Local monodromy of A-motives

M. Mornev*
EPFL
Second Joint Congress of AMS-EMS-SMF Grenoble 2022

* Supported by Swiss National Science Foundation (SNSF Ambizione project 202119)

Local Galois groups

K a local field of residual characteristic $p, \quad G=\operatorname{Gal}\left(K^{\text {sep }} / K\right)$

$$
\begin{aligned}
& G / I= \widehat{\mathbb{Z}} \\
& I / P= \widehat{\mathbb{Z}}^{(p)}(1) \\
& P= \text { free pro-p-group on } \aleph_{0} \text { generators } \\
& \quad \quad \text { pro-nilpotent }=\operatorname{pro}_{n}\left\{\left[g_{1},\left[g_{2},\left[\ldots, g_{n}\right] \cdots\right]=1\right\}\right.
\end{aligned}
$$

ℓ-adic local monodromy

ℓ-adic monodromy theorem (Grothendieck)

Up to a finite separable extension L / K each ℓ-adic representation $\rho: G \rightarrow \mathrm{GL}(V)$ satisfies:

1. $\rho(P)=\{1\}$,
2. $\left.\rho\right|_{I}$ is unipotent.
i. open ℓ-Sylow subgroup $\subset \mathrm{GL}_{n}\left(\mathbb{Z}_{\ell}\right)$
ii. $\rho(P)=\{1\}, \quad \rho(I / P)=\rho\left(\mathbb{Z}_{\ell}(1)\right)$
iii. Grothendieck's trick: $\left.\rho\right|_{\mathbb{Z}_{\ell}(1)}$ unipotent via $\widehat{\mathbb{Z}} \ltimes \mathbb{Z}_{\ell}(1)$

Weil-Deligne representations

$$
\mathfrak{g}=\operatorname{Lie} \mathbb{Z}_{\ell}(1), \quad N: \mathfrak{g} \rightarrow \mathfrak{g l}(V) \text { independent of } L / K
$$

Deligne's construction WD: $\rho \mapsto(\widetilde{\rho}, N)$

The representation ρ is

- twisted by $\exp \circ(-N) \circ \pi$,
- restricted to the Weil group $W \subset G$.
$\pi: G \rightarrow \mathbb{Z}_{\ell}(1) \hookrightarrow \mathfrak{g}$.

Theorem (Deligne)

The functor WD is an equivalence of categories of

- ℓ-adic Galois representations,
- ℓ-adic Weil-Deligne representations "of slope 0".

The ℓ-independence conjecture

$\mathrm{WD}(\rho)$ is continuous in the discrete topology on \mathbb{Q}_{ℓ}
\rightsquigarrow can replace \mathbb{Q}_{ℓ} by any field of characteristic 0 .
Primes $\ell, \ell^{\prime} \neq p$, field $F \supset \mathbb{Q}_{\ell}, \mathbb{Q}_{\ell^{\prime}}$.

Conjecture

For each smooth proper $X / \operatorname{Spec} K$, each $i \geqslant 0$ there is a natural isomorphism

$$
F \otimes_{\mathbb{Q}_{\ell}} \mathrm{WD}\left(H^{i}\left(X_{\eta}, \mathbb{Q}_{\ell}\right)\right) \xrightarrow{\sim} F \otimes_{\mathbb{Q}_{\ell^{\prime}}} \mathrm{WD}\left(H^{i}\left(X_{\eta}, \mathbb{Q}_{\ell^{\prime}}\right)\right) .
$$

Some known cases: abelian varieties, K3 surfaces. Trivial case (assuming semi-simplicity): X has good reduction.

Drinfeld modules

$$
\downarrow_{\operatorname{Spec} K}^{E} \leadsto \sim \sim T_{p} E \supseteq G
$$

\mathfrak{p} different from the residual characteristic: " $\ell \neq p$ ".

$$
|\rho(P)|<\infty \Leftrightarrow E \text { has potential good reduction }
$$

1. $|\rho(P)|<\infty$
2. $\mathrm{GL}_{n}\left(\mathbb{F}_{q}[[z]]\right)$ has an open p-Sylow $\Rightarrow|\rho(I)|<\infty$
3. Takahashi: E has potential good reduction

z-adic Galois representations I

Idea: find an " ℓ-like" class of z-adic representations
Ground field \mathbb{F}_{q}, coefficient field \widehat{F}, ring of integers $\mathcal{O}_{\widehat{F}}$, e.g. $\widehat{F}=\mathbb{F}_{q}((z))$, $\mathcal{O}_{\widehat{F}}=\mathbb{F}_{q}[[z]]$

Ring of definition

$$
\Gamma=\Gamma_{K}=K \widehat{\otimes}_{\mathbb{F}_{q}} \mathcal{O}_{\widehat{F}}
$$

Discrete topology on K, e.g. $\Gamma=K[[z]]$.
Partial Frobenius $\sigma: \Gamma \rightarrow \Gamma$, e.g. $\sigma\left(\sum a_{n} z^{n}\right)=\sum a_{n}^{q} z^{n}$.

Definition

A unit-root Γ-crystal M is a pair consisting of

- a finitely generated free Γ-module M,
- an isomorphism $a: \sigma^{*} M \xrightarrow{\sim} M$, called the structure isomorphism.

Morphisms $=\sigma$-equivariant morphisms of Γ-modules.

z-adic Galois representations II

$$
T(M)=\left\{x \in \Gamma_{K \operatorname{sep}} \otimes_{\Gamma_{K}} M \mid a_{M}(1 \otimes x)=x\right\}
$$

Theorem (Katz)

The functor $M \mapsto T(M)$ is an equivalence of categories of

- unit-root Γ_{K}-crystals,
- continuous representations of G in finite free $\mathcal{O}_{\widehat{\kappa}}$-modules.

$$
\Gamma_{+}=\mathcal{O}_{K} \widehat{\otimes}_{\mathbb{F}_{q}} \mathcal{O}_{\widehat{F}}
$$

Theorem (folklore)

The functor $M \mapsto T(M)$ is an equivalence of categories of

- unit-root Γ_{+}-crystals,
- unramified representations of G in finite free $\mathcal{O}_{\widehat{F}}$-modules.

z-adic Galois representations III

$$
\Gamma^{b}=K \otimes_{\mathcal{O}_{K}} \Gamma_{+}
$$

Theorem (M.)
The base change functor $\Gamma^{b} \mapsto \Gamma$ is fully faithful.
A-motive M over $A_{K}=K \otimes_{\mathbb{F}_{q}} A \rightsquigarrow$ for all $\mathfrak{p} \neq$ char. a unit-root Γ-crystal

$$
M_{\mathfrak{p}}=\Gamma_{K, F_{\mathfrak{p}}} \otimes_{A_{K}} M
$$

$T\left(M_{\mathfrak{p}}\right)=\mathfrak{p}$-adic Tate module of M

Proposition (M.)

$M_{\mathfrak{p}}$ is defined over Γ^{b} for each $\mathfrak{p} \neq$ res. char.

z-adic local monodromy

Extra structure on the inertia group I: upper index ramification filtration

$$
\begin{array}{r}
I^{(\nu)}, \quad \nu \in \mathbb{Q} \geqslant 0 \\
I=I^{(0)}, P=I^{(0+)}=\operatorname{closure}\left(\bigcup_{\nu>0} I^{(\nu)}\right)
\end{array}
$$

z-adic monodromy theorem, case " $\ell \neq p$ " (M.)

The functor $M \mapsto T(M)$ is an equivalence of categories of

- unit-root Γ^{b}-crystals, and
- Galois representations $\rho: G \rightarrow \mathrm{GL}(V)$ which satisfy the following up to a finite separable extension L / K :

1. $\rho\left(I^{(\nu)}\right)=\{1\}$ for $\nu \gg 0$,
2. $\rho \mid$, is unipotent.

Applications I

Theorem (M.)

For each A-motive M, each $\mathfrak{p} \neq$ res. char. there is a finite separable extension L / K such that

$$
I \text { acts unipotently on } T_{\mathfrak{p}} M
$$

Theorem (M.)

For every A-motive M there is a number $\nu \geqslant 0$ such that $f^{(\nu)}$ acts trivially on all $T_{\mathfrak{p}} M, \mathfrak{p} \neq$ res. char.

Applications II

Corollary

For each Drinfeld A-module E there is a minimal number $\nu \geqslant 0$ such that $I^{(\nu)}$ acts trivially on all $T_{\mathfrak{p}} E, \mathfrak{p} \neq$ res. char. Furthermore ν is an integer whenever E has stable reduction.

Object	Monodromy $\rho(I)$
Algebraic variety	virtually cyclic
Drinfeld module	virtually abelian
A-motive	virtually nilpotent

z-adic de Rham representations

$$
\Gamma^{m}=\left(\Gamma_{+}\right)_{(z)}
$$

Unit-root Γ^{m}-crystals generalize local shtukas and unit-root Γ^{b}-crystals.
theorem (M.)
The base change $\Gamma^{m} \rightarrow \Gamma$ is fully faithful.

Definition

A z-adic representation is de Rham if it arises from Γ^{m}.

theorem (M.)

Every unit-root Γ^{m}-crystal becomes an iterated extension of local shtukas after a finite separable extension L / K.
z-adic de Rham representations are potentially semistable

