$\mathrm{H}^{1}\left(X, \mathbb{G}_{m}\right)$ and the Kummer sequence

Nicolas Müller

29.11.2018

Let X be a scheme.

$1 \mathrm{H}^{1}\left(X, \mathbb{G}_{m}\right)$

Definition 1. Let \mathcal{C} be a site with final object X and let \mathcal{G} be an abelian sheaf on \mathcal{C}. A \mathcal{G}-torsor is a sheaf of sets \mathcal{F} on \mathcal{C} with an action $\mathcal{G} \times \mathcal{F} \rightarrow \mathcal{F}$, compatible with restriction, such that

1. For each $U \in \operatorname{Ob}(\mathcal{C})$ such that $\mathcal{F}(U) \neq \varnothing$, the action of $\mathcal{G}(U)$ on $\mathcal{F}(U)$ is free and transitive.
2. For each $U \in \operatorname{Ob}(\mathcal{C})$, there exists a covering $\left\{U_{i} \rightarrow U\right\}_{i \in I}$ such that $\mathcal{F}\left(U_{i}\right) \neq \varnothing$ for all $i \in I$.
A morphism of \mathcal{G}-torsors is a \mathcal{G}-equivariant morphism of sheaves of sets.
Proposition 2. Every morphism of \mathcal{G}-torsors is an isomorphism, i.e. the category of \mathcal{G}-torsors is a groupoid.

Proof. Let $f: \mathcal{F} \rightarrow \mathcal{F}^{\prime}$ be a morphism of \mathcal{G}-torsors and let $\left\{U_{i} \rightarrow X\right\}_{i \in I}$ be an covering of X such that $\mathcal{F}\left(U_{i}\right) \neq \varnothing \neq \mathcal{F}^{\prime}\left(U_{i}\right)$ for all $i \in I$. Let $V_{i} \rightarrow U_{i}$ be a morphism in \mathcal{C}, then $\mathcal{F}\left(V_{i}\right) \neq \varnothing \neq \mathcal{F}^{\prime}\left(V_{i}\right)$ and $f\left(V_{i}\right): \mathcal{F}\left(V_{i}\right) \rightarrow \mathcal{F}\left(V_{i}\right)$ is bijective as $f\left(V_{i}\right)$ is $\mathcal{G}\left(V_{i}\right)$-invariant and $\mathcal{G}\left(V_{i}\right)$ acts freely and transitively. Hence $\left.f\right|_{U_{i}}:\left.\left.\mathcal{F}\right|_{U_{i}} \rightarrow \mathcal{F}^{\prime}\right|_{U_{i}}$ is an isomorphism and it follows that f is an isomorphism.

Definition 3. A torsor is trivial if it is isomorphic to \mathcal{G} acting on itself by lefttranslation.

Proposition 4. A \mathcal{G}-torsor \mathcal{F} is trivial if and only if $\Gamma(X, \mathcal{F}) \neq \varnothing$.
Proof. If \mathcal{F} is trivial, then $0 \in \mathcal{F}(X)$. Conversely, suppose that $\mathcal{F}(X) \neq \varnothing$ and let $x \in \mathcal{F}(X)$. We define a morphism of \mathcal{G}-torsors

$$
\begin{aligned}
\mathcal{G}(U) & \rightarrow \mathcal{F}(U) \\
g & \left.\mapsto g x\right|_{U}
\end{aligned}
$$

Since it is an isomorphism, we are done.

Remark We want to prove that there is a canonical bijection $\mathrm{H}^{1}\left(X, \mathbb{G}_{m}\right) \cong \operatorname{Pic}(X)$. We do this in two steps. First, we show that there is a canonical bijection between isomorphism classes of \mathcal{G}-torsors and $\mathrm{H}^{1}(X, \mathcal{G})$ and second we show that there is a canonical bijection between isomorphism classes of \mathbb{G}_{m}-torsors and isomorphism classes of invertible sheaves on X_{zar}.

Proposition 5. Let \mathcal{G} be an abelian sheaf on $X_{\text {ét }}$. There is a canonical bijection between the set of isomorphism classes of \mathcal{G}-torsors and $\mathrm{H}^{1}(X, \mathcal{G})$.

Proof. We construct inverse maps. Let \mathcal{F} be a \mathcal{G}-torsor. Let

$$
\mathbb{Z}[\mathcal{F}]:=\left(U \mapsto\left\{\sum^{\prime} n_{i}\left[s_{i}\right] \mid n_{i} \in \mathbb{Z}, s_{i} \in \mathcal{F}(U)\right\}\right)^{\#}
$$

denote the free abelian sheaf over \mathcal{F}. Let $\sigma: \mathbb{Z}[\mathcal{F}] \rightarrow \underline{\mathbb{Z}}$ be the sheafification of $\sum^{\prime} n_{i}\left[s_{i}\right] \mapsto \sum^{\prime} n_{i}$. This is a surjective morphism. We have

$$
\operatorname{ker} \sigma=\left(U \mapsto\left\langle[s]-\left[s^{\prime}\right] \mid s, s^{\prime} \in \mathcal{F}(U)\right\rangle\right)^{\#}
$$

Let $a: \operatorname{ker}(\sigma) \rightarrow \mathcal{G}$ be the sheafification of

$$
[s]-\left[s^{\prime}\right] \mapsto h \text { s.t. } h s^{\prime}=s .
$$

Because the abelian sheaves on $X_{\text {ét }}$ form an abelian category there is the following pushout diagram with exact rows (Stacks Project [Sta18] tags 08 N 3 and 08 N 4 for abelian categories)

The long exact sequence in cohomology yields a boundary morphism $\delta: \mathbb{Z}=\mathrm{H}^{0}(X, \underline{\mathbb{Z}}) \rightarrow$ $\mathrm{H}^{1}(X, \mathcal{G})$. Let $z_{\mathcal{F}}:=\delta(1)$.

Claim: Let \mathcal{F}^{\prime} be the subsheaf of sets of \mathcal{E} defined by

$$
\left.U \mapsto b\right|_{U} ^{-1}(1)
$$

Then $\mathcal{F} \cong \mathcal{F}^{\prime}$.
Proof. We identify \mathcal{F} with the subsheaf of sets $U \mapsto\{[s] \in \mathbb{Z}[\mathcal{F}](U)\}$ of $\mathbb{Z}[\mathcal{F}]$. Its \mathcal{G} action is given by $g[s]:=[g s]$. Then $d(\mathcal{F})$ is a subsheaf of \mathcal{F}^{\prime} and $\left.d\right|_{\mathcal{F}}$ is \mathcal{G}-equivariant. Hence we obtain a morphism, and hence an isomorphism, of \mathcal{G}-torsors $\mathcal{F} \xrightarrow{\sim} \mathcal{F}^{\prime}$.

In the following, we identify \mathcal{F} with \mathcal{F}^{\prime}.

Conversely, given $z \in \mathrm{H}^{1}(X, \mathcal{G})$, we construct a \mathcal{G}-torsor as follows: choose an embedding $\mathcal{G} \hookrightarrow \mathcal{I}$ of \mathcal{G} into an injective sheaf and let $\mathcal{Q}:=\mathcal{I} / \mathcal{G}$ denote the quotient. We obtain a long exact sequence

$$
0 \rightarrow \mathrm{H}^{0}(X, \mathcal{G}) \rightarrow \mathrm{H}^{0}(X, \mathcal{I}) \xrightarrow{p} \mathrm{H}^{0}(X, \mathcal{Q}) \xrightarrow{\delta^{\prime}} \mathrm{H}^{1}(X, \mathcal{G}) \rightarrow 0,
$$

as $\mathrm{H}^{1}(X, \mathcal{I})=0$. Pick any $q \in \delta^{\prime-1}(z)$. Define a subsheaf $\mathcal{F}^{z} \subset \mathcal{I}$ by

$$
\mathcal{F}^{z}(U):=\left.p\right|_{U} ^{-1}\left(\left.q\right|_{U}\right)
$$

Because $0 \rightarrow \mathcal{G}(U) \rightarrow \mathcal{I}(U) \rightarrow \mathcal{Q}(U)$ is exact $\mathcal{G}(U)$ acts freely and transitively on $\mathcal{F}(U)$ by translation. Furthermore, as $\mathcal{I} \rightarrow \mathcal{Q}$ is surjective, for each $U \rightarrow X$ we can find a covering $\left\{U_{i} \rightarrow U\right\}_{i \in I}$ with $\mathcal{F}(U) \neq \varnothing$. Hence \mathcal{F}^{z} is a \mathcal{G}-torsor. The isomorphism class of \mathcal{F}^{z} is independent of the choice of q : let q^{\prime} be a second choice, then $q-q^{\prime} \mapsto 0 \in \mathrm{H}^{1}(X, \mathcal{G})$ and is hence the image of a global section $p \in \mathrm{H}^{0}(X, \mathcal{I})$. Let $\mathcal{F}^{\prime z}$ be the subsheaf of \mathcal{I} obtained as the preimage of q^{\prime}. Then the map $\mathcal{F}^{z}(U) \rightarrow \mathcal{F}^{\prime z}(U):\left.x \mapsto p\right|_{U}+x$ defines an isomorphism of \mathcal{G}-torsors.

It remains to show that the maps are well-defined and inverses.
We want to show that $\mathcal{F}^{z_{\mathcal{F}}} \cong \mathcal{F}$. We obtain a commutative diagram:

The morphism $\mathcal{E} \rightarrow \mathcal{I}$ exists because \mathcal{I} is injective and the morphism $\underline{\mathbb{Z}} \rightarrow \mathcal{Q}$ is induced by the universal property of the cokernel $\underline{\mathbb{Z}}$. This diagram induces a commutative diagram in cohomology

Since the right square commutes, it follows that $1 \in \mathrm{H}^{0}(X, \underline{\mathbb{Z}})$ is mapped to some $q \in \mathrm{H}^{0}(X, \mathcal{Q})$ with $q \mapsto z_{\mathcal{F}}$. Let $\mathcal{F}^{z_{\mathcal{F}}}$ be the subsheaf of \mathcal{I} constructed above as the preimage of q. Then $f(\mathcal{F}) \subset \mathcal{F}^{z_{\mathcal{F}}}$ by construction. This induces a morphism of \mathcal{G}-torsors and hence $\mathcal{F} \cong \mathcal{F}^{z_{\mathcal{F}}}$, as desired.

Conversely, let $z \in \mathrm{H}^{1}(X, \mathcal{G})$. We want to show that $\delta(1)=z$. Construct $0 \rightarrow \mathcal{G} \rightarrow$ $\mathcal{E} \rightarrow \underline{\mathbb{Z}} \rightarrow 0$ from \mathcal{F}^{z} as above. We obtain a commutative diagram

Here g is defined as the sheafification of $[s] \mapsto s$. Let $\mathcal{F}^{\prime z} \subset \mathcal{E}$ be the \mathcal{G}-torsor isomorphic to \mathcal{F}^{z} constructed as above. Then $f\left(\mathcal{F}^{\prime z}\right)=\mathcal{F}^{z}$, as the diagram commutes.

We again obtain a commutative diagram $(*)$. As $f\left(\mathcal{F}^{\prime z}\right)=\mathcal{F}^{z}$, the morphism $\underline{\mathbb{Z}} \rightarrow \mathcal{Q}$ maps the global section 1 to q. Hence, by the commutativity of

it follows that $1 \mapsto z$, as desired.
Recall: The abelian presheaves

$$
\begin{aligned}
\mathbb{G}_{a}(U) & :=\Gamma\left(U, \mathcal{O}_{U}\right) \\
\mathbb{G}_{m}(U) & :=\Gamma\left(U, \mathcal{O}_{U}^{\times}\right) \\
\mu_{n}(U) & :=\left\{f \in \Gamma\left(U, \mathcal{O}_{U}^{\times}\right) \mid f^{n}=1\right\}
\end{aligned}
$$

are sheaves on $X_{\text {ét }}$.
Definition 6. We define the étale structure sheaf $\mathcal{O}_{X, \text { ét }}$ on X to be the sheaf of rings defined by $U \mapsto \Gamma\left(U, \mathcal{O}_{U}\right)$ for U over X.

Remark We thus obtain the notions of sheaf of $\mathcal{O}_{X, \text { ét }}$-modules and locally free and tensor product in total analogy to the notion of \mathcal{O}_{X} modules on $X_{\text {zar }}$.

Just as in the Zariski case, we obtain
Fact 7. Let \mathcal{F} be a sheaf of $\mathcal{O}_{X, \text { ét }-m o d u l e s . ~ T h e ~ f o l l o w i n g ~ a r e ~ e q u i v a l e n t ~}^{\text {. }}$

1. \mathcal{F} is locally free of rank 1
2. \mathcal{F} is invertible, i.e. there is a sheaf of $\mathcal{O}_{X, \text { ét }-m o d u l e s ~} \mathcal{F}^{\prime}$ such that $\mathcal{F} \otimes_{\mathcal{O}_{X, \text { et }}} \mathcal{F}^{\prime} \cong$ $\mathcal{O}_{X, \text { ét }}$.

Definition 8. The étale Picard group $\operatorname{Pic}\left(X_{\text {ét }}\right)$ is the group of invertible $\mathcal{O}_{X, \text { ét }}$-modules where the group law is given by the tensor product.

Theorem 9. There is a canonical bijection

$$
\mathrm{H}^{1}\left(X, \mathbb{G}_{m}\right) \cong \operatorname{Pic} X
$$

Proof. We define a maps
$\left\{\right.$ Invertible $\mathcal{O}_{X, \text { ét }}-$ modules up to iso. $\} \rightarrow\left\{\mathbb{G}_{m}\right.$-torsors up to iso. $\}$

$$
[\mathcal{L}] \mapsto\left[\mathcal{L}^{*}(U):=\left(U \mapsto\left\{s \in \mathcal{L}(U) \mid \mathcal{O}_{U} \xrightarrow{-\cdot s} \mathcal{L}_{U} \text { is an iso. }\right\}\right)\right]
$$

$[\underbrace{\left[\left(U \mapsto\left(\mathcal{F}(U) \times \mathcal{O}_{X, \text { ét }}(U)\right) / \mathbb{G}_{m}(U)\right)^{\#}\right.}_{=: \mathcal{F} \otimes_{\mathbb{G}_{m}} \mathcal{O}_{X, \text { ett }}}] \leftrightarrow[\mathcal{F}]$

We see that $\mathbb{G}_{m}(U)$ acts on $\mathcal{L}^{*}(U)$ freely and transitively by multiplication. Moreover, we see that \mathcal{L}^{*} is already a sheaf. As \mathcal{L} is locally free, we can find a cover of any U étale $\left\{U_{i} \rightarrow U\right\}$ over U such that $\mathcal{L}^{*}\left(U_{i}\right) \cong \mathbb{G}_{m}\left(U_{i}\right) \neq \varnothing$. Therefore \mathcal{L}^{*} is a \mathbb{G}_{m}-torsor. The map is clearly defined on isomorphism classes.

In the other direction $g \in \mathbb{G}_{m}(U)$ acts on $(s, f) \in \mathcal{F}(U) \times \mathcal{O}_{X \text {,ét }}(U)$ by $g(s, f):=$ $\left(g s, g^{-1} f\right)$. We set $(s, f)+\left(s^{\prime}, f^{\prime}\right):=\left(s, f+\left(s^{\prime} / s\right) f^{\prime}\right)$, where $s^{\prime} / s \in \mathbb{G}_{m}(U)$ such that $\left(s^{\prime} / s\right) s=s^{\prime}$. We make it into a sheaf of $\mathcal{O}_{X, \text { ét }}$-modules by setting $h(s, f):=(s, h f)$ for $h \in \mathcal{O}_{X, \text { ét }}(U)$.
Claim: The $\mathcal{O}_{X, \text { ét }- \text { module }} \mathcal{F} \otimes_{\mathbb{G}_{m}} \mathcal{O}_{X, \text { ét }}$ is invertible.
Proof. Let $\left\{U_{i} \rightarrow X\right\}_{i \in I}$ be a covering of X such that $\mathcal{F}\left(U_{i}\right) \neq \varnothing$ for all $i \in I$. For each i we can pick an isomorphism of sheaves of sets $\varphi_{i}:\left.\left.\mathcal{F}\right|_{U_{i}} \xrightarrow{\sim} \mathbb{G}_{m}\right|_{U_{i}}$. We define a morphism of presheaves

$$
\begin{aligned}
\left(\mathbb{G}_{m}(U) \times \mathcal{O}_{X, \text { ét }}(U)\right) / \mathbb{G}_{m}(U) & \rightarrow \mathcal{O}_{X, \text { ét }}(U) \\
(s, f) & \mapsto s f .
\end{aligned}
$$

By a short calculation one verifies that this is an isomorphism of $\mathcal{O}_{X, \text { ét }}(U)$-modules. Therefore $\left.\left(\mathcal{F} \otimes_{\mathbb{G}_{m}} \mathcal{O}_{X, \text { ét }}\right)\right|_{U_{i}} \cong \mathcal{O}_{U_{i}, \text { ét }}$, as desired.

We show that the two constructions are inverse to each other. Let \mathcal{L} be an invertible $\mathcal{O}_{X, \text { ét }}$-module. Let $\left\{U_{i} \rightarrow X\right\}_{i \in I}$ be a covering such that $\mathcal{L}^{*}\left(U_{i}\right) \neq \varnothing$ for all i. For $U \rightarrow U_{i}$ the map

$$
\begin{aligned}
\left(\mathcal{L}^{*}(U) \times \mathcal{O}_{X, \text { ett }}(U)\right) / \mathbb{G}_{m}(U) & \rightarrow \mathcal{L}(U) \\
(s, f) & \mapsto s f
\end{aligned}
$$

defines a canonical isomorphism $\left.\left.\left(\mathcal{L}^{*} \otimes_{\mathbb{G}_{m}} \mathcal{O}_{X, \text { ét }}\right)\right|_{U_{i}} \cong \mathcal{L}\right|_{U_{i}}$. These isomorphism glue and we obtain a global isomorphism.

Conversely, let \mathcal{F} be a \mathbb{G}_{m}-torsor. We have for U such that $\mathcal{F}(U) \neq \varnothing$

$$
\left(\left(\mathcal{F}(U) \times \mathcal{O}_{X, \text { ét }}(U)\right) / \mathbb{G}_{m}(U)\right)^{*}=\left(\left(\mathcal{F}(U) \times \mathcal{O}_{X, \text { ét }}(U)^{\times}\right) / \mathbb{G}_{m}(U)\right) \cong \mathcal{F}(U)
$$

canonically. Again, we glue these and have $\left(\mathcal{F} \otimes_{\mathbb{G}_{m}} \mathcal{O}_{X, \text { ét }}\right)^{*} \cong \mathcal{F}$.
Using the theorem above, we have shown $\mathrm{H}^{1}\left(X, \mathbb{G}_{m}\right) \cong \operatorname{Pic} X_{\text {ét }}$. But we have Pic $X_{\text {ét }} \cong \operatorname{Pic} X_{\text {zar }}$ by descent of quasi-coherent sheaves.

Remark One can show that this is in fact a group isomorphism.
For more properties and motivation for the $\mathcal{F} \otimes_{\mathbb{G}_{m}} \mathcal{O}_{X, \text { ét }}$-construction see for example [vB14].

2 The Kummer sequence

Lemma 10. Let A be a ring, let $P \in A[T]$ be a monic polynomial and let $B:=A[T] /(P)$. Suppose that the derivative P^{\prime} is a unit in B. Then the induced morphism $\operatorname{Spec} B \rightarrow$ $\operatorname{Spec} A$ is surjective and étale.

Proof. Since B is free of rank $\operatorname{deg} P$ over A, the inclusion $A \subset B$ is faithfully flat. Clearly the morphism is of finite type. To show that the map is unramified, we just show that $\Omega_{B / A}=0$. This follows from the second exact sequence for differentials

$$
\begin{aligned}
(P) /\left(P^{2}\right) & \rightarrow B \cdot d T \rightarrow \Omega_{B / A} \rightarrow 0 \\
P & \mapsto P^{\prime} d T .
\end{aligned}
$$

Proposition 11 (Kummer sequence). For every $n>1$ with $n \in \Gamma\left(X, \mathcal{O}_{X}^{\times}\right)$, the sequence of étale sheaves

$$
1 \rightarrow \mu_{n, X} \rightarrow \mathbb{G}_{m} \xrightarrow{x \mapsto x^{n}} \mathbb{G}_{m} \rightarrow 1
$$

is exact.
Proof. By definition $\mu_{n, X}$ is the kernel of $x \mapsto x^{n}$. It remains to show the surjectivity of $x \mapsto x^{n}$ onto \mathbb{G}_{m}. Let U be a scheme over X and let $f \in \Gamma\left(U, \mathcal{O}_{U}\right)^{\times}$. We need to find an étale covering $\mathcal{U}=\left\{U_{i} \rightarrow U\right\}_{i \in I}$ of U such that $\left.f\right|_{U_{i}}$ has an n-th root for all $i \in I$. After covering U with affine opens, we can reduce to the case when $U=\operatorname{Spec} A$ is affine. Let $B:=\operatorname{Spec} A[T] /\left(T^{n}-f\right)$ and let $U^{\prime}:=\operatorname{Spec} B$. Let $\pi: U^{\prime} \rightarrow U$ denote the morphism induced by the inclusion $A \subset B$. We calculate $\frac{d\left(T^{n}-f\right)}{d T}=n T^{n-1}$ which is a unit in B. Hence, by Lemma 10, the morphism π is étale and surjective. Furthermore, the section $T \in \Gamma\left(\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B}\right)$ is an n-th root for $\left.f\right|_{\operatorname{Spec} B}$.

References

[Sta18] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia. edu, 2018.
[vB14] R. van Bommel, Cohomology on quasi-coherents, torsors, h^{1} and the picard group, 2014, https://www.raymondvanbommel.nl/talks/etale3.pdf.

