Brauer groups and Galois Cohomology

1 Introduction

The main goal of the next talks is to prove the following theorem:
Theorem 1.1. Let K be a field extension of transcendence degree 1 over an algebraically closed field k. Then $H_{e t t}^{2}\left(\operatorname{Spec} K, \mathbb{G}_{m}\right)=0$.

Let k be an arbitrary field, and fix a separable closure $k^{\text {sep }}$ of k, and let $G_{k}:=$ $\operatorname{Gal}\left(k^{\text {sep }} / k\right)$. The first step is to show

Theorem 1.2 (Corollary 4.10). There is a natural bijection

$$
\begin{equation*}
H^{2}\left(G_{k},\left(k^{\text {sep }}\right)^{\times}\right) \cong \operatorname{Br}(k), \tag{1.1}
\end{equation*}
$$

where $\operatorname{Br}(k)$ is the Brauer group of k.
This is aim of the current talk. The main references are [1, Chapter IV] and [2, Tag $073 \mathrm{~W}]$.

2 Central simple algebras

2.1 Basic definitions and properties

Let k be a field. In what follows, we use the term k-algebra to refer to an associative unital k-algebra which is finite dimensional as a k-vector space. In particular, we do not assume that k-algebras are commutative.

Definition 2.1. A k-algebra is called simple if it contains no proper two sided ideals other than (0).

Definition 2.2. $A k$-algebra A is said to be central if its center $Z(A)$ is equal to k. If A is also simple, we say that it is central simple.

We say a k-algebra D is a division algebra if every non-zero element has a multiplicative inverse, i.e., for every $a \in D \backslash\{0\}$, there exists a $b \in D$ such that $a b=1=b a$. A field is a commutative division algebra.

Proposition 2.3. Let D be a division algebra over k. Then $M_{n}(D)$ is a simple k-algebra for all $n \geqslant 0$.

Proof. Let I be a two-sided ideal in $M_{n}(D)$ and suppose that I contains a nonzero matrix $M=\left(m_{i j}\right)$. Let $m_{i_{0} j_{0}}$ be a non-zero entry of M. For each i, j, let $e_{i j} \in M_{n}(D)$ denote the matrix with 1 in the $i j$-entry and 0 elsewhere. Then

$$
e_{i i_{0}} \cdot M \cdot e_{j_{0} j}=m_{i_{0} j_{0}} e_{i j} .
$$

By assumption, the left hand side is in I, so I contains all the matrices $e_{i j}$ and thus equals $M_{n}(D)$. It follows that $M_{n}(D)$ is simple.

2.2 Classification of simple k-algebras

Let A be a k-algebra. By an A-module, we mean a finitely generated left A-module. A non-zero A-module is called simple if it contains no proper A-submodule.

Lemma 2.4. Any non-zero A-module contains a simple submodule.
Proof. The definition implies that any A-module is finite dimensional as a k-vector space. Any nonzero submodule of minimal dimension over k will be simple.

Let V be an A-module. Then $\operatorname{End}_{A}(V)$ inherits the structure of a k-algebra, with multiplication given by composition.

Lemma 2.5 (Schur's Lemma). Let S be a simple A-module. The k-algebra $\operatorname{End}_{A}(S)$ is a division algebra.

Proof. Let $\gamma \in \operatorname{End}_{A}(S)$. Then $\operatorname{ker} \gamma$ is an A-submodule of S and is thus either 0 or all of S. In the first case γ is an isomorphism and thus has an inverse. Otherwise $\gamma=0$.

There is a natural homomorphism

$$
\begin{equation*}
\ell: A \rightarrow \operatorname{End}_{k}(V), \quad a \mapsto \ell_{a}, \tag{2.1}
\end{equation*}
$$

where ℓ_{a} is left multiplication by a.
Proposition 2.6. Let A be a simple k-algebra and let V be an A-module. The homomorphism (2.1) is injective.

Proof. Since $\operatorname{ker}(\ell)$ is a two-sided ideal of A which does not contain 1, it follows from the simplicity of A that $\operatorname{ker}(\ell)=(0)$.

When A is simple, we may thus view it as a k-subalgebra of $\operatorname{End}_{k}(V)$. Suppose A is a k-subalgebra of another k-algebra B. We denote the centralizer of A in B by $C_{B}(A)$.

Theorem 2.7 (Double Centralizer Theorem). Let A be a simple k-algebra, and let S be a simple A-module. Let $E:=\operatorname{End}_{k}(S)$. We have $C_{E}\left(C_{E}(A)\right)=A$.

Proof. See [1, Theorem 1.13].

Definition 2.8. Given a k-algebra A, we define its opposite $A^{\text {opp }}$ to be the algebra with the same underlying set and addition, but with multiplication defined by $a \cdot b:=b a$.

Proposition 2.9. Let A be a k-algebra and let V be a free A-module of rank n. Then any choice of basis of V induces an isomorphism of k-algebras $\operatorname{End}_{A}(V) \xrightarrow{\sim} M_{n}\left(A^{\text {opp }}\right)$.

Proof. Let ${ }_{A} A$ denote A regarded as an A-module. For each $a \in A$, right multiplication by a is an A-linear endomorphism of ${ }_{A} A$. Let $r_{a} \in \operatorname{End}_{A}\left({ }_{A} A\right)$ denote this endomorphism. Let $\varphi \in \operatorname{End}_{A}\left({ }_{A} A\right)$. For $a \in{ }_{A} A$, we have $\varphi(a)=a \varphi(1)$ by A-linearity; hence $\varphi=r_{\varphi(1)}$. We thus have an isomorphism of k-vector spaces

$$
\begin{equation*}
\operatorname{End}_{A}\left({ }_{A} A\right) \xrightarrow{\sim} A, \quad \varphi \mapsto \varphi(1) . \tag{2.2}
\end{equation*}
$$

Since

$$
\left(r_{a} \circ r_{b}\right)(1)=r_{a}\left(r_{b}(1)\right)=r_{a}(b)=b a,
$$

the k-linear map (2.2) becomes an isomorphism $\operatorname{End}_{A}\left({ }_{A} A\right) \xrightarrow{\sim} A^{\text {opp }}$ on the level of k-algebras. This implies the lemma since any choice of A-basis of V induces an isomorphism of k-algebras $\operatorname{End}_{A}(V) \xrightarrow{\sim} \operatorname{End}_{A}\left({ }_{A} A^{n}\right)$.

In the next theorem, we classify all simple k-algebras up to isomorphism.
Theorem 2.10 (Artin-Wedderburn). Let A be a simple k-algebra. Then there exists an $n \geqslant 1$ and a division algebra D such that $A \cong M_{n}(D)$.

Proof. By Lemma 2.4, we may choose a simple A-submodule $I \subset A$ (a left ideal of minimal dimension). By Schur's Lemma, the k-algebra $D:=\operatorname{End}_{A}(I)$ is a division algebra. Since $\operatorname{dim}_{k}(I)<\infty$, it follows that I is finitely generated over D. It is thus a free D-module of some finite rank $n .{ }^{1}$ Let $E:=\operatorname{End}_{k}(S)$. Since $D=C_{E}(A)$, we have

$$
\operatorname{End}_{D}(I)=C_{E}(D)=C_{E}\left(C_{E}(A)\right)=A
$$

hence $A \cong M_{n}\left(D^{\text {opp }}\right)$ by Proposition 2.9.
Proposition 2.11. In Theorem 2.10, the k-algebra A uniquely determines is isomorphism class of D and the integer n.

Proof. The minimal left ideals of $M_{n}(D)$ are of the form $L(i)$, where $L(i)$ is the set of matrices that are 0 outside of the i th column. Then $M_{n}(D)=\oplus_{i=1}^{n} L(i)$ and each $L(i) \cong$ D^{n} as $M_{n}(D)$-modules. It follows from Theorem 2.10 that all of the minimal left ideals of A are isomorphic as A-modules. If $A \cong M_{n}(D)$, then $D^{\text {opp }} \cong \operatorname{End}_{M_{n}(D)}\left(D^{n}\right) \cong \operatorname{End}_{A}(I)$, where I is any minimal left ideal of A. The integer n is determined by $[A: k]$.

[^0]
3 The Brauer group

3.1 Tensor products

Let A and B be k-algebras and let $A \otimes_{k} B$ be the tensor product of A and B as k-vector spaces. There is a unique k-bilinear multiplication on $A \otimes_{k} B$ such that $(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=$ $\left(a a^{\prime} \otimes b b^{\prime}\right)$ for all $a, a^{\prime} \in A$ and $b, b^{\prime} \in B$. This makes $A \otimes_{k} B$ into a k-algebra.

Proposition 3.1 (Properties of the tensor product). Let A and B be central simple k-algebras. Then the following are true:
(a) $A \otimes_{k} B \cong B \otimes_{k} A$.
(b) $\left(A \otimes_{k} B\right) \otimes_{k} C \cong A \otimes_{k}\left(B \otimes_{k} C\right)$.
(c) $A \otimes_{k} M_{n}(k) \cong M_{n}(A)$.
(d) For k-algebras A and A^{\prime} with subalgebras B and B^{\prime}, we have

$$
C_{A \otimes_{k} A^{\prime}}\left(B \otimes_{k} B^{\prime}\right)=C_{A}(B) \otimes_{k} C_{A^{\prime}}\left(B^{\prime}\right) .
$$

(e) $A \otimes_{k} B$ is central simple.
(f) $A \otimes_{k} A^{\text {opp }} \cong \operatorname{End}_{k}(A) \cong M_{n}(k)$, where $n:=\operatorname{dim}_{k} A$.

Proof. See [1]. All of these are immediate except for (d) and (e). Showing that the product of simple k-algebras is simple requires the notion of primordial elements. In (f), the natural isomorphism $A \otimes_{k} A^{\text {opp }} \xrightarrow{\sim} \operatorname{End}_{k}(A)$ is given by $a \otimes a^{\prime} \mapsto\left(b \mapsto a b a^{\prime}\right)$.

3.2 Definition of the Brauer group

Let A and B be central simple k-algebras. We say A and B are similar and write $A \sim B$ if $A \otimes_{k} M_{n}(k) \cong B \otimes_{k} M_{m}(k)$ for some m and n. We denote the equivalence class of a central simple k-algebra A by $[A]$. Let $\operatorname{Br}(k)$ be the set of similarity classes of central simple k-algebras. By Proposition 3.1, the binary operation on $\operatorname{Br}(k)$ defined by $[A] \cdot[B]:=\left[A \otimes_{k} B\right]$ is well-defined and makes $\operatorname{Br}(k)$ into an abelian group with identity element $[k]$. The inverse of an element $[A] \in \operatorname{Br}(k)$, is given by $\left[A^{\mathrm{opp}}\right]$.

Definition 3.2. The Brauer group of k is the abelian group $(\operatorname{Br}(k), \cdot)$.
Remark. In light of the Artin-Wedderburn theorem, we may equivalently define $\operatorname{Br}(k)$ as the set of isomorphism classes of central division algebras over k. Given central division algebras D_{1} and D_{2}, the tensor product $D_{1} \otimes D_{2}$ is isomorphic to $M_{n}\left(D_{3}\right)$ for some n and central division algebra D_{3}. The group law is then given by $\left[D_{1}\right] \cdot\left[D_{2}\right]=\left[D_{3}\right]$.

3.3 Extending the base field

Let L / k be a field extension, and let A be central simple over k.
Proposition 3.3. The tensor product $A \otimes_{k} L$ is central simple over L.
Proof. See [1, Lemma 2.15].
Definition 3.4. We say a central simple k-algebra A (or its class in $\operatorname{Br}(k)$) is split by L if $A \otimes_{k} L \cong M_{n}(L)$ for some n.

Since $M_{n}(k) \otimes_{k} L \cong M_{n}(L)$ and $\left(A \otimes_{k} L\right) \otimes_{L}\left(B \otimes_{k} L\right) \cong\left(A \otimes_{k} B\right) \otimes_{k} L$. We obtain a homomorphism

$$
\operatorname{Br}(k) \rightarrow \operatorname{Br}(L), \quad[A] \mapsto\left[A \otimes_{k} L\right] .
$$

We denote its kernel by $\operatorname{Br}(L / k)$. It consists of the elements of $\operatorname{Br}(k)$ which are split by L.

Lemma 3.5. Let $B \subset A$ be a simple k-subalgebra. Let $C:=C_{A}(B)$. Then

$$
[B: k][C: k]=[A: k] .
$$

Proof. See [1, Theorem 3.1].
Proposition 3.6. Suppose L is a subfield of A containing k. The following are equivalent.
(a) $L=C_{A}(L)$;
(b) $[A: k]=[L: k]^{2}$;
(c) L is a maximal commutative subalgebra of A.

Proof. (a) $\Leftrightarrow(\mathrm{b})$. Clearly $L \subset C(L)$. Then use $[A: k]=[L: k][C(L): k]$.
(b) $\Rightarrow(\mathrm{c})$. Let $L \subset L^{\prime} \subset A$ be maximal commutative. Then $L^{\prime} \subset C(L)$; hence

$$
[A: k] \geqslant[L: k]\left[L^{\prime}: k\right] \geqslant[L: k]^{2} .
$$

Thus $\left[L^{\prime}: k\right]=[L: k]$.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. If $L \subsetneq C(L)$, then $L[\gamma]$ is a commutative subalgebra of A for $\gamma \in C(L) \backslash L$.

Proposition 3.7. The field L splits A if and only if there exists a $B \sim A$ containing L such that

$$
[B: k]=[L: k]^{2} .
$$

In particular, if $L \subset A$ has degree $[A: k]^{1 / 2}$ over k, then L splits A.

Proof sketch. If L splits A, then L also splits $A^{\text {opp }}$, so $A^{\text {opp }} \otimes_{k} L=\operatorname{End}_{L}(V)$, for some finite dimensional L-vector space V. Define $B:=C_{\operatorname{End}_{k}(V)}\left(A^{\text {opp }}\right)$. Since $L=$ $C_{\operatorname{End}_{k}(V)}\left(A^{\text {opp }} \otimes_{k} L\right)$, it follows that $L \subset B$. One can show that B satisfies the required conditions.

For the converse, if suffices to show that L splits B. We have $C_{B}(L)=L$; hence $C_{B \otimes_{k} B^{\text {opp }}}\left(1 \otimes_{k} L\right)=B \otimes_{k} L$. Identifying $B \otimes B^{\text {opp }}$ with $\operatorname{End}_{k}(B)$ sends $C(1 \otimes L)$ to $\operatorname{End}_{L}(B)$. Hence $B \otimes_{k} L \cong \operatorname{End}_{L}(B)$.

Corollary 3.8. Let D be a central division algebra over k such that $[D: k]=[L: k]^{2}$. The following are equivalent:
(a) L splits D.
(b) There exists a homomorphism of k-algebras $L \rightarrow D$ whose image is a maximal subfield of D.

Proposition 3.9. Every central division algebra over k contains a maximal separable subfield which is finite over k.

Proof. See [2, Tag 0752].
Theorem 3.10. We have $\operatorname{Br}(k)=\bigcup_{L} \operatorname{Br}(L / k)$, where L runs over all finite Galois extensions in $k^{\text {sep }}$.

Proof. By Corollary 3.8 and Proposition 3.9, every central division algebra D is split by a finite separable extension of k; hence by a Galois extension.

$4 \quad \operatorname{Br}(k)$ and Galois cohomology

Let L / k be a finite Galois field extension, and let $G:=\operatorname{Gal}(L / k)$. Let $\mathcal{A}(L / k)$ denote the set of central simple k-algebras A containing L such that $C_{A}(L)=L$.

Theorem 4.1 (Noether-Skolem). Let $f, g: A \rightarrow B$ be homomorphisms of k-algebras. If A is simple and B is central simple, then there exists an invertible element $b \in B$ such that $f(a)=b \cdot g(a) \cdot b^{-1}$ for all $a \in A$.

Proof sketch. If $B=M_{n}(k)$, then f and g define actions of A on k^{n}. Let V_{f} and V_{g} denote k^{n} with these actions. Any two A-modules with the same dimension are isomorphic. (This follows from the fact that all A-modules are semisimple and all simple A-modules are isomorphic. See [1, Corollary 1.9].) Thus $\exists b \in B$ such that $f(a) \cdot b=b \cdot g(a)$ for all $a \in A$.

In general, use the fact that $B \otimes B^{\text {opp }}$ is a matrix algebra over k and consider $f \otimes 1, g \otimes 1: A \otimes B^{\mathrm{opp}} \rightarrow B \otimes B^{\mathrm{opp}}$. Then $\exists b \in B \otimes B^{\text {opp }}$ which conjugates $f \otimes 1$ to $g \otimes 1$. Show that $b \in C_{B \otimes B^{\text {opp }}}\left(k \otimes B^{\text {opp }}\right)=B \otimes k$. Then $b=b_{0} \otimes 1$ and b_{0} does the job.

Corollary 4.2. Let B be a central simple k-algebra, and let A_{1} and A_{2} be simple k subalgebras of A. Any isomorphism $f: A_{1} \rightarrow A_{2}$ is induced by an inner automorphism of A.

Construction 1. Fix $A \in \mathcal{A}(L / k)$. For every $\sigma \in G$, there exists by Corollary 4.2 an element $e_{\sigma} \in A^{\times}$such that

$$
\begin{equation*}
\sigma a=e_{\sigma} a e_{\sigma}^{-1}, \quad \text { for all } a \in L \subset A \tag{4.1}
\end{equation*}
$$

If $f_{\sigma} \in A$ also satisfies (4.1), then for all $a \in L$ we have

$$
f_{\sigma}^{-1} e_{\sigma} a=a f_{\sigma}^{-1} e_{\sigma} .
$$

It follows that $f_{\sigma}^{-1} e_{\sigma} \in C_{A}(L)=L$; and hence $f_{\sigma}^{-1} e_{\sigma} \in L^{\times}$. Fix a choice of e_{σ} for each $\sigma \in G$. Since $e_{\sigma} e_{\tau}$ satisfies (4.1) for $\sigma \tau$, it follows that

$$
\begin{equation*}
e_{\sigma} e_{\tau}=\varphi(\sigma, \tau) e_{\sigma \tau} \tag{4.2}
\end{equation*}
$$

for some $\varphi(\sigma, \tau) \in L^{\times}$. We thus obtain a map

$$
\varphi: G \times G \rightarrow L^{\times}, \quad(\sigma, \tau) \mapsto \varphi(\sigma, \tau)
$$

Proposition 4.3. The map φ is a 2-cocycle.
Proof. We must verify that $d \varphi=1$, which in this case amounts to showing that

$$
\begin{equation*}
\rho \varphi(\sigma, \tau) \cdot \varphi(\rho, \sigma \tau)=\varphi(\rho, \sigma) \varphi(\rho \sigma, \tau) . \tag{4.3}
\end{equation*}
$$

This follows from the associative law:

$$
e_{\rho}\left(e_{\sigma} e_{\tau}\right)=e_{\rho}\left(\varphi(\sigma, \tau) e_{\sigma \tau}\right)=\rho \varphi(\sigma, \tau) \cdot \varphi(\rho, \sigma \tau) \cdot e_{\rho \sigma \tau}
$$

and

$$
\left(e_{\rho} e_{\sigma}\right) e_{\tau}=\varphi(\rho, \sigma) e_{\rho \sigma} e_{\tau}=\varphi(\rho, \sigma) \varphi(\rho \sigma, \tau) \cdot e_{\rho \sigma \tau}
$$

A different choice of e_{σ} 's leads to a cohomologous cocycle, and we thereby obtain a well-defined map

$$
\begin{equation*}
\tilde{\gamma}: \mathcal{A}(L / k) \rightarrow H^{2}\left(G, L^{\times}\right) . \tag{4.4}
\end{equation*}
$$

Lemma 4.4. The $\left(e_{\sigma}\right)_{\sigma \in G}$ form an L-basis for A.
Proof. See [1, Lemma 3.12]. For dimension reasons, it suffices to show that the e_{σ} are linearly independent.

Proposition 4.5. Let $A, A^{\prime} \in \mathcal{A}(L / k)$. Then $A \cong A^{\prime}$ if and only if $\tilde{\gamma}(A)=\tilde{\gamma}\left(A^{\prime}\right)$.

Proof. By Lemma 4.4, the algebra A is uniquely determined by $\left(e_{\sigma}\right)_{\sigma}$ and the multiplication given by (4.1) and (4.2). If $\tilde{\gamma}(A)=\tilde{\gamma}\left(A^{\prime}\right)$, then the map

$$
A \rightarrow A^{\prime}, \quad \sum_{\sigma} \ell_{\sigma} e_{\sigma} \mapsto \sum_{\sigma} \ell_{\sigma} e_{\sigma}^{\prime}
$$

is an isomorphism of k-algebras. Conversely, suppose there is an isomorphism $f: A \xrightarrow{\sim}$ A^{\prime}. Using the Noether-Skolem theorem, after conjugating by an element of A^{\prime} we may assume that $f(L)=L$ and $\left.f\right|_{L}=\operatorname{id}_{L}$. Then $\left(f\left(e_{\sigma}\right)\right)_{\sigma}$ satisfies (4.1) and (4.2) and defines the same cocycle.

We thus obtain an injective map

$$
\begin{equation*}
\gamma: \mathcal{A}(L / k) / \cong \hookrightarrow H^{2}\left(G, L^{\times}\right) . \tag{4.5}
\end{equation*}
$$

Our aim is to show that γ is bijective. To do this, we construct an inverse.
Definition 4.6. A 2-cocycle $\varphi: G \times G \rightarrow L^{\times}$is normalized if $\varphi(1,1)=1$.
Every cohomology class contains a normalized 2-cycle. Indeed, given a 2-cocycle φ, we can twist by $d g$, for $g: G \rightarrow L^{\times}, \sigma \mapsto \varphi(1,1)$, to obtain a normalized one.
Construction 2. Let $\varphi: G \times G \rightarrow L^{\times}$be a normalized cocycle. Let $A(\varphi):=\bigoplus_{\sigma \in G} L e_{\sigma}$. We make $A(\varphi)$ into a k-algebra by endowing it with the multiplication induced by (4.1) and (4.2). Since φ is normalized, equation (4.2) implies that $\varphi(1, \sigma)=\varphi(\sigma, 1)=1$ for all $\sigma \in G$; hence e_{1} acts as the multiplicative identity. The cocycle condition (4.3) says that $A(\varphi)$ is associative. We identify L with the subfield $L e_{1}$ of $A(\varphi)$.
Proposition 4.7. The algebra $A(\varphi)$ is in $\mathcal{A}(L / k)$.
Proof. Let $a=\sum_{\sigma} \ell_{\sigma} e_{\sigma} \in A(\varphi)$ and let $\ell \in L$. Comparing $\ell a=\sum_{\sigma} \ell \ell_{\sigma} e_{\sigma}$ and $a \ell=$ $\sum_{\sigma} \ell_{\sigma} \sigma \ell e_{\sigma}$, we see that $a \in C_{A(\varphi)}(L)$ if and only if $a=\ell_{1} e_{1} \in L$. Hence $C_{A(\varphi)}(L)=L$. Similarly, if $a \in Z(A(\varphi)) \subset L$, then for all $\sigma \in G$, we have $a e_{\sigma}=e_{\sigma} a=(\sigma a) e_{\sigma}$. Thus $a \in k$, and $A(\varphi)$ is central. For the simplicity, see [1, Lemma 3.13].

Proposition 4.8. Let φ and φ^{\prime} be cohomologous 2-cocycles. Then the k-algebras $A(\varphi) \cong$ $A\left(\varphi^{\prime}\right)$ are isomorphic.

Proof sketch. If φ and φ^{\prime} are cohomologous, then there exists $a: G \rightarrow L^{\times}$such that

$$
a(\sigma) \cdot \sigma a(\tau) \cdot \varphi^{\prime}(\sigma, \tau)=a(\sigma \tau) \cdot \varphi(\sigma, \tau)
$$

The map $A(\varphi) \rightarrow A\left(\varphi^{\prime}\right), e_{\sigma} \mapsto a(\sigma) e_{\sigma}^{\prime}$ is a k-algebra isomorphism.
We thus obtain a map

$$
\begin{equation*}
\alpha: H^{2}\left(G, L^{\times}\right) \rightarrow \mathcal{A}(L / k) / \cong, \quad[\varphi] \mapsto A(\varphi) . \tag{4.6}
\end{equation*}
$$

which is inverse to (4.5). By Propositions 3.6 and 3.7 , if $A \in \mathcal{A}(L / k)$, then L splits A. We thus have a natural map

$$
\begin{equation*}
\mathcal{A}(L / k) / \cong \mapsto \operatorname{Br}(L / k), \quad A \mapsto[A] . \tag{4.7}
\end{equation*}
$$

Theorem 4.9. The map $H^{2}\left(G, L^{\times}\right) \rightarrow \operatorname{Br}(L / k),[\varphi] \mapsto[A(\varphi)]$ is a bijection.
Proof sketch. It suffices to show that (4.7) is bijective.
Injectivity. If $A \sim A^{\prime}$, there is a central division algebra D such that $A \sim D \sim A^{\prime}$, i.e. $A \cong M_{n}(D)$ and $A^{\prime} \cong M_{n}^{\prime}(D)$. Since $[A: k]=[L: k]^{2}=\left[A^{\prime}: k\right]$, it follows that $n=n^{\prime}$, so $A \cong A^{\prime}$.

Surjectivity. Follows directly from Proposition 3.7.
Let $G_{k}:=\operatorname{Gal}\left(k^{\text {sep }} / k\right)$.
Corollary 4.10. There is a natural bijection $H^{2}\left(G_{k},\left(k^{\text {sep }}\right)^{\times}\right) \xrightarrow{\sim} \operatorname{Br}(k)$.
Proof sketch. For every tower of $E \supset L \supset k$ of Galois extensions of k, the diagram

commutes. Take inductive limits (use Theorem 3.10).

References

[1] Milne, J.S.: Class Field Theory. https://www.jmilne.org/math/CourseNotes/CFT.pdf (March 2013).
[2] Stacks Project Authors: Stacks Project. https://stacks.math.columbia.edu (2018).

[^0]: ${ }^{1}$ The same argument as for finitely generated modules over a field applies over a division algebra.

