normal subdivision, the restriction to
B′ ⊂ T of the map h just defined equals the usual last vertex map dB .) On A ⊂ A′′

the cylinder projection p realizes the inclusion |A| ⊂ |B|, so p(v) = h(v) for the
vertices v ∈ A0, and the restriction to A ⊂ T of h equals the inclusion A ⊂ B.

The convex linear paths from p(v) to h(v) define a homotopy p ≃ |h| : |T | → |B|
that is linear on each simplex of T , and is constant on |A|. Thus h is a weak
homotopy equivalence relative to A. Finally, rg represents the sequence (3.4.9)
obtained by pullback from (3.4.6) along p, and eh represents the sequence obtained
by pullback along |h|. Pullback of (3.4.6) along the homotopy |T ×∆1| → |B| from
p to |h|, which is linear on each simplex, then defines a sequence of k simple maps

of PL Serre fibrations over |T ×∆1|. The corresponding map T ×∆1 → skẼ• gives
the desired homotopy rg ≃ eh relative to A.

This concludes the proof of Lemma 3.4.5, and thus of Proposition 3.4.4. ¤

3.5. Turning Serre fibrations into bundles

Proposition 3.5.1. (c) The functors

ñ : sC
≃
−→ sC̃•

and ñ : hC
≃
−→ hC̃•, given by inclusion of 0-simplices, are homotopy equivalences.

(d) The functors

n : sD
≃
−→ sD•

and n : hD
≃
−→ hD•, given by inclusion of 0-simplices, and the full embeddings

v : sD•
≃
−→ sD̃•

and v : hD•
≃
−→ hD̃•, are homotopy equivalences.

In fact, these are degreewise homotopy equivalences, if we interpret sC, hC, sD
and hD as constant simplicial categories.
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Proof. We prove that the functors ñ : sC → sC̃q, ñ = vn : sD → sD̃q and v : sDq →

sD̃q are homotopy equivalences, and likewise for the h-prefixed cases. The propo-
sition then follows by the realization lemma, and the 2-out-of-3 property.

To each Serre fibration π : Z → ∆q of finite simplicial sets, we can associate the
preimage of the barycenter

Φ(Z) = Sd(π)−1(β) .

Then Φ defines functors sC̃q → sC, sD̃q → sD, hC̃q → hC and hD̃q → hD. For
if Z is non-singular, then so is Sd(Z) ∼= B(Z), and Φ(Z) is a simplicial subset
of Sd(Z), hence is non-singular. If f : Z → Z ′ over ∆q is a simple map, then
Sd(f) : Sd(Z) → Sd(Z ′) is simple by Proposition 2.3.3 (only the non-singular part
is needed for case (d)), so Φ(f) : Φ(Z) → Φ(Z ′) is simple by the pullback property.
If f : Z → Z ′ over ∆q is (just) a weak homotopy equivalence, then we use the
commutative square

Φ(Z) × ∆q t //

Φ(f)×id

²²

Z

f

²²

Φ(Z ′) × ∆q t′ // Z ′ ,

where t and t′ are simple by Proposition 2.7.6, and the 2-out-of-3 property, to
deduce that Φ(f) is also a weak homotopy equivalence.

We claim that Φ is homotopy inverse to ñ, in each of the four cases. The natural
simple map

t : Φ(Z) × ∆q → Z

over ∆q defines a natural transformation from ñΦ to the identity. It does not
simultaneously define a natural transformation from Φñ to id, since ñ is not a full
embedding. Instead, fix a morphism η : [0] → [q] in ∆. For any finite simplicial set
X we can restrict the simple map

t : Φ(X × ∆q) × ∆q → X × ∆q

(associated to Z = X ×∆q) along id× η : X → X ×∆q. The resulting simple map

η∗t : Φ(X × ∆q) → X

then defines a natural transformation from Φñ to the identity.

The functor v : sDq → sD̃q is a full embedding, so this case is easier. For π : Z →
∆q a Serre fibration of finite non-singular simplicial sets, let P (Z) = Φ(Z) × ∆q

(P for “product”). Then pr : P (Z) → ∆q is certainly a PL bundle after geometric

realization, so this defines a functor P : sD̃q → sDq. The simple map

t : P (Z) → Z

over ∆q then defines the two required natural transformations from vP and Pv to

the respective identity functors. The proof for v : hDq → hD̃q is the same. ¤
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Corollary 3.5.2. The inclusions of 0-simplices

ñ : sCh(X) → sC̃h
•(X)

and

ñ : sDh(X) → sD̃h
•(X)

are homotopy equivalences.

Proof. This is clear by Proposition 3.3.1 and part of Proposition 3.5.1. See also
diagram (3.5.4) below. ¤

Corollary 3.5.3. The full embeddings

v : sE• → sẼ•

and v : hE• → hẼ• are homotopy equivalences.

Proof. Combine Proposition 3.4.4 with the remaining part of Proposition 3.5.1. ¤

We can now prove the part of the stable parametrized h-cobordism theorem that
compares non-singular simplicial sets to PL Serre fibrations of polyhedra.

Proof of Theorem 1.2.6. There is a commutative diagram

(3.5.4) sDh(X) //

ñ

²²

sD
j

//

ñ

²²

hD

ñ

²²

sD̃h
•(X) //

r

²²

sD̃•

j
//

r

²²

hD̃•

r

²²

sẼh
•(|X|) // sẼ•

j
// hẼ•

where the rows are homotopy fiber sequences (based at the points represented by
X, X and |X|, respectively) by Proposition 3.3.1, and ñ = vn. In view of the com-

mutative diagram (3.1.8), the functor ñ ◦ r : sDh(X) → sẼh
•(|X|) of Theorem 1.2.6

equals the composite functor r◦ ñ at the left hand side. By Proposition 3.5.1(d) the

functors ñ : sD → sD̃• and ñ : hD → hD̃• (inclusion of 0-simplices) are homotopy

equivalences. By Proposition 3.4.4 the functors r : sD̃• → sẼ• and r : hD̃• → hẼ•

(polyhedral realization) are homotopy equivalences. Hence the middle and right
hand composite functors r ◦ ñ in (3.5.4) are homotopy equivalences. By the homo-
topy fiber property, it follows that also the left hand composite r ◦ ñ is a homotopy
equivalence. ¤

Remark 3.5.5. Case (d) of Proposition 3.3.1, and thus of Lemma 3.2.9, was not
really needed for the above proof, since we did not need to know that the middle
row is a homotopy fiber sequence. That the top row is a homotopy fiber sequence
follows from Propositions 3.3.1(c) and 3.1.14, see diagram (3.1.15). The claim for
the bottom row follows from Proposition 3.3.1(e).
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3.6. Quillen’s Theorems A and B

For the reader’s convenience, we recall Quillen’s Theorems A and B from [Qu73,
§1] and their variants for simplicial categories, Theorems A′ and B′ from [Wa82, §4].
We state the versions for right fibers. In each case there is also a dual formulation
in terms of left fibers. We also recall the realization lemma from [Se74, App. A].

Definition 3.6.1. Let A and B be categories and f : A → B a functor. For each
object Y of B, let the right fiber Y/f of f at Y be the category of pairs (X, b)
where X is an object of A and b : Y → f(X) is a morphism in B. A morphism in
Y/f from (X, b) to (X ′, b′) is a morphism a : X → X ′ in A such that b′ = f(a) ◦ b.

X
a //

_

f

²²

X ′
_

f

²²

Y
b // f(X)

f(a)
// f(X ′)

Dually, let the left fiber f/Y be the category of pairs (X, b) where X is an
object of A and b : f(X) → Y is a morphism in B. A morphism in f/Y from (X, b)
to (X ′, b′) is a morphism a : X → X ′ in A such that b = b′ ◦ f(a).

Theorem 3.6.2 (Quillen’s Theorem A). Let f : A → B be a functor. If the
right fiber Y/f is contractible for every object Y of B, then f is a homotopy equiv-
alence.

Definition 3.6.3. For each morphism β : Y → Y ′ in B, let the transition map
β∗ : Y ′/f → Y/f be the functor that takes (X ′, b′) to (X ′, b′ ◦ β).

X ′
_

f

²²

Y
β

// Y ′ b′ // f(X)

Dually, let the transition map β∗ : f/Y → f/Y ′ of left fibers be the functor that
takes (X, b) to (X,β ◦ b).

There is a canonical functor Y/f → A that takes (X, b) to X. We write Y/B for
the right fiber of idB at Y . This category has the initial object (Y, idY ), hence is
contractible. There is a functor Y/f → Y/B that takes (X, b) to (f(X), b), and the
canonical functor Y/B → B takes (Y, b : Y → Y ′) to Y ′. Together with f , these
functors form the commutative square in the following result.

Theorem 3.6.4 (Quillen’s Theorem B). Let f : A → B be a functor. If the
transition map β∗ : Y ′/f → Y/f is a homotopy equivalence for every morphism
β : Y → Y ′ in B, then for any object Y of B the commutative square

Y/f //

²²

A

f

²²

Y/B // B
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is homotopy cartesian. The term Y/B is contractible.

Quillen’s Theorems A and B are proved in [Qu73, pp. 93–99].

Remark 3.6.5. The conclusions of these theorems (to the eyes of homology with
local coefficients) can be deduced from the spectral sequence of Theorem 3.6 in
[GZ67, App. II], using Paragraph 3.5 and Remark 3.8 of loc. cit., respectively.

Definition 3.6.6. Let A• and B• be simplicial categories and f : A• → B• a
simplicial functor. By an object of B• we mean a pair ([q], Y ), where q ≥ 0 and Y
is an object of Bq. For each object ([q], Y ) of B• let the right fiber

([q], Y )/f

of f at ([q], Y ) be the simplicial category

[n] 7→
∐

ϕ : [n]→[q]

ϕ∗Y/fn .

Here the coproduct (disjoint union of categories) is indexed by the set of morphisms
ϕ : [n] → [q] in ∆, and ϕ∗Y/fn is the right fiber at ϕ∗Y of the functor fn : An → Bn.

Dually, in degree n the left fiber f/([q], Y ) is the coproduct over all ϕ : [n] → [q]
of the left fibers fn/ϕ∗Y .

Theorem 3.6.7 (Theorem A′). Let f : A• → B• be a simplicial functor. If
the right fiber ([q], Y )/f is contractible for every object ([q], Y ) of B•, then f is a
homotopy equivalence.

Definition 3.6.8. For each morphism β : Y → Y ′ in Bq, in degree q, let the
transition map (of the first kind) be the simplicial functor

([q], β)∗ : ([q], Y ′)/f → ([q], Y )/f

given in degree n by the coproduct over all morphisms ϕ : [n] → [q] in ∆ of the
transition maps

(ϕ∗β)∗ : ϕ∗Y ′/fn → ϕ∗Y/fn .

Here ϕ∗β : ϕ∗Y → ϕ∗Y ′ in Bn.
For each morphism α : [p] → [q] in ∆, let the transition map (of the second

kind) be the simplicial functor

α∗ : ([p], α∗Y )/f → ([q], Y )/f

that in degree n takes the ϕ-summand to the αϕ-summand by the identity functor

id : ϕ∗α∗Y/fn → (αϕ)∗Y/fn ,

for each morphism ϕ : [n] → [p] in ∆.
Dually, there are transition map ([q], β)∗ : f/([q], Y ) → f/([q], Y ′) (of the first

kind) and α∗ : f/([p], α∗Y ) → f/([q], Y ) (of the second kind) of left fibers.

We write ([q], Y )/B• for the right fiber of idB• at the object ([q], Y ) in B•. In de-
gree n it is the coproduct of the categories ϕ∗Y/Bn, over all morphisms ϕ : [n] → [q],
each of which has an initial object and is therefore contractible. Hence ([q], Y )/B•

receives a homotopy equivalence from the q-simplex ∆q, considered as a simplicial
category in a trivial way, and is therefore contractible.

There is a canonical simplicial functor ([q], Y )/f → A•, induced in degree n from
the functors ϕ∗Y/fn → An, and similarly for ([q], Y )/B• → B•. There is also a
simplicial functor ([q], Y )/f → ([q], Y )/B• that in degree n is the coproduct of the
usual functors ϕ∗Y/fn → ϕ∗Y/Bn.
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Theorem 3.6.9 (Theorem B′). Let f : A• → B• be a simplicial functor. If
all transition maps (of the first and the second kind) of right fibers are homotopy
equivalences, then for any object ([q], Y ) in B• the commutative square

([q], Y )/f //

²²

A•

f

²²

([q], Y )/B•
// B•

is homotopy cartesian.

Theorems A′ and B′ are deduced from Quillen’s Theorems A and B in [Wa82,
§4], using [Th79] and [Se74].

We also recall from [Wa82, §4] the following useful addendum. An object Y
of Bq will be said to be 0-dimensional up to isomorphism if there exists an
object Z of B0 and an isomorphism Y ∼= ǫ∗Z in Bq, where ǫ : [q] → [0] is the unique
morphism in ∆.

Addendum 3.6.10. If every object of B• is 0-dimensional up to isomorphism,
then the hypothesis of Theorem A′, resp. of Theorem B′, needs only be checked in
the case q = 0.

Proof. Suppose that Y = ǫ∗Z in Bq, with Z in B0 and ǫ : [q] → [0]. Then ϕ∗Y =
(ǫϕ)∗Z is independent of ϕ : [n] → [q], so

([q], Y )/f ∼= ∆q × ([0], Z)/f

and the transition map ǫ∗ : ([q], Y )/f → ([0], Z)/f is a homotopy equivalence. It
follows that if every object of B is isomorphic to one of the form ǫ∗Z, with Z in
degree 0, then every right fiber of f is homotopy equivalent to one of the form
([0], Z)/f .

For Y = ǫ∗Z as above, and any morphism α : [p] → [q] in ∆, we have just
seen that ǫ∗α∗ = (ǫα)∗ and ǫ∗ are homotopy equivalences, so α∗ : ([p], α∗Y )/f →
([q], Y )/f is a homotopy equivalence by the 2-out-of-3 property. It follows that if
every object of B is 0-dimensional up to isomorphism, then every transition map
of the second kind is a homotopy equivalence.

Let β : Y → Y ′ be any morphism in Bq, and let η : [0] → [q] be any morphism
in ∆. We have a commutative square

([0], η∗Y ′)/f
([0],η∗β)∗

//

η∗

²²

([0], η∗Y )/f

η∗

²²

([q], Y ′)/f
([q],β)∗

// ([q], Y )/f .

Still assuming that every object of B is 0-dimensional up to isomorphism, we have
just seen that the vertical transition maps η∗ are homotopy equivalences. Hence
every transition map of the first kind is homotopy equivalent to one of the form
([0], β′)∗, where β′ is a morphism in B0. ¤
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The expression for the right fiber ([0], Z)/f simplifies to the simplicial category

[q] 7→ ǫ∗Z/fq .

Elsewhere in this paper, when the addendum applies, we sometimes simply write
Z/f for ([0], Z)/f . Our Lemmas 3.3.6 and 3.3.7 exhibit a more subtle situation
in which one can reduce to checking the hypotheses of Theorem B′ in simplicial
degree 0, even if Addendum 3.6.10 does not apply.

Recall that a bisimplicial set

Z•,• : [p], [q] 7→ Zp,q

can be viewed as a simplicial object X• : [p] 7→ Xp in the category of simplicial
sets, where Xp is the simplicial set Zp,• : [q] 7→ Zp,q, for each p ≥ 0. The geometric
realization of X• equals the geometric realization of Z•,•, and is isomorphic to the
geometric realization of the diagonal simplicial set diag(Z)• : [p] 7→ Zp,p.

The following result is known as the “realization lemma”.

Proposition 3.6.11. Let f : X• → Y• be a map of bisimplicial sets, viewed as
simplicial objects in the category of simplicial sets. If each map fp : Xp → Yp is a
weak homotopy equivalence, for p ≥ 0, then f is a weak homotopy equivalence.

Proof. This is effectively proved in [Se74, App. A]. For the simplicial space [p] 7→
|Xp| is good in the sense of Definition A.4 of loc. cit., since each degeneracy operator
[p] → [n] admits a section, hence induces a split injection Xn → Xp of simplicial
sets, and thus induces a closed cofibration |Xn| → |Xp| upon geometric realization.
The same applies to [p] 7→ |Yp|, so the result follows from Proposition A.1(ii)
and (iv) of loc. cit., which establishes the following commutative diagram:

‖X•‖
‖f‖

≃
//

≃

²²

‖Y•‖

≃

²²

|X•|
|f |

// |Y•|

A key step in Segal’s proof of Proposition A.1(iv) uses a union theorem (or gluing
lemma) for closed cofibrations, which in turn is proved in [Li73]. ¤
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4. The manifold part

In this part, let ∆q denote the standard affine q-simplex. All polyhedra will
be compact, and all manifolds considered will be compact PL manifolds, usually
without further mention.

4.1. Spaces of PL manifolds

The aim of this section is to reduce the proof of the manifold part of the stable
parametrized h-cobordism theorem, Theorem 1.1.7, to a result about spaces of
stably framed manifolds, Theorem 4.1.14, which will be proved in the following two
sections.

Definition 4.1.1. Let P be a compact polyhedron. By a family of manifolds
parametrized by P we shall mean a PL bundle (= PL locally trivial family)
π : E → P whose fibers Mp = π−1(p) are compact PL manifolds. A map of such
families is a PL bundle map over P .

We shall define a space of manifolds as a simplicial set, with families of manifolds
parametrized by ∆q as the q-simplices. To properly compare this space with a space
of polyhedra, we might either equip the polyhedra with tangential information, or
else arrange that the manifolds have no tangent bundle, that is, to work with
framed manifolds. Another way, which is equivalent to the latter one in the stable
range that we will consider, is to arrange that all the manifolds are embedded with
codimension zero in Euclidean space. Which of these alternatives to choose is a
matter of convenience — we have chosen to work with stable framings.

We rely on [Mi64], [HP64], [HW65] and [KL66] for the theory of PL microbundles.

Definition 4.1.2. Let M be a manifold of dimension n. A stable framing of M
is an equivalence class of isomorphisms

τM ⊕ ǫk ∼=
−→ ǫn+k

of PL microbundles, where τM is the tangent microbundle of M and ǫk is a stan-
dard trivial k-bundle. The equivalence relation is generated by the rule that the
isomorphism above may be replaced with the isomorphism

τM ⊕ ǫk+1 ∼=
−→ ǫn+k+1 ,

obtained by Whitney sum with ǫ1.
By a stably framed family of manifolds parametrized by P we shall mean

a family of manifolds π : E → P such that for each p ∈ P the fiber manifold
Mp = π−1(p) is stably framed, and these stable framings, i.e., the PL microbundle
isomorphisms above, vary in a PL manner with the point p.

A codimension zero PL embedding f : M → N , or more generally, a codimension
zero PL immersion, induces a PL microbundle isomorphism τM

∼= f∗τN , so a stable
framing of N pulls back along f to determine a stable framing of M . We say that
such a map f is stably framed if M and N are stably framed and the given stable
framing of N pulls back along f to the given stable framing of M .

Note that a stable framing of a manifold M can induce one of its boundary ∂M ,
even in parametrized families. To justify this, one uses the contractibility of the
space of collars on the boundary (see the note after Definition 1.1.1).
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Definition 4.1.3. The space of stably framed n-manifolds Mn
• is defined as

the simplicial set whose q-simplices are the stably framed families of n-manifolds
parametrized by ∆q. Similarly, hMn

• is defined as the simplicial category whose
objects in simplicial degree q are the same as the q-simplices of Mn

• , and whose
morphisms in simplicial degree q are the PL bundle maps over ∆q that are also
homotopy equivalences.

There are stabilization maps σ : Mn
• → Mn+1

• and σ : hMn
• → hMn+1

• , defined
by multiplying each manifold bundle with the fixed closed interval J . There is a
natural inclusion j : Mn

• → hMn
• , which commutes with the stabilization maps.

Recall the PL h-cobordism space HPL(M) and its stabilization HPL(M), from
Definitions 1.1.1 and 1.1.2, together with their collared versions HPL(M)c and
HPL(M)c. The forgetful maps HPL(M)c → HPL(M) and HPL(M)c → HPL(M)
are weak homotopy equivalences. To get a natural map from HPL(M) to Mn

• ,
for n = dim(M × I), it will be convenient to introduce a third model for the h-
cobordism space, weakly equivalent to the other two, where we have also chosen a
stable framing of the collared h-cobordisms.

Definition 4.1.4. For a stably framed manifold M , let H(M)f = HPL(M)f be
the space of collared, stably framed PL h-cobordisms on M . A 0-simplex is a PL
h-cobordism W on M , with a collar c : M × I → W , together with a stable framing
of W that restricts via c to the product stable framing of M × I. A q-simplex
is a PL bundle of stably framed h-cobordisms over ∆q, relative to the embedded
product bundle pr : M × I × ∆q → ∆q.

Each stably framed codimension zero embedding M → M ′ induces a map
H(M)f → H(M ′)f that takes W to the h-cobordism W ′ = M ′ × I ∪M×I W ,
with the stable framing that restricts to the product stable framing of M ′ × I and
the given stable framing of W .

There is a natural stabilization map σ : H(M)f → H(M × J)f , which takes the
stable framing of W to the product stable framing of W ×J . Since c is a homotopy
equivalence, the natural forgetful maps H(M)f → H(M)c and

H
PL(M)f = colim

k
HPL(M × Jk)f → H

PL(M)c

are both weak homotopy equivalences.

The following result is similar to the approximate homotopy fiber sequence

H(M) → P
m
0 (M) → hP

m
0 (M)

from [Wa82, Prop. 5.1], valid for a range of homotopy groups that grows like the
dimension of M . This is the case k = 0 (no handles), so the handle index m plays
no role. See also [Wa87b, Exer.], in connection with Proposition 4.1.15.

Proposition 4.1.5. Let M be a stably framed compact PL manifold. There is a
natural homotopy fiber sequence

H
PL(M)f → colim

n
M

n
•

j
−→ colim

n
hM

n
•

based at M .
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Proof. The argument has two parts. First, we shall use the simplicial form, The-
orem B′, of Quillen’s Theorem B to prove that there is a natural homotopy fiber
sequence

M/j → colim
n

M
n
•

j
−→ colim

n
hM

n
•

based at M . Thereafter, we will show that there is a natural weak homotopy
equivalence

H
PL(M)f ≃

−→ M/j .

We begin by verifying that Theorem 3.6.9 (= Theorem B′) and Addendum 3.6.10
apply to the unstabilized functor

j : M
n
• → hM

n
• .

The addendum applies because each PL bundle π : E → ∆q of stably framed n-
manifolds is isomorphic to a product bundle of the same kind.

Let N be any stably framed n-manifold, viewed as an object of hMn
0 . The right

fiber N/j = ([0], N)/j is the simplicial set of stably framed n-manifolds V with a
PL homotopy equivalence g : N → V , and similarly in parametrized families. So a
q-simplex of N/j is a PL bundle map and homotopy equivalence e : N × ∆q → E
of stably framed manifold families over ∆q.

Let β : N → N ′ be any morphism in hMn
0 , i.e., a PL homotopy equivalence. Let

β′ : N ′ → N be a PL homotopy inverse map. To show that the transition map
β∗ : N ′/j → N/j is a homotopy equivalence, it suffices to show that the transition
maps (β′β)∗ and (ββ′)∗ are homotopy equivalences. Hence it suffices to consider
the case N = N ′, and to show that any PL homotopy β ≃ id : N → N induces a
homotopy of transition maps β∗ ≃ id : N/j → N/j.

Let H : ∆1 ×N → N be a PL homotopy from β to id. Then there is a simplicial
homotopy

H∗ : ∆1 × N/j → N/j

from β∗ to id that to each morphism α : [q] → [1] in ∆ and q-simplex e : N×∆q → E
of N/j associates the q-simplex of N/j given by pullback along (α, id) : ∆q →
∆1 × ∆q of the composite PL bundle map

∆1 × N × ∆q (pr,H)×id
−−−−−−→ ∆1 × N × ∆q id×e

−−−→ ∆1 × E

over ∆1 × ∆q. Cf. [Wa85, p. 335] for more on this way of describing simplicial
homotopies. Each of (pr,H) × id and id × e is a fiberwise homotopy equivalence,
so the pullback over ∆q is also a homotopy equivalence, and defines a q-simplex
of N/j.

Thus, by Theorem B′ there is a homotopy fiber sequence N/j → Mn
•

j
−→ hMn

•

based at N . Letting N range through the stably framed manifolds M × I × Jk, for
k ≥ 0, the resulting homotopy fiber sequences are compatible under the stabilization
maps. Their colimit is a homotopy fiber sequence

colim
k

(M × I × Jk)/j → colim
n

M
n
•

colimn j
−−−−−→ colim

n
hM

n
•

based at M . Abbreviating the stabilized functor colimn j to j, we have the asserted
homotopy fiber sequence.
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For the second part, we use the natural (forgetful) map

ϕf : H(M × Jk)f → (M × I × Jk)/j

that to a collared, stably framed h-cobordism (W, c) on M × Jk associates the
same pair (W, c), where now W is viewed as a stably framed manifold, and c : M ×
I × Jk → W is viewed as a PL homotopy equivalence. We shall prove that the
stabilized map

(4.1.6) colim
k

ϕf : H
PL(M)f → colim

k
(M × I × Jk)/j

is a weak homotopy equivalence. For brevity, we will write N = M × I × Jk,
with the stable framing obtained by stabilization from the given one of M . Let
d = dim(M) and n = dim(N), so n = d + 1 + k.

We have a commutative square

(4.1.7) H(M × Jk)f
ϕf

//

≃

²²

N/j = {g : N
≃
−→ V , τV stably trivial}

≃

²²

H(M × Jk)c
ϕ

// {g : N
≃
−→ V , g∗τV stably trivial} .

The lower right hand space is the simplicial set with 0-simplices consisting of n-
manifolds V with a PL homotopy equivalence g : N → V and a stable trivialization
of the pullback g∗τV of the tangent microbundle of V . Note that N and V have
the same dimension. The q-simplices consist of PL bundles over ∆q of the same
kind of data.

The upper horizontal map ϕf was described above, the left hand vertical map
is the weak homotopy equivalence that forgets the stable framing, and the right
hand vertical map pulls the stable trivialization of τV back along g to give a stable
trivialization of g∗τV . It is a weak homotopy equivalence because g is a homotopy
equivalence, and stable trivializations are given in terms of PL microbundle data.
The lower horizontal map ϕ takes a collared h-cobordism (W, c) on M × Jk to
(V, g) = (W, c), with the stable trivialization of c∗τW that is determined by the
fixed stable trivialization of τN and the PL microbundle isomorphism ĉ : τN

∼= c∗τW

induced by the PL embedding c : N → W .
In the remainder of the proof, we shall show that ϕ in (4.1.7) is homotopic to

a composite of five maps, each of which becomes arbitrarily highly connected as k
grows to infinity. Hence colimk ϕ is a weak equivalence, which will finish the proof.

H(M × Jk)c //

(1)

²²

{g : N
≃
−→ V , g∗τV stably trivial}

H(∂N)c

(2)≃

²²

{g : N
≃
−→ V , ĝ : τN

∼= g∗τV }

(5)

OO

{PL embeddings f : N
≃
−→ V }

(3)
// {PL immersions f : N

≃
−→ V }

(4) ≃

OO
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The first two maps involve fixed embeddings e1 : N → ∂N ×I and e2 : ∂N ×I →
N , which are illustrated in Figure 1. The arrows labeled N indicate the part of
the figure that lies between the parallel lines extending the line segments meeting
the arrowheads, i.e., the product of M × Jk and I. Similarly, the arrows labeled
V indicate the whole of the figure. There are two copies of ∂N visible here; it
should be clear from the context which copy is intended. In the notation H(∂N)c

we always mean the (inner) copy of ∂N that is indicated by the dashed arrows.

W

e1(N)

M × Jk

I

e2(∂N × I)

N

V

∂N

Figure 1. The collared h-cobordism c : N → W and the PL embedding
f : N → V , with N = M × I × Jk

The codimension zero embedding M×Jk ∼= M×1×Jk ⊂ ∂N is (k−1)-connected,
and extends to an embedding e1 : N = M × I × Jk → ∂N × I. It induces the first
map

H(M × Jk)c (1)
−−→ H(∂N)c ,

which takes a collared h-cobordism c : N → W to the collared h-cobordism

c′ : ∂N × I → W ′ := ∂N × I ∪N W ,

where the pushout is formed along e1 and c. By Burghelea–Lashof–Rothenberg
[BLR75, Thm 3.1′] (a consequence of Morlet’s disjunction lemma, see (1.1.12) for
the translation from concordance spaces to h-cobordism spaces), this map is (k−2)-
connected. This connectivity grows to infinity with k.

The second map

H(∂N)c (2)
−−→ {PL embeddings f : N

≃
−→ V }

takes H(∂N)c to the space of codimension zero PL embeddings f : N → V that are
homotopy equivalences. It sends a collared h-cobordism c′ : ∂N × I → W ′ on ∂N
to the map

f : N → V := N ∪∂N×I W ′ .
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Here e2 : ∂N × I → N is an internal collar on the boundary ∂N ⊂ N .
Conversely, for any such PL embedding f the target V can be decomposed as a

union N ∪∂N×I W ′, where ∂N × I → W ′ is a collar on the boundary component
∂N ⊂ ∂W ′ in W ′. For k ≥ 2 we claim that this makes W ′ a collared h-cobordism
on ∂N . The argument is similar to that in Remark 1.1.3. There is an interior
embedding M → M × I × Jk = N of codimension ≥ 3, such that the complement
of the image of M deformation retracts to ∂N . Hence, by general position, the
inclusions ∂N ⊂ N and W ′ ⊂ V are π1-isomorphisms. The assumption that
f : N → V is a homotopy equivalence, and excision, then ensure that ∂N → W ′ is a
π1-isomorphism, as well as a homology isomorphism with arbitrary local coefficients.
By the universal coefficient theorem, and Lefschetz duality, it follows that W ′ is an
h-cobordism on ∂N . Hence, for k ≥ 2 the second map is in fact an isomorphism.

The third map

{PL embeddings f : N
≃
−→ V }

(3)
−−→ {PL immersions f : N

≃
−→ V }

includes the space of codimension zero PL embeddings f : N → V that are homo-
topy equivalences into the corresponding space of codimension zero PL immersions
that are homotopy equivalences. Since N = M × I × Jk, N admits a handle
decomposition with all handles of index ≤ dim(M) = d, and V has dimension
n = dim(N) = d + 1 + k, so by general position for handle cores this inclusion is
(k−d)-connected. Thus the connectivity of the third map grows to infinity with k.

The fourth map is the “differential”

{PL immersions f : N
≃
−→ V }

(4)
−−→ {g : N

≃
−→ V , ĝ : τN

∼= g∗τV }

from the space of codimension zero PL immersions f : N → V that are homotopy
equivalences to the space of PL homotopy equivalences g : N → V of n-manifolds,
with a PL microbundle isomorphism ĝ : τN

∼= g∗τV . It takes the PL immersion f

to the pair (g, ĝ) = (f, f̂), where f is viewed as a PL map, and f̂ : τN
∼= f∗τV is the

induced PL microbundle isomorphism. By PL immersion theory [HP64, §2], this
map is a weak homotopy equivalence. To apply immersion theory in codimension
zero, as we are doing, we need to know that N = M × I × Jk has no closed
components, but this is clear. The usual formulation of immersion theory does not
refer to f and g being homotopy equivalences, but these conditions just amount
to restricting the immersion theory equivalence to some of the path components.
Hence the fourth map is a weak homotopy equivalence.

The fifth map

{g : N
≃
−→ V , ĝ : τN

∼= g∗τV }
(5)
−−→ {g : N

≃
−→ V , g∗τV stably trivial}

takes the PL microbundle isomorphism ĝ to the associated stable isomorphism.
When combined with the given stable framing of N , this specifies a stable trivi-
alization of g∗τV . For each g, the space of PL microbundle isomorphisms ĝ can
be identified with the space of sections in a principal PLn-bundle over N , whereas
the space of stable isomorphisms can be identified with the space of sections in
the associated principal PL-bundle over N . By PL stability [HW65, Thm. 2] the
stabilization map PLn → PL is (n − 1)-connected, and N ≃ M has the homotopy
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type of a d-dimensional CW complex, with n = d + 1 + k. So the fifth map is at
least k-connected, and this connectivity clearly grows to infinity with k.

There is a homotopy from the composite of these five maps to the lower horizontal
map ϕ in (4.1.7), induced by an isotopy from the composite embedding e2e1 : N →
N to the identity. Hence the connectivity of ϕ becomes arbitrarily large as k grows,
and the stabilized map (4.1.6) is, indeed, a weak homotopy equivalence. ¤

Recall from Definition 1.1.4 that a PL map of compact polyhedra is simple if all
its point inverses are contractible, and from Proposition 2.1.3 that the composite
of two simple PL maps is again simple.

Definition 4.1.8. Let sE• be the simplicial category of compact PL bundles
π : E → ∆q and their simple PL bundle maps, in simplicial degree q. Similarly,
let hE• be the simplicial category with the same objects as sE•, but with PL bun-
dle maps over ∆q that are homotopy equivalences as the morphisms, in simplicial
degree q.

There are stabilization maps σ : sE• → sE• and σ : hE• → hE•, given by product
with the standard interval J , and a natural inclusion j : sE• → hE•.

Definition 4.1.9. Let sẼ• be the simplicial category of compact PL Serre fibra-
tions π : E → ∆q and simple PL fiber maps over ∆q, in simplicial degree q. Simi-

larly, let hẼ• be the simplicial category with the same objects as sẼ•, but with PL
homotopy equivalences over ∆q as the morphisms, in simplicial degree q.

There are stabilization maps σ : sẼ• → sẼ• and σ : hẼ• → hẼ•, given as before,

and a natural inclusion j : sẼ• → hẼ•. There are full embeddings v : sE• ⊂ sẼ• and

v : hE• ⊂ hẼ• that view PL bundles as PL Serre fibrations. The functors j and v
commute with one another, and with the stabilization maps σ.

The simplicial category sẼh
•(K) was introduced in Definition 1.1.5. There are

forgetful maps

HPL(M)f ≃
−→ HPL(M)c u

−→ sẼh
•(M × I) ,

where u was introduced in Definition 1.1.6. We will also write u for the composite
map.

Proposition 4.1.10. Let K be a compact polyhedron. There is a homotopy fiber
sequence

sẼh
•(K) → sẼ•

j
−→ hẼ•

based at K.

This was proved as part of Proposition 3.3.1.

Proposition 4.1.11. The vertical maps in the commutative square

sE•
j

//

v≃

²²

hE•

v≃

²²

sẼ•

j
// hẼ•

are homotopy equivalences. Hence the homotopy fiber of j : sE• → hE• at K is

homotopy equivalent to the homotopy fiber of j : sẼ• → hẼ• at K.

This was proved as Corollary 3.5.3, following from Propositions 3.4.4 and 3.5.1.
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Lemma 4.1.12. The stabilization maps σ : sẼ• → sẼ•, σ : hẼ• → hẼ• and

σ : sẼh
•(K) → sẼh

•(K × J)

are all homotopy equivalences. Hence so are the maps σ : sẼ• → colimn sẼ•,

σ : hẼ• → colimn hẼ• and

σ : sẼh
•(K) → colim

k
sẼh

•(K × I × Jk) .

Proof. The projection pr : K × J → K is a simple PL map, hence gives a natural

transformation from σ : sẼ• → sẼ• to the identity functor. Thus σ is homotopic to

the identity map. The case of hẼ• is similar, and the case of sẼh
•(K) then follows

from the homotopy fiber sequence of Proposition 4.1.10. The remaining conclusions
follow by iteration. We permit stabilizing by I once, in place of J , to pass from K
to K × I. ¤

We can now outline the proof of the manifold part of the stable parametrized
h-cobordism theorem.

Proof of Theorem 1.1.7, assuming Theorem 4.1.14 and Proposition 4.1.15. By the
reduction made in Remark 1.1.8, we may assume that M is a stably framed mani-

fold. The forgetful map u : Mn
• → sẼ• factors as the composite

M
n
•

w
−→ sE•

v
−→ sẼ• ,

where w forgets the stable framing and manifold structure, and v views PL bundles
as PL Serre fibrations. There is a similar factorization u = vw with h-prefixes.
Consider the commutative diagram:

(4.1.13) HPL(M)f //

u

²²

colimn Mn
•

j
//

w

²²

colimn hMn
•

w

²²

colimn sE•
j

//

v

²²

colimn hE•

v

²²

colimk sẼh
•(M × I × Jk) // colimn sẼ•

j
// colimn hẼ•

sẼh
•(M) //

σ

OO

sẼ•

j
//

σ

OO

hẼ•

σ

OO

The vertical maps labeled v and σ are homotopy equivalences, by Proposition 4.1.11
and Lemma 4.1.12. The three complete rows are homotopy fiber sequences based
at M , by Proposition 4.1.5 and Proposition 4.1.10. In each case the implicit null-
homotopy of the composite map is given by the relevant structure map, i.e., a
collar in an h-cobordism or a PL embedding and homotopy equivalence, so the
homotopy fiber structures are compatible. To prove that the left hand vertical map
u is a homotopy equivalence, it therefore suffices to show that the middle and right
hand vertical maps w have this property. This is the content of the following two
results. ¤
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Theorem 4.1.14. The forgetful map

w : colim
n

M
n
• → colim

n
sE•

is a homotopy equivalence.

This theorem is really the main geometric ingredient of the manifold part of
the stable parametrized h-cobordism theorem, and will be proved in the next two
sections. In contrast, the h-prefixed case is nearly trivial.

Proposition 4.1.15. The forgetful map

w : colim
n

hM
n
• → colim

n
hE•

is a homotopy equivalence.

Proof. We apply Theorem 3.6.7 (Theorem A′) and Addendum 3.6.10. The adden-
dum applies because each PL bundle of polyhedra over a simplex is isomorphic to
a product bundle. This time we emphasize left fibers. Let K be any object of hE0,
i.e., a polyhedron. Then K embeds in some Euclidean n-space as a deformation
retract of a regular neighborhood N , which is an object of hMn

0 . The transition
maps of left fibers induced by K ⊂ N → K show that the left fiber w/K is a retract
of the left fiber w/N . The latter is a simplicial category with a terminal object in
each degree, namely the identity map of the product bundle with fiber N , and is
therefore contractible. The proposition follows, by the cited Theorem A′. ¤

4.2. Spaces of thickenings

To prove Theorem 4.1.14, that w : colimn Mn
• → colimn sE• is a homotopy equiv-

alence, we will again employ the simplicial variant Theorem A′ of Quillen’s Theo-
rem A. In this section we shall write colimn w for this functor, for emphasis, and
we will essentially recognize its homotopy fiber as a stabilized space of thickenings.
In the following section we shall show that this stabilized space is contractible.

Definition 4.2.1. Let K be a compact polyhedron. We define the space Sn(K)
of stably framed simple n-manifolds over K as a simplicial set. By a simple n-
manifold over K we mean a compact PL n-manifold M with a simple PL map
u : M → K. If M is also equipped with a stable framing, then we call this a stably
framed simple n-manifold over K. Let Sn

0 (K) denote the set of stably framed
simple n-manifolds over K.

More generally, for a compact polyhedron P we can consider a family of stably
framed simple n-manifolds over K parametrized by P , meaning a stably framed
family of manifolds π : E → P parametrized by P , together with a simple PL map
to K × P over P . In simplicial degree q let Sn

q (K) be the set of stably framed
simple n-manifolds over K parametrized by ∆q, i.e., the commutative diagrams

E
u

≃s

//

π
&&LLLLLLLLLLLL K × ∆q

pr
xxrrrrrrrrrrr

∆q
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where π : E → ∆q is a stably framed family of manifolds parametrized by ∆q, and
u : E → K × ∆q is a simple PL map. For varying q, these sets assemble to the
simplicial set Sn(K).

There are stabilization maps σ : Sn(K) → Sn+1(K) given by taking u : M → K
to u◦pr : M ×J → K, and similarly for parametrized families. Here u◦pr remains
simple, because pr : M × J → M is a simple PL map. As usual, σ is a cofibration,
so colimn Sn(K) has the same homotopy type as the homotopy colimit.

The key fact that we need to establish is the following. We complete its proof
in the next section.

Proposition 4.2.2. For each compact polyhedron K, the space colimn Sn(K) is
weakly contractible.

Proof. This assertion will follow immediately from its translation into a correspond-
ing statement about spaces of thickenings, given in Lemma 4.2.5 and Theorem 4.3.1
below. Namely, the theorem implies that colimn Tn(K) is contractible, and the
lemma asserts that colimn Tn(K) is equivalent to colimn Sn(K). ¤

Before introducing the thickening spaces Tn(K), we show how to deduce from
Proposition 4.2.2 that colimn w is a homotopy equivalence. It is not quite the case
that colimn Sn(K) equals the left fiber of colimn w at K, so some maneuvering is
required.

Proof of Theorem 4.1.14, assuming Proposition 4.2.2. For this proof, we introduce
an auxiliary simplicial category MEn

• of (parametrized families of) n-manifolds map-
ping to polyhedra by simple PL maps. Let MEn

0 denote the category in which an
object is a simple PL map

u : M → K ,

where M is a stably framed n-manifold and K is a (now variable) compact poly-
hedron. A morphism from u : M → K to u′ : M → K ′ is a commutative square

M
u //

=

²²

K

g

²²

M
u′

// K ′

where g is a simple PL map. There is also a parametrized version of this category,
for each simplicial degree q, in which an object is given by a simple PL map

u : E → K × ∆q

over ∆q, with π : E → ∆q as in Definition 4.2.1, except that K is not fixed. A
morphism from u : E → K × ∆q to u′ : E → K ′ × ∆q is a commutative square

E
u //

=

²²

K × ∆q

g

²²

E
u′

// K ′ × ∆q

of simple PL bundle maps over ∆q. Thus we obtain a simplicial category MEn
• .
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There are forgetful functors

M
n
•

s
←− ME

n
•

t
−→ sE•

that take u : M → K to the source M and target K, respectively, and similarly
in higher simplicial degrees. The source functor s has a section i : Mn

• → MEn
•

given by mapping a stably framed n-manifold M to the identity map id : M → M ,
which is certainly a simple PL map to a polyhedron. But s is also a deformation
retraction, in view of the diagram

M

=

²²

= // M

u

²²

M
u // K

which defines a natural transformation from is to the identity functor of MEn
• .

There is a stabilization map σ : MEn
• → MEn+1

• given by taking u : M → K
to u ◦ pr : M × J → K, like for Sn

• (K). The functor s : MEn
• → Mn

• (but not its
homotopy inverse i) is compatible with stabilization, so

colim
n

s : colim
n

ME
n
• → colim

n
M

n
•

is a homotopy equivalence, since at the level of homotopy groups, π∗(colimn s) =
colimn π∗(s) is an isomorphism (for any choice of base point). It will therefore suffice
for us to prove that the composite functor colimn ws is a homotopy equivalence. The
functor w is compatible with the stabilization σ on sE•, while t is only compatible
with the identity stabilization on sE•. To deal with this difference, and to avoid a
homotopy coherence discussion, we will work at the level of homotopy groups.

There is a natural transformation

ws → t : ME
n
• → sE• ,

defined by the structural map of an object u : M → K of MEn
• . Hence ws and

t are homotopic, and π∗(ws) = π∗(t). There is also a natural transformation
σ → id : sE• → sE•, defined by the simple PL map pr : K × J → K. Hence σ and
id are homotopic, and π∗(σ) = id. Thus the two squares induced at the level of
homotopy groups by the two commuting squares

MEn
•

ws //

σ

²²

sE•

σ

²²

MEn+1
•

ws // sE•

and

MEn
•

t //

σ

²²

sE•

=

²²

MEn+1
•

t // sE•
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are equal. Hence the homomorphism

colim
n

π∗(ws) : colim
n

π∗(ME
n
• ) → colim

n
π∗(sE•)

(stabilization by σ in the source and target) is equal to the homomorphism

colim
n

π∗(t) : colim
n

π∗(ME
n
• ) → colim

n
π∗(sE•) = π∗(sE•)

(stabilization by σ in the source, by id in the target). Thus the functor colimn w
of the theorem is a homotopy equivalence if and only if the functor

colim
n

t : colim
n

ME
n
• → sE•

is a homotopy equivalence.
We apply Theorem 3.6.7 (Theorem A′) to colimn t. Each object of sE• is 0-

dimensional, up to isomorphism, so we may apply Addendum 3.6.10. In other
words, colimn t is a homotopy equivalence if its left fiber at each object K of sE0

is contractible. By unraveling the definitions, the left fiber t/K of t : MEn
• → sE•

at K is precisely the space Sn(K) of stably framed simple n-manifolds over K,
and the stabilization maps agree, so the left fiber of colimn t at K is colimn Sn(K).
Thus Proposition 4.2.2 implies Theorem 4.1.14. ¤

Remark 4.2.3. At first glance, one might hope to prove Proposition 4.2.2 by showing
that the connectivity of the spaces Sn(K) grows to infinity with n. However, this
is definitely not true. In the case K = ∗, a simple n-manifold M over ∗ is just a
contractible (compact PL) manifold. Poincaré duality implies that M is a homotopy
ball in the weak sense, i.e., the boundary ∂M has the homology of an (n − 1)-
sphere, but it is not necessarily simply-connected. Indeed, for n ≥ 5 many (perfect)
fundamental groups π1(∂M) arise in this way, so Sn(∗) is not even path-connected.
For this reason, it is apparently not possible to prove the stability theorem for PL
concordances (or h-cobordisms) by this method. Still, this pathology is an unstable
one, and can be avoided in the stable context by the refined definition below.

Definition 4.2.4. Let K be a compact polyhedron. We define the space Tn(K)
of stably framed n-manifold thickenings of K as a simplicial subset of Sn(K). An
n-manifold thickening of K shall consist of a compact PL n-manifold M and a
PL map u : M → K that is an unthickening map, in the sense that:

(1) u : M → K has contractible point inverses, i.e., is a simple PL map, and
(2) the restricted map u|∂M : ∂M → K has 1-connected point inverses.

(A 1-connected space is non-empty, path-connected and simply-connected, and con-
versely.)

By insisting that the manifold is stably framed, we obtain the notion of a stably
framed n-manifold thickening. These are the 0-simplices of Tn(K). By working
with parametrized families over affine simplices, we obtain the simplicial set Tn(K).
The stabilization map σ : Tn(K) → Tn+1(K) takes u : M → K to the thickening
u ◦ pr : M × J → K.

The word “thickening” has also been used with slightly different definitions else-
where in the literature. Our usage is similar to that of [Wl66, §1], but a little more
restrictive.
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Lemma 4.2.5. The inclusion

colim
n

Tn(K) → colim
n

Sn(K)

is an isomorphism, where the maps in the direct system are given by the stabilization
maps σ.

Together with Proposition 4.2.8 below, this makes precise how the problem dis-
cussed in Remark 4.2.3 goes away after stabilization. It will be proved after the
following two lemmas.

Lemma 4.2.6. A map g : X → Y of simplicial sets, whose geometric realiza-
tion has 1-connected point inverses |g|−1(p) for all p ∈ |Y |, induces a bijection
π0(g) : π0(X) → π0(Y ) and an isomorphism π1(g) : π1(X) → π1(Y ), for each choice
of base point in X.

Proof. This amounts to an elementary check in terms of the usual edge-path pre-
sentation of the fundamental group. In fact it suffices that |g|−1(p) is 1-connected
for each 0-simplex p in Y , that |g|−1(p) is path-connected for some p in the interior
of each 1-simplex of Y , and that |g|−1(p) is non-empty for some p in the interior
of each 2-simplex of Y . To prove, for example, that π1(g) is injective, consider a
closed loop γ of 1-simplices in X representing an element in the kernel of π1(g),
choose a null-homotopy of its image under g, and deform it to a disc of 2-simplices
in Y . Choose lifts in X of each of the 2-simplices occurring in this disc, choose
rectangles in X connecting the pairs of edges that were identified in Y , and choose
null-homotopies in X of the loops of rectangle edges that lie over vertices in Y .
These choices glue together to give a null-homotopy of the given closed loop γ. The
proofs of the remaining claims are easier, and will be omitted. ¤

Lemma 4.2.7. The composite fu of an unthickening map u : M → K with a
simple PL map f : K → L is again an unthickening map.

Proof. The composite fu is a composite of simple PL maps, and is therefore sim-
ple. For each point p ∈ L the restricted map u′ : (fu|∂M)−1(p) → f−1(p) has
1-connected point inverses, since u is an unthickening map, and the target f−1(p)
is contractible, since f is simple. Triangulating u′ by a map g : X → Y of simpli-
cial sets, we deduce from Lemma 4.2.6 that (fu|∂M)−1(p) is 1-connected, so fu is
indeed an unthickening map. ¤

Proof of Lemma 4.2.5. The projection pr : M × J3 → M is an unthickening map,
so composition with pr takes any simple PL map u : M → K in Sn(K) to an
unthickening map u ◦ pr : M × J3 → K in Tn+3(K), by Lemma 4.2.7. After
stabilization, the resulting maps Sn(K) → Tn+3(K) and Tn(K) ⊂ Sn(K) become
mutual inverses. ¤

In view of the lemma just proved, the following proposition implies the special
case K = ∗ of Proposition 4.2.2, and will be a basic building block in its proof.

Proposition 4.2.8. For n ≥ 6 the space Tn(∗) is the space of stably framed PL
n-balls, which is (n − 2)-connected.

Proof. An n-manifold thickening u : M → ∗ (of K = ∗) is the same as a contractible
n-manifold with 1-connected boundary, i.e., a homotopy n-ball in the strong sense.
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Provided that n ≥ 6 it is therefore an honest PL n-ball, in view of the h-cobordism
theorem of Smale. Therefore the space Tn(∗) of stably framed n-manifold thicken-
ings is the same as the space of PL n-balls with a stable microbundle trivialization,
which is a homotopy fiber of the map

BPL(Dn, ∂Dn) → BPL = colim
n

BPLn .

Here PL(Dn, ∂Dn) is the simplicial group of PL automorphisms of Dn that are not
required to fix the boundary, PLn is the simplicial group of germs (near 0) of PL
automorphisms of Rn, and PL = colimn PLn over the standard stabilization maps
σ : PLn → PLn+1. This space of stably framed PL n-balls is (n − 2)-connected.
We give some details, following Haefliger–Wall [HW65, §4].

The map PL(Dn, ∂Dn) → PL(Sn−1) that restricts a PL automorphism to the
boundary ∂Dn = Sn−1 is a homotopy equivalence, by the Alexander trick. Fur-
thermore, there is a homotopy commutative diagram

PL(Sn−1 rel s0) //

≃

²²

PL(Sn−1) //

²²

Sn−1

PLn−1
σ // PLn

σ // PL

where s0 ∈ Sn−1 is a base point, and the upper row is the fiber sequence that results
from evaluating each PL automorphism of Sn−1 at s0. The left hand vertical map
is a homotopy equivalence, by the PL version [KL66, Thm. 1] of the “microbundles
are fiber bundles” theorem of J. M. Kister and B. Mazur. The lower horizontal
maps are (n−2)-connected and (n−1)-connected, respectively, by the PL stability
theorem of Haefliger–Wall [HW65, Thm. 2]. Thus the composite map PL(Sn−1) →
PLn → PL is (n− 2)-connected, which just means that the space Tn(∗) is (n− 2)-
connected. ¤

4.3. Straightening the thickenings

Saving the best for last, we show in this section that the stabilized thickening
spaces are contractible. Let K be a compact polyhedron, and recall that Tn(K)
denotes the space of stably framed n-manifold thickenings of K.

Theorem 4.3.1. The space Tn(K) is at least (n − 2k − 6)-connected, where k is
the dimension of K.

The proof proceeds, essentially, by an induction on the dimension of the polyhe-
dron K. As is customary with such an inductive procedure, we have to generalize
it by putting it into a relativized form, so that, during the construction, we will be
able to keep track of things done previously. The generalization consists of working
relative to a subpolyhedron. For technical reasons, it is convenient to insist that
the polyhedron itself has a special structure relative to the subpolyhedron, namely
that it is a PL mapping cylinder.

Remark 4.3.2. We review the various mapping cylinders in the polyhedral context.
Let f : L → K be a PL map of compact polyhedra. The construction of the usual
mapping cylinder L × ∆1 ∪L K does not give a polyhedron, unless f is (locally)
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injective, so one must modify the construction. Following J. H. C. Whitehead
[Wh39], this can be done by first triangulating f by a simplicial map g : X → Y ,
and then building a PL mapping cylinder Wf by starting with the disjoint union
L

∐
K and inductively attaching a cone on s∪Wf |∂s ∪ f(s) for each affine simplex

s of L, in some order of increasing simplex dimension.
Here f(s) denotes the image of s under f , viewed as an affine simplex of K,

and f |∂s denotes the restricted map ∂s → f(∂s), from the boundary of s to its
image under f . These all inherit triangulations from g : X → Y . If s is the
geometric realization of a non-degenerate simplex x in X, then f(s) is the geometric
realization of the non-degenerate part g#(x) of g(x). If Z ⊂ X is the simplicial
subset generated by the proper faces of x, then f |∂s is triangulated by g|Z : Z →
g(Z).

Near the front end, Whitehead’s PL mapping cylinder Wf contains a copy of
the product L × ∆1, triangulated in such a way that it contains X and Sd(X) at
the two ends. M. Cohen [Co67, §4] gives a construction of the remaining piece
of Wf , denoted Cf , by starting with K and then inductively attaching a cone
on ∂s ∪ Cf |∂s ∪ f(s) for each affine simplex s of L, in some order of increasing
simplex dimension. At the front end, Cohen’s PL mapping cylinder Cf contains
a copy of L triangulated as Sd(X), and there is a canonical PL homeomorphism
Wf

∼= L × ∆1 ∪L Cf .
There is also a non-canonical PL homeomorphism Wf

∼= Cf [Co67, Cor. 9.4]. By
[Wh39, §10], there is a TOP homeomorphism Wf

∼= L×∆1∪L K relative to L
∐

K,
so there is also a TOP homeomorphism Cf

∼= L×∆1 ∪L K relative to L
∐

K, but
we shall not rely on these results.

As described, the PL mapping cylinders Wf and Cf depend on the chosen tri-
angulation g : X → Y of f : L → K. By [Co67, Prop. 9.5] the PL structure on Wf

and Cf is abstractly invariant under subdivision of g, but only up to non-canonical
isomorphism. Thus the PL isomorphism class of the PL mapping cylinders Wf and
Cf is well defined for a given PL map f : L → K, but the rule f 7→ Cf , of choosing
a representative in this isomorphism class, can not be made functorial.

There is a subdivision of Cf obtained by starring each non-degenerate simplex
in K ⊂ Cf at its barycenter. From its description in [Co67, p. 225], see also [Ak72,
p. 408], it equals the nerve of the partially ordered set of non-degenerate simplices
of X and Y , partially ordered by inclusion within X and Y , and by the relation
x > g#(x) between simplices in X and Y . This is precisely our reduced mapping
cylinder, in the backward version, of the normally subdivided map Sd(g) : Sd(X) →
Sd(Y ). In symbols:

C|g| = |M(Sd(g))| .

In particular, this construction is functorial in g. We shall also make use of the
explicit product structure near L in Cf , so in effect we are working with Whitehead’s
PL mapping cylinder Wf .

Definition 4.3.3. Let f : L → K be a PL map of polyhedra. Choose a triangula-
tion g : X → Y of f , and let

Wf = L × [0, 1] ∪L×1 Cf

be Whitehead’s PL mapping cylinder for f = |g|, with the explicit collar L × [0, 1]
near the front end L ∼= L×0 ⊂ Wf . We shall sometimes denote Wf by W (L → K).
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Returning to Theorem 4.3.1 and its relativization, the base polyhedron K will
henceforth be replaced by a choice of PL mapping cylinder Wf for a PL map
f : L → K. It contains a collared copy of L at the front end, and a copy of K
at the back end. We shall work relative to a fixed stably framed (n − 1)-manifold
thickening

v : N → L ,

and we shall consider the space of stably framed n-manifold thickenings

u : M → Wf ,

where M contains N in its boundary ∂M and u restricted to N is the fixed stably
framed thickening v. See Figure 2, where the arrows labelled M refer the whole of
the upper part of the figure, and the arrows labelled Wf refer to the whole of the
lower part. For technical reasons, we shall also want the thickening u to be given as
a product with the thickening v in a neighborhood of N in M , as we now specify.

K

u

M

N

L

v v × id

ǫ

ǫ

0

0

Wf

Figure 2. An unthickening map u : M → Wf , relative to the fixed
unthickening v : N → L

Definition 4.3.4. We define the space Tn(L → K,N) of stably framed n-manifold
thickenings over L → K relative to N as a simplicial set. A 0-simplex consists
of:

(1) a stably framed n-manifold thickening u : M → Wf of the chosen PL map-
ping cylinder Wf , and
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(2) a stably framed PL embedding c : N × [0, ǫ] → M , with 0 < ǫ ≤ 1, such
that the diagram

N // //

v

²²

N × [0, ǫ]

v×id

²²

// c // M

u

²²

L // // L × [0, ǫ] // // Wf

commutes, and the image of N × [0, ǫ) in M equals the preimage under u
of L× [0, ǫ) in Wf , hence is open in M . Here v is the fixed thickening of L,
the remaining horizontal maps are the obvious embeddings, and N × [0, ǫ]
is given the product stable framing from N and [0, ǫ] ⊂ R.

A q-simplex in Tn(L → K,N) consists of:

(1) a stably framed family

E
u //

π
ÃÃ

AA
AA

AA
AA

Wf × ∆q

pr
zzuuuuuuuuu

∆q

of n-manifold thickenings of Wf parametrized by ∆q, and
(2) a PL family of stably framed embeddings

N × D̄ // c //

pr
##GG

GG
GG

GG
G

E

π
~~}}

}}
}}

}}

∆q

where D̄ ⊂ [0, 1] × ∆q consists of the (t, p) with 0 ≤ t ≤ ǫ(p), p ∈ ∆q, for
some PL function ǫ : ∆q → (0, 1], making the analogue of the rectangular
diagram above commute, and such that c(N × D) = u−1(L × D), where
D ⊂ D̄ consists of the (t, p) with 0 ≤ t < ǫ(p).

In other words, the thickening of Wf is locally constant in the collar coordinate,
near the preimage N of L, but the extent of the locally constant region (as given
by ǫ) may vary within a parametrized family.

It is a consequence of these hypotheses that N × 0 ∪ ∂N × [0, ǫ) embeds as an
open subset of ∂M , since the image of N × [0, ǫ) is open in M .

The notation is slightly imprecise, since Tn(L → K,N) really depends on the
choice of PL mapping cylinder Wf and on the unthickening map v : N → L.

All thickenings to be considered below will be stably framed, even if we sometimes
omit to mention it.

Replacing ∆q by a compact polyhedron P we obtain the notion of a family of
thickenings over L → K, relative to N and parametrized by P . We will write
u : Mp = π−1(p) → Wf for an individual thickening of Wf that occurs as part of
such a family, at a variable point p ∈ P .

Here is the relative form of Theorem 4.3.1, to be proved in this section. It
includes Theorem 4.3.1 as the special case L = ∅, when K = Wf .
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Theorem 4.3.5. The space Tn(L → K,N) is at least (n − 2w − 6)-connected,
where w = dim(Wf ) = max(dim(L) + 1,dim(K)).

The following amounts to the same thing.

Reformulation of Theorem 4.3.5. Let P be a compact polyhedron of dimension
at most (n− 2w− 6). Then any PL family of stably framed n-manifold thickenings
over L → K, relative to N and parametrized by P , may be deformed into a constant
family.

By a deformation of such a family over P we mean a family over P × [0, 1] that
restricts to the given family over P ∼= P × 0. It is a deformation into a constant
family when the resulting family over P ∼= P × 1 is constant in its dependence on
p ∈ P . We shall also call a deformation into a constant family a straightening of
the family, hence the title of this section.

The theorem implies that under the given dimensional hypotheses, any one fam-
ily over P may be deformed into any other family, constant or not. For by viewing
the two families as a single family over P

∐
P , which has the same dimension as P ,

and straightening the combined family, we get deformations connecting both the
first and the second family to the same constant family. The obvious composite
deformation then connects the first family to the second.

Proof of Theorems 4.3.1 and 4.3.5. The proof proceeds by induction on the dimen-
sion k = dim(K) of the target polyhedron K, not the dimension of the PL mapping
cylinder Wf or of the subpolyhedron L. Both the beginning of the induction (k = 0)
and the inductive steps (k > 0) are non-trivial, and they require rather different
arguments. With either of them we shall start by treating the special (absolute)
case when L = ∅, and then proceed to the general (relative) case when L 6= ∅.

There is only something to prove if n ≥ 2w + 6 and P is non-empty, so we will
assume this. In particular n ≥ 6, and n ≥ 8 in the relative cases. The precise
dimension estimate could perhaps be improved with a more complicated formula,
but basically we need n ≥ 6 to apply the s-cobordism theorem, and we loose twice
the dimension of L in a comparison between embeddings and immersions, so the
estimate n ≥ 2w + 6 is about the simplest one that works.

4.3.6. Inductive beginning, the absolute case.
This part is the case dim(K) = 0 and L = ∅, and uses the Haefliger–Wall PL

stability theorem [HW65]. Without loss of generality we may assume that K is
connected, so K = ∗ is a point. Then Tn(∅ → ∗, ∅) = Tn(∗), and this space is
(n − 2)-connected for n ≥ 6, as we already deduced in Proposition 4.2.8 of the
previous section.

4.3.7. Inductive beginning, the relative case.
This part is the case dim(K) = 0 and L non-empty, and uses general position

and the Haefliger–Poenaru PL immersion theory [HP64]. We may again assume
that K is connected, so K = ∗. The PL mapping cylinder Wf = W (L → ∗) is a
cone in this case. More precisely, Cf = cone(L) with vertex ∗, and

Wf = L × [0, 1] ∪L×1 cone(L) .

Then there is a PL 1-parameter family of self-maps

gt : Wf → Wf
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for t ∈ [0, 1], with the following properties, where ǫ is some fixed number in (0, 1]:

(1) gt is a simple PL map and its restriction to L × [0, ǫ/2] is the identity, for
each t ∈ [0, 1],

(2) g0 is the identity map, and g1 maps L × [ǫ, 1] ∪L×1 cone(L) to the cone
vertex ∗ and L × [0, ǫ) to the complement of ∗.

In other words, there is a PL map G : Wf × [0, 1] → Wf such that gt(x) = G(x, t)
has these properties. To prove this, it suffices to give formulas for such a family of
self-maps in the case where L is a simplex, in a way that is natural with respect to
inclusion maps of ordered simplices. We omit the formulas.

Recall from Definition 4.3.4 that over a neighborhood of L, any parametrized
family of thickenings is required to be the constant extension in the collar coordinate
of the standard thickening v : N → L. Let ǫ be so small that L × [0, ǫ) is such a
neighborhood for the particular family parametrized by P that we are considering.
Composing the structure map u of the thickenings in that family with the self-
maps gt above, we obtain a deformation {gtu}t of the family. It is a deformation
through thickenings by Lemma 4.2.7 above, since each gt is simple. The result
of the deformation, g1u, is a new family of thickenings parametrized by P , which
admits the following description. Letting p ∈ P denote a variable point, we may
write

Mp = N × [0, ǫ] ∪N M ′
p ,

where the attaching at the ǫ-end is by means of a stably framed PL embedding
N → ∂M ′

p, and the structural map u : Mp → Wf is essentially independent of p.
More precisely, on the part N×[0, ǫ] the structural map is some fixed map that only
depends on the original map v : N → L and the homotopy gt (namely g1 ◦ (v× id)),
and all of M ′

p is mapped to ∗.

With the family p 7→ M ′
p we are in the case treated before: It is a family of

(stably framed n-manifold) thickenings of K = ∗. When considered relative to
nothing, it may thus be deformed to a constant family, since dim(P ) ≤ (n− 2) and
n ≥ 6. In other words, p 7→ M ′

p is a trivializable n-disc bundle. The attaching data
are now equivalent to a map from P to the space of stably framed embeddings

N → Sn−1 .

We have to check that this space is at least (n − 2w − 6)-connected. Since P
is assumed to be non-empty, at least one such stably framed codimension zero
embedding of N in Sn−1 exists.

Let h denote the homotopical dimension of N , i.e., the minimal integer h such
that there exists a handle decomposition of N with all handles of index ≤ h. The
homotopical dimension does not increase under stabilization, i.e., upon replacing
N by N × J . (It can decrease, as illustrated by [Po60] and [Ma61].)

Lemma 4.3.8. The homotopical dimension h of N is at most equal to dim(L).

Proof. There is a map e : L → N that is homotopy inverse to the unthickening map
v : N → L, since a simple map is a homotopy equivalence. By general position,
this map e may be assumed to be a PL embedding into the interior of N , since
2 dim(L) < dim(N) by the dimensional hypothesis n ≥ 2w + 6. Let R be a regular
neighborhood (contained in the interior of N) of the embedded image of L in N ,
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and let W be the part of N not in the interior of R. Then N = R∪∂R W is a union
of two codimension zero submanifolds, and ∂W = ∂R ⊔ ∂N .

N
v

≃s

// L

R

>>||||||||

W

aaCCCCCCCC

L

??ÄÄÄÄÄÄÄ

e

**

∂R

``BBBBBBBB

=={{{{{{{{

∂N

aaDDDDDDDD

v|∂N

OO

The regular neighborhood R has homotopical dimension at most dim(L), since a
handle decomposition for it may be constructed out of a triangulation of L. See
e.g. [RS72, Prop. 6.9]. We claim that W is an s-cobordism from ∂R to ∂N . The
dimensional hypothesis ensures that dim(∂N) ≥ 6, so the classical s-cobordism
theorem will then imply that W is a product. This implies that no new handles are
needed to build N from R, so the homotopical dimension of N will be the same as
that of R.

It remains to prove the claim. The regular neighborhood inclusion L ⊂ R is
an expansion. In particular it is a simple homotopy equivalence, i.e., a homotopy
equivalence with zero Whitehead torsion. The homotopy inverse e to the simple
map v is also a simple homotopy equivalence, hence so is the factor R ⊂ N .

By uniqueness of regular neighborhoods, and [Co67, Cor. 9.7], R is homeomor-
phic to the PL mapping cylinder of a map ∂R → L. Hence R \ L deformation
retracts to ∂R. We have dim(L) ≤ dim(R) − 3 by the dimensional hypothesis
again, so ∂R ⊂ R induces bijections on π0 and π1 by general position. In the same
way, N \ L deformation retracts to W , and W ⊂ N induces bijections on π0 and
π1. The assumption that v is an unthickening map implies that v|∂N : ∂N → L
induces bijections on π0 and π1, by Lemma 4.2.6. It follows that ∂N ⊂ W also
induces bijections on π0 and π1, which is part of the requirement for W to be an
s-cobordism.

The inclusion R ⊂ N is homotopy equivalence, hence a homology equivalence
with arbitrary local coefficients. By excision, and the π0- and π1-bijections ∂R ⊂ R
and W ⊂ N just established, ∂R ⊂ W is also a homology equivalence with arbitrary
local coefficients, hence a homotopy equivalence. The same π0- and π1-bijections
imply that the Whitehead torsion of ∂R ⊂ W equals the Whitehead torsion of
R ⊂ N , i.e., is zero. Hence ∂R ⊂ W is a simple homotopy equivalence. This is the
remaining requirement for W to be an s-cobordism from ∂R to ∂N . ¤

Lemma 4.3.9. The space of stably framed embeddings N → Sn−1 is at least (n −
2h − 3)-connected.

Proof. By general position (for handle cores), the inclusion

{stably framed embeddings N → Rn−1}

→ {stably framed embeddings N → Sn−1}

is (n − h − 2)-connected. In particular, N admits at least one stably framed codi-
mension zero embedding in Rn−1. By selecting one of these, we obtain a framing
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τN
∼= ǫn−1 of N that is compatible with the given stable framing of N . Furthermore,

the existence of such an embedding implies that ∂N meets each path component
of N , as required for the use of immersion theory below.

By general position again, the forgetful map

{stably framed embeddings N → Rn−1}

→ {stably framed immersions N → Rn−1}

is (n − 2h − 2)-connected, since an immersion of N without double points is an
embedding. By immersion theory, [HP64], the “differential”

{immersions N → Rn−1}
d
−→ {maps N → PLn−1}

is a homotopy equivalence. Here we have used the selected framing of N to identify
the PL microbundle maps τN → ǫn−1 with maps N → PLn−1. Consequently, the
map

{stably framed immersions N → Rn−1} → {maps N → hofib(PLn−1 → PL)}

(of homotopy fibers over the space of maps N → PL, which compares the stable
framings of N and Rn−1) is also a homotopy equivalence.

By the stability theorem for PLn−1 → PL, [HW65], the target space in the
previous display is (n − h − 3)-connected. Hence the space

{stably framed embeddings N → Sn−1}

is at least (n − 2h − 3)-connected. ¤

Now 2h + 3 ≤ 2 dim(L) + 3 < 2w + 6, so any map from P to the space of stably
framed embeddings N → Sn−1 can, indeed, be deformed to a constant map.

4.3.10. Inductive step, the absolute case.
This part is the case dim(K) > 0 and L = ∅, so K = Wf . The argument relies

upon a principle of global transversality in patches, which was invented by
Hatcher for the purpose of proving a theorem on 3-manifolds [Ha76, Lem. 1]. See
also [Ha99, Thm. 1]. In the latter preprint Hatcher works differentiably (as is
the customary way of discussing transversality arguments). We will here have to
discuss transversality in the PL context (sorry, we have to), as Hatcher did in his
aforementioned paper.

When the base polyhedron K has dimension k = dim(K) > 0, it may be decom-
posed as

K = K1 ∪K0 K2

where each of K1 and K2 can be regarded as the PL mapping cylinder of some
PL map with source K0 and with target of dimension smaller than the dimension
of K. The pieces are thus regarded as simpler, in our inductive scheme, than K
itself. An example of such a decomposition can be obtained from any triangulation
of K, by letting K1 consist of the top-dimensional simplices, trimmed down to half
size, and taking K2 to be the closure of the complement of K1, which is a regular
neighborhood of the (k − 1)-skeleton of K. With an eye to the transversality
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argument to be given below, we note that K0 is actually bicollared in K. We
emphasize this fact by rewriting the decomposition as

K = K1 ∪K0 (K0 × [0, 1]) ∪K0 K2 .

In more detail, if K ′ is the discrete set of barycenters of the non-degenerate k-
simplices of K, and K ′′ is the (k−1)-skeleton of K, then K1 and K2 may be regarded
as the PL mapping cylinders W (K0 → K ′) and W (K0 → K ′′), respectively. More
generally, such a decomposition can be obtained from any cell decomposition of K.

The fact underlying Hatcher’s principle is the following lemma. Since para-
metrized PL transversality is a somewhat delicate notion, we give the proof in
some detail. Let

E
u

≃s

//

π
ÂÂ

@@
@@

@@
@ K × P

pr
{{xx

xx
xx

xx
x

P

be a PL family of stably framed n-manifold thickenings of K, parametrized by P ,
and let Mp = π−1(p) for each p ∈ P .

Lemma 4.3.11. There are a finite number of subpolyhedra Pi ⊂ P , whose interiors
cover P , and real numbers ti ∈ (0, 1), such that the thickenings u : Mp → K in the
subfamily parametrized by Pi are “PL transverse” to the bicollared subpolyhedron
K0 × ti of K, in the sense that:

(a) the fiber products

p 7→ Np := Mp ×K (K0 × ti)

for p ∈ Pi form a PL family of stably framed (n− 1)-manifold thickenings of K0 ×
ti ∼= K0, and

(b) for ǫ > 0 sufficiently small there is a PL isomorphism from the product family

p 7→ Np × [ti − ǫ, ti + ǫ]

over Pi to the fiber product family

p 7→ Mp ×K (K0 × [ti − ǫ, ti + ǫ]) ,

also over Pi, which commutes with the projection to [ti − ǫ, ti + ǫ].

Proof. By assumption, π : E → P is a PL bundle, so for each point p ∈ P we can
find a neighborhood U ⊂ P of p and a PL isomorphism Mp × U ∼= EU = π−1(U)
over U . As usual we may take U to be a compact subpolyhedron of P , and to
simplify the notation we assume that U = P . Let b : K → I = [0, 1] map K1

to 0, K2 to 1 and project K0 × [0, 1] to the second (bicollar) coordinate. Let
w = (b × id) ◦ u. The following commutative diagram of compact polyhedra and
PL maps is generated by a one-way chain of four maps, hence can be triangulated
by simplicial complexes and simplicial maps.

Mp × P oo
∼= //

pr

((QQQQQQQQQQQQQQ
E

u

≃s

//

π

ÂÂ
??
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??

??

w

»»

K × P
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x
I × P

pr
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Fix such a triangulation, and let Z ⊂ I × P consist of the simplices in I × P that
map isomorphically to their images under pr : I × P → P . This is the part of
I × P over which u and b × id may have complicated behavior in the I-direction,
and which we will avoid. Clearly Z meets I × p in finitely many points, so we can
choose a number t ∈ (0, 1) such that (t, p) does not lie in Z. Moreover, we can
choose a closed neighborhood B ⊂ I of t and a polyhedral neighborhood Q ⊂ P
of p, such that B × Q is contained in the open star neighborhood of (t, p) within
I × P . In particular, B × Q does not meet Z.

For an illustration, see the lower part of Figure 3. The arrows labelled B and
I indicate the bicollar t ∈ B ⊂ I, while the arrows labelled P and Q indicate the
polyhedral neighborhood p ∈ Q ⊂ P . Only part of the subcomplex Z is indicated.

Q

P

t B

1

0

y

p

w

I

Z

x

G
F

Figure 3. The Q-parametrized bicollarings t ∈ B ⊂ I and F ⊂ G ⊂
EQ, where they meet simplices y ⊂ I × P and x ⊂ E, with w(x) = y

We now focus on the subfamily EQ = π−1(Q) → Q of thickenings u : Mq → K
for q ∈ Q. For each q ∈ Q, let

Nq := Mq ×K (K0 × t) = w−1(t, q)

be the fiber product. This is obviously a collection of compact polyhedra, and we
shall prove that it is a stably framed family (= PL bundle) of (n − 1)-manifold
thickenings of K0 × t, which are bicollared within the stably framed n-manifold
thickenings Mq of K.
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We first claim that we can extend the inclusion

F :=
⊔

q∈Q

Nq ⊂ w−1(B × Q) =: G

to an isomorphism

F × B =
⊔

q∈Q

Nq × B
∼=
−→ G

over B × Q, that is linear within each simplex of E, so as to make G a bicollar of
F in EQ. This isomorphism will be constructed by induction over the simplices x
of E, in some order of increasing dimension. See the upper part of Figure 3, where
only the parts of F and G that meet x are indicated. Only the x that meet G are
relevant, and these are mapped by w onto simplices y = w(x) of I × P that meet
B × Q. Each such y contains B × p, so there is a preferred linear isomorphism

(y ∩ (t × Q)) × B ∼= y ∩ (B × Q)

over B × Q. We lift this isomorphism to a linear isomorphism

(x ∩ F ) × B ∼= x ∩ G

over B ×Q, by viewing x as the join of those of its faces that are preimages of the
vertices of y, and asking that the isomorphism takes (f, s) with f ∈ x∩F and s ∈ B
to g ∈ x∩G, where f and g have the same join coordinates in each of these (vertex
preimage) faces. We also ask that (f, s) and g have the same image in y ∩ (B ×Q).
This determines an extension of the previously specified isomorphism to ∂x ∩ G,
and proves the claim.

For each q ∈ Q, we now have a PL embedding eq : Nq × B → Mq that identifies
Nq × t with Nq. For each point z ∈ Nq, the link of z in Nq is PL homeomorphic
to the link of the edge z × B in Mq. The latter link is PL homeomorphic to an
(n− 2)-sphere or an (n− 2)-disc, since Mq is a PL n-manifold, hence each Nq is in
fact a PL (n − 1)-manifold, with ∂Nq = Nq ∩ ∂Mq.

The embedding eq exhibits a PL bicollaring of Nq in Mq. We get a preferred
isomorphism τNq

⊕ ǫ1 ∼= τMq
|Nq of PL microbundles, so the given stable framing of

Mq determines a unique stable framing of Nq. Let v : Nq → K0 be the restriction
of u : Mq → K to the preimage of K0 × t ∼= K0. The point inverses of v also occur
as point inverses of u, hence v is an unthickening map for each q ∈ Q.

It remains to check that the thickenings v : Nq → K0 form a PL locally trivial
family over Q, and similarly for the bicollars. We restrict the chosen simplicial
isomorphism E ∼= Mp × P to Q ⊂ P , and consider the composite embedding

e : F × B
∼=
−→ G ⊂ EQ

∼= Mp × Q

and the product embedding

ep × id : Np × B × Q → Mp × Q ,

both over Q. These agree over q = p, so by restricting to a smaller open neighbor-
hood B′ ⊂ B of t and possibly shrinking Q around p, we can assume that e factors
through an embedding

e′ : F × B′ → Np × B × Q
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over Q. By construction, this map is linear within each simplex of E, and is the
standard inclusion Np × B′ ⊂ Np × B × p at q = p. Hence, for all q sufficiently
near p the embedding

e′q : Nq × B′ → Np × B

contains Np × t in its image and, furthermore, for each z ∈ Nq the composite

z × B′ ⊂ Nq × B′
e′

q

−→ Np × B
pr
−→ B

is a strictly increasing linear map with t in its (open) image.
After shrinking Q to a smaller polyhedral neighborhood we therefore have, for

each q ∈ Q, a unique PL function sq : Nq → B′ such that (z, sq(z)) maps to t by
the composite above. Then the graph Γq ⊂ Nq × B′ of sq maps PL isomorphically
to Np × t by e′q, and we obtain the desired PL trivialization

F =
⊔

q∈Q

Nq
pr
←−
∼=

⊔

q∈Q

Γq
e′

−→
∼=

Np × t × Q

of the (n− 1)-manifold family. Translating the graphs a little in the bicollar direc-
tion, we also obtain a PL trivialization

e′′ : F × B′′ ∼=
−→ Np × B′′ × Q

of the bicollar family, for some closed neighborhood B′′ ⊂ B′ of t.
Repeating the argument for each point p ∈ P , we get an open covering of P by

the interiors of the respective neighborhoods Q = Qp, with the desired transver-
sality property at t = tp. By compactness we find finitely many points pi, with
corresponding neighborhoods Pi = Qpi

and bicollar coordinates ti = tpi
, having

the properties asserted in the lemma. ¤

We now turn to the absolute case of the inductive proof of Theorem 4.3.5, and
assume to be in the situation asserted in the lemma. Since we could replace Pi and
Pj by Pi ∪ Pj if ti = tj , we may assume that ti 6= tj for i 6= j. By renumbering the
Pi and ti, we may as well assume that ti < tj for i < j. The proof then proceeds
in three steps.

(1) By PL transversality, each Pi parametrizes a family of stably framed (n−1)-
manifold thickenings of the polyhedron K0 × ti, given by the pullback (= fiber
product)

(4.3.12) p 7→ Mp ×K (K0 × ti)

for p ∈ Pi. By the inductive hypothesis (dim(K0) = k − 1 is less than dim(K) = k,
and dim(P ) ≤ n − 2k − 6 implies dim(Pi) ≤ (n − 1) − 2(k − 1) − 6), each of these
can be deformed to a constant family, say

p 7→ N × ti ,

for a fixed (n − 1)-manifold thickening N of K0. By considering the combined
family parametrized by

∐
i Pi, we may assume that this thickening v : N → K0 is

the same for each i, so that the constant families are “the same”.
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Also by PL transversality, for each i and small ǫ > 0 the fiber product family

(4.3.13) p 7→ Mp ×K (K0 × [ti − ǫ, ti + ǫ])

over Pi is PL isomorphic to the product of the family (4.3.12) with the interval [ti−
ǫ, ti+ǫ]. To be precise, this is an isomorphism of n-manifold bundles, and commutes
with the projection to that bicollar interval, but the two families of unthickening
maps to K0 will usually only agree over the part ti × Pi of [ti − ǫ, ti + ǫ] × Pi.

When multiplied with the interval [ti − ǫ, ti + ǫ], the straightening of the fam-
ily (4.3.12) to the constant family at N gives a straightening of the product family
to the constant family at N×[ti−ǫ, ti+ǫ]. The PL isomorphism just mentioned then
gives a deformation of the pullback family (4.3.13), to the same constant family of
manifolds.

This is not quite a straightening, because the unthickening maps N → K0 at the
end of the deformation are only known to be equal to v over the part ti × Pi. We
overcome this defect by a second deformation, where the unthickening map is made
independent of the bicollar coordinate in [ti − ǫ, ti + ǫ], over a gradually increasing
neighborhood of ti.

The combined deformation is a straightening of the pullback family (4.3.13) over
Pi to the constant family at

(4.3.14) v × id : N × [ti − ǫ, ti + ǫ] → K0 × [ti − ǫ, ti + ǫ] .

By tapering off the deformation near the boundary of [ti − ǫ, ti + ǫ] × Pi (i.e.,
going through with less and less of the deformation as we get close to the bound-
ary), and making Pi and ǫ a little smaller, we can arrange that the straightening
extends to a deformation of the whole n-manifold family p 7→ Mp, parametrized
by P . The extended deformation can have support over a small neighborhood of
the new [ti − ǫ, ti + ǫ] × Pi, meaning that the deformation is constant away from
that neighborhood. In particular, for small ǫ the deformation does not alter the
family over [tj − ǫ, tj + ǫ] × Pj , for j 6= i. We can also retain the property that the
interiors of the Pi cover P .

Repeating this procedure for each i, we get a deformation of the given family of
n-manifold thickenings u : Mp → K, parametrized by P , into a new family of the
same kind. The deformed family has the additional property that its restriction to
Pi ⊂ P agrees over K0 × [ti − ǫ, ti + ǫ] ⊂ K with the constant family at (4.3.14),
for each i.

(2) Next, we need a construction to reduce the number of patches. If there are
two or more patches, then we shall show how the first two patches P1 and P2 may
be combined to a single one. By repeating this argument finitely often, we reach
the situation with only one patch.

The overlap P1 ∩ P2 parametrizes a family of n-manifold thickenings

p 7→ Mp ×K (K0 × [t1, t2])

for p ∈ P1 ∩ P2, which sits between the two constant families over K0 × t1 and
K0 × t2, respectively. Identifying K0 × [t1, t2] with the PL mapping cylinder of the
projection

K0 × {t1, t2} → K0
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0

t2

t3

t1

1

t2 + ǫ

t2 − ǫ

P1

t1 − ǫ

t1 + ǫ

Q

P1 ∪ P2

P2

P

I

P3

Figure 4. Patches of transversality in I × P

we can put ourselves in the relative situation, by regarding the “between”-family
as a family of n-manifold thickenings over K0 × {t1, t2} → K0. By the inductive
hypothesis in its relative form, we conclude that we can find a deformation of this
family to any constant family. In particular, there is the constant family

p 7→ N × [t1, t2]

for p ∈ P1∩P2, whose manifolds contain the interval [t1, t2] as a trivial factor. Thus
we can in fact deform into this particular family, relative to the constant family of
thickenings of K0 × {t1, t2}.

This straightening parametrized by P1 ∩ P2 extends to a deformation of the
family

p 7→ Mp ×K (K0 × [t1, t2])

parametrized by P , with support over K0 × [t1 + ǫ, t2 − ǫ] for some small ǫ > 0.
This deformation, in turn, extends to a deformation of the original family p 7→ Mp

for p ∈ P , with the same support.
The result of the deformation so far contains the constant family at v : N → K0

over
Q = t1 × P1 ∪ ([t1, t2] × P1 ∩ P2) ∪ t2 × P2

contained in [0, 1] × P . In fact, it is constant over the whole ǫ-neighborhood of
Q in the bicollar direction. By possibly shrinking the patches P1 and P2 a little,
while maintaining the property that the interiors of all the patches Pi cover P ,
we may ensure that the projection map pr : Q → P1 ∪ P2 (forgetting the bicollar
coordinate in [t1, t2]) admits a PL section s : P1 ∪ P2 → Q. Now the deformed
n-manifold family contains the bicollared constant (n − 1)-manifold family over
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s(P1 ∪ P2) ⊂ Q ⊂ [t1, t2] × P , and we just need to move the image of this section
up to the slice t2 × P to get a family that is transverse to K0 × t2 over P1 ∪ P2.

This we achieve by choosing a PL family p 7→ hp of self-homeomorphisms of
[0, 1], that take the bicollar coordinate of s(p) to t2 for every p ∈ P1 ∪ P2, and
that have support in [t1 − ǫ, t2 + ǫ] for all p ∈ P . The induced automorphisms
id × hp of K0 × [0, 1] extend to automorphisms of K, with the same support. We
then alter the deformed family of thickenings by composing the unthickening maps
with these (simple) automorphisms. The modified family of thickenings now has
the property that the thickening parametrized by p is transverse to K0 × t2 ⊂ K,
for each p ∈ P1 ∪ P2. An isotopy from the identity to the chosen family of self-
homeomorphisms then provides the deformation from the original family to the
modified family of thickenings.

(3) When there is just one patch, P = P1, we can finish at once. For we have
deformed the family of stably framed thickenings Mp ×K (K0 × t1) to a constant
family, and we have extended this straightening to a deformation of the original
family of thickenings. We can now split at the pre-image of K0 × t1. This leaves us
with thickenings of

K1 ∪K0 K0 × [0, t1] and K0 × [t1, 1] ∪K0 K2 ,

respectively. The inductive hypothesis, in its relative form, applies to these two
families of thickenings. Hence we can find a straightening of each of the two families,
relative to the same thickening of K0 × t1. These two straightenings are constant
near the pre-image of K0 × t1, so they can be combined to a straightening of the
original family.

4.3.15. Inductive step, the relative case.
It remains to discuss the modifications in the general case when dim(K) > 0 and

L is not empty. First, as pointed out before, the decomposition

K = K1 ∪K0 (K0 × [0, 1]) ∪K0 K2

can be obtained from a triangulation of K. If K and L have been triangulated so
that the map f : L → K is simplicial, then there is a corresponding decomposition

L = L1 ∪L0 (L0 × [0, 1]) ∪L0 L2 ,

the map L → K respects this decomposition, and the map L0 × [0, 1] → K0 × [0, 1]
is the product of a map L0 → K0 with the identity map on [0, 1]. So we may
assume all this.

Throughout the discussion, manifolds are not over K now, but over the chosen
PL mapping cylinder Wf = W (L → K). This inherits a decomposition

Wf = W1 ∪W0 (W0 × [0, 1]) ∪W0 W2 ,

where Wi = W (Li → Ki) for i = 0, 1, 2. The following diagram may be helpful,
where L1 = W (L0 → L′) and L2 = W (L0 → L′′), etc.

L′

²²

W1

L0L1
oo

W0

²²

[0,1]

L0 L2
//

W0

²²

W2

L′′

²²

K ′ K0K1
oo K0 K2

// K ′′
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See also Figure 5, below.
By the relative analogue of Lemma 4.3.11, one finds finitely many patches Pi

and levels ti ∈ (0, 1) so that u : Mp → Wf is PL transverse to W0 × ti, for p ∈ Pi.
The interiors of the Pi cover P , as before. Then Mp → Wf is PL transverse to
L0 × ti for p ∈ Pi, and to L for all p ∈ P , by the assumed local product structure
of Mp near N .

In the special case treated above, the argument proceeded in three steps:

(1) Straightening of the auxiliary families

p 7→ Mp ×K (K0 × ti)

for p ∈ Pi.
(2) Straightening over the overlap P1 ∩ P2 of

p 7→ Mp ×K (K0 × [t1, t2])

relative to K0 × {t1, t2}.
(3) Straightening over

K1 ∪K0 K0 × [0, t1]

(resp. K0 × [t1, 1] ∪K0 K2) relative to K0 × t1.

Each of these steps was possible because of the inductive hypothesis applied to a
certain subpolyhedron of K, or to a map of such subpolyhedra.

In the general case we proceed according to the same pattern. The three steps
are:

(1′) Straightening of

p 7→ Mp ×Wf
(W0 × ti)

relative to

p 7→ Mp ×Wf
(L0 × ti) ,

for p ∈ Pi.
(2′) Straightening of

p 7→ Mp ×Wf
(W0 × [t1, t2])

relative to

p 7→ Mp ×Wf
(L0 × [t1, t2] ∪ W0 × {t1, t2}) ,

for p ∈ P1 ∩ P2.
(3′) Straightening over

W1 ∪W0 W0 × [0, t1]

(resp. W0 × [t1, 1] ∪W0 W2) relative to

L1 ∪L0 (L0 × [0, t1]) ∪L0 W0 × t1

(resp. W0 × t1 ∪L0 (L0 × [t1, 1]) ∪L0 L2).
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L2L1 L0 × [t1, t2]L0 × [0, t1] L0 × [t2, 1]

W0 × {t1}

W0 × [t1, t2]W0 × [0, t1]

W0 × {t2}W0 × {0} W0 × {1}

W0 × [t2, 1]W1 W2

L0 × {0} L0 × {t2}L0 × {t1} L0 × {1}

0 t1 t2 1K1 K2K0

K ′′K ′

L′ L′′

K0 × I

Figure 5. Decomposition of Wf = W (L → K) in terms of smaller PL
mapping cylinders

To justify the applicability of the inductive hypothesis, we must know that cer-
tain polyhedra can be identified to PL mapping cylinders in a suitable way. This
is trivially true in case (1′). In case (2′) we can identify

W0 × [t1, t2]

with the PL mapping cylinder of

L0 × [t1, t2] ∪ W0 × {t1, t2} → K0

(think of a square as the cone on three of its edges, with vertex in the interior of
the fourth edge). In a similar way, we can in case (3′) identify

W1 ∪W0 W0 × [0, t1]

with the PL mapping cylinder of a map

L1 ∪L0 (L0 × [0, t1]) ∪L0 W0 → K ′ ,

where K1 = W (K0 → K ′), and likewise for W0 × [t1, 1] ∪W0 W2.
This completes the inductive argument, and thus concludes the proof of Theo-

rems 4.3.1 and 4.3.5. ¤
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[Go90a] Thomas G. Goodwillie, A multiple disjunction lemma for smooth concordance embed-

dings, Mem. Amer. Math. Soc. 86 (1990), no. 431.

[Go90b] Thomas G. Goodwillie, Calculus. I. The first derivative of pseudoisotopy theory, K-
Theory 4 (1990), 1–27.
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K-theory (Strasbourg, 1992), Astérisque, vol. 226, 1994, pp. 8–9, 175–192.

[HSS00] Mark Hovey, Brooke Shipley and Jeff Smith, Symmetric spectra, J. Amer. Math. Soc.
13 (2000), 149–208.



SPACES OF PL MANIFOLDS AND CATEGORIES OF SIMPLE MAPS 149

[HJ82] Wu-Chung Hsiang and Bjørn Jahren, A note on the homotopy groups of the diffeomor-

phism groups of spherical space forms, Algebraic K-theory, Part II, Lecture Notes in
Math., vol. 967, Springer, 1982, pp. 132–145.

[HJ83] Wu-Chung Hsiang and Bjørn Jahren, A remark on the isotopy classes of diffeomorphisms
of lens spaces, Pacific J. Math. 109 (1983), 411–423.

[Hu69] John F. P. Hudson, Piecewise linear topology, University of Chicago Lecture Notes,
W. A. Benjamin, Inc., New York–Amsterdam, 1969, http://www.maths.ed.ac.uk/∼aar/

surgery/hudson.pdf.

[HW41] Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Se-

ries, vol. 4, Princeton University Press, Princeton, NJ, 1941.

[Ig88] Kiyoshi Igusa, The stability theorem for smooth pseudoisotopies, K-Theory 2 (1988),
1–355.
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