$\mathrm{H}^{1}(X,\mathbb{G}_{m})$ and the Kummer sequence

Nicolas Müller

29.11.2018

Let X be a scheme.

1 $\mathrm{H}^1(X, \mathbb{G}_m)$

Definition 1. Let C be a site with final object X and let G be an abelian sheaf on C. A G-torsor is a sheaf of sets \mathcal{F} on C with an action $G \times \mathcal{F} \to \mathcal{F}$, compatible with restriction, such that

- 1. For each $U \in Ob(\mathcal{C})$ such that $\mathcal{F}(U) \neq \emptyset$, the action of $\mathcal{G}(U)$ on $\mathcal{F}(U)$ is free and transitive.
- 2. For each $U \in Ob(\mathcal{C})$, there exists a covering $\{U_i \to U\}_{i \in I}$ such that $\mathcal{F}(U_i) \neq \emptyset$ for all $i \in I$.

A morphism of \mathcal{G} -torsors is a \mathcal{G} -equivariant morphism of sheaves of sets.

Proposition 2. Every morphism of \mathcal{G} -torsors is an isomorphism, i.e. the category of \mathcal{G} -torsors is a groupoid.

Proof. Let $f : \mathcal{F} \to \mathcal{F}'$ be a morphism of \mathcal{G} -torsors and let $\{U_i \to X\}_{i \in I}$ be an covering of X such that $\mathcal{F}(U_i) \neq \emptyset \neq \mathcal{F}'(U_i)$ for all $i \in I$. Let $V_i \to U_i$ be a morphism in \mathcal{C} , then $\mathcal{F}(V_i) \neq \emptyset \neq \mathcal{F}'(V_i)$ and $f(V_i) : \mathcal{F}(V_i) \to \mathcal{F}(V_i)$ is bijective as $f(V_i)$ is $\mathcal{G}(V_i)$ -invariant and $\mathcal{G}(V_i)$ acts freely and transitively. Hence $f|_{U_i} : \mathcal{F}|_{U_i} \to \mathcal{F}'|_{U_i}$ is an isomorphism and it follows that f is an isomorphism. \Box

Definition 3. A torsor is trivial if it is isomorphic to \mathcal{G} acting on itself by left-translation.

Proposition 4. A *G*-torsor \mathcal{F} is trivial if and only if $\Gamma(X, \mathcal{F}) \neq \emptyset$.

Proof. If \mathcal{F} is trivial, then $0 \in \mathcal{F}(X)$. Conversely, suppose that $\mathcal{F}(X) \neq \emptyset$ and let $x \in \mathcal{F}(X)$. We define a morphism of \mathcal{G} -torsors

$$\mathcal{G}(U) \to \mathcal{F}(U)$$
$$g \mapsto gx|_U.$$

Since it is an isomorphism, we are done.

Remark We want to prove that there is a canonical bijection $\mathrm{H}^1(X, \mathbb{G}_m) \cong \mathrm{Pic}(X)$. We do this in two steps. First, we show that there is a canonical bijection between isomorphism classes of \mathcal{G} -torsors and $\mathrm{H}^1(X, \mathcal{G})$ and second we show that there is a canonical bijection between isomorphism classes of \mathbb{G}_m -torsors and isomorphism classes of invertible sheaves on X_{zar} .

Proposition 5. Let \mathcal{G} be an abelian sheaf on $X_{\text{\acute{e}t}}$. There is a canonical bijection between the set of isomorphism classes of \mathcal{G} -torsors and $\mathrm{H}^1(X, \mathcal{G})$.

Proof. We construct inverse maps. Let \mathcal{F} be a \mathcal{G} -torsor. Let

$$\mathbb{Z}[\mathcal{F}] := \left(U \mapsto \left\{ \sum' n_i[s_i] \mid n_i \in \mathbb{Z}, s_i \in \mathcal{F}(U) \right\} \right)^{\#}.$$

denote the free abelian sheaf over \mathcal{F} . Let $\sigma : \mathbb{Z}[\mathcal{F}] \to \mathbb{Z}$ be the sheafification of $\sum' n_i[s_i] \mapsto \sum' n_i$. This is a surjective morphism. We have

$$\ker \sigma = (U \mapsto \langle [s] - [s'] \mid s, s' \in \mathcal{F}(U) \rangle)^{\#}.$$

Let $a : \ker(\sigma) \to \mathcal{G}$ be the sheafification of

$$[s] - [s'] \mapsto h$$
 s.t. $hs' = s$.

Because the abelian sheaves on $X_{\text{\acute{e}t}}$ form an abelian category there is the following pushout diagram with exact rows (Stacks Project [Sta18] tags 08N3 and 08N4 for abelian categories)

$$\begin{array}{ccc} 0 \longrightarrow \ker(\sigma) \longrightarrow \mathbb{Z}[\mathcal{F}] \xrightarrow{\sigma} \mathbb{Z} \longrightarrow 0 \\ & & & & & \\ & & & & & \\ & & & & & \\ 0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{E} \xrightarrow{b} \mathbb{Z} \longrightarrow 0 \end{array}$$

The long exact sequence in cohomology yields a boundary morphism $\delta : \mathbb{Z} = \mathrm{H}^0(X, \underline{\mathbb{Z}}) \to \mathrm{H}^1(X, \mathcal{G})$. Let $z_{\mathcal{F}} := \delta(1)$.

Claim: Let \mathcal{F}' be the subsheaf of sets of \mathcal{E} defined by

$$U \mapsto b|_U^{-1}(1).$$

Then $\mathcal{F} \cong \mathcal{F}'$.

Proof. We identify \mathcal{F} with the subsheaf of sets $U \mapsto \{[s] \in \mathbb{Z}[\mathcal{F}](U)\}$ of $\mathbb{Z}[\mathcal{F}]$. Its \mathcal{G} -action is given by g[s] := [gs]. Then $d(\mathcal{F})$ is a subsheaf of \mathcal{F}' and $d|_{\mathcal{F}}$ is \mathcal{G} -equivariant. Hence we obtain a morphism, and hence an isomorphism, of \mathcal{G} -torsors $\mathcal{F} \xrightarrow{\sim} \mathcal{F}'$. \Box

In the following, we identify \mathcal{F} with \mathcal{F}' .

Conversely, given $z \in H^1(X, \mathcal{G})$, we construct a \mathcal{G} -torsor as follows: choose an embedding $\mathcal{G} \hookrightarrow \mathcal{I}$ of \mathcal{G} into an injective sheaf and let $\mathcal{Q} := \mathcal{I}/\mathcal{G}$ denote the quotient. We obtain a long exact sequence

$$0 \to \mathrm{H}^{0}(X, \mathcal{G}) \to \mathrm{H}^{0}(X, \mathcal{I}) \xrightarrow{p} \mathrm{H}^{0}(X, \mathcal{Q}) \xrightarrow{\delta'} \mathrm{H}^{1}(X, \mathcal{G}) \to 0,$$

as $\mathrm{H}^1(X,\mathcal{I}) = 0$. Pick any $q \in \delta'^{-1}(z)$. Define a subsheaf $\mathcal{F}^z \subset \mathcal{I}$ by

$$\mathcal{F}^{z}(U) := p|_{U}^{-1}(q|_{U}).$$

Because $0 \to \mathcal{G}(U) \to \mathcal{I}(U) \to \mathcal{Q}(U)$ is exact $\mathcal{G}(U)$ acts freely and transitively on $\mathcal{F}(U)$ by translation. Furthermore, as $\mathcal{I} \to \mathcal{Q}$ is surjective, for each $U \to X$ we can find a covering $\{U_i \to U\}_{i \in I}$ with $\mathcal{F}(U) \neq \emptyset$. Hence \mathcal{F}^z is a \mathcal{G} -torsor. The isomorphism class of \mathcal{F}^z is independent of the choice of q: let q' be a second choice, then $q - q' \mapsto 0 \in \mathrm{H}^1(X, \mathcal{G})$ and is hence the image of a global section $p \in \mathrm{H}^0(X, \mathcal{I})$. Let \mathcal{F}'^z be the subsheaf of \mathcal{I} obtained as the preimage of q'. Then the map $\mathcal{F}^z(U) \to \mathcal{F}'^z(U) : x \mapsto p|_U + x$ defines an isomorphism of \mathcal{G} -torsors.

It remains to show that the maps are well-defined and inverses.

We want to show that $\mathcal{F}^{z_{\mathcal{F}}} \cong \mathcal{F}$. We obtain a commutative diagram:

The morphism $\mathcal{E} \to \mathcal{I}$ exists because \mathcal{I} is injective and the morphism $\underline{\mathbb{Z}} \to \mathcal{Q}$ is induced by the universal property of the cokernel $\underline{\mathbb{Z}}$. This diagram induces a commutative diagram in cohomology

Since the right square commutes, it follows that $1 \in \mathrm{H}^0(X, \mathbb{Z})$ is mapped to some $q \in \mathrm{H}^0(X, \mathcal{Q})$ with $q \mapsto z_{\mathcal{F}}$. Let $\mathcal{F}^{z_{\mathcal{F}}}$ be the subsheaf of \mathcal{I} constructed above as the preimage of q. Then $f(\mathcal{F}) \subset \mathcal{F}^{z_{\mathcal{F}}}$ by construction. This induces a morphism of \mathcal{G} -torsors and hence $\mathcal{F} \cong \mathcal{F}^{z_{\mathcal{F}}}$, as desired.

Conversely, let $z \in H^1(X, \mathcal{G})$. We want to show that $\delta(1) = z$. Construct $0 \to \mathcal{G} \to \mathcal{E} \to \mathbb{Z} \to 0$ from \mathcal{F}^z as above. We obtain a commutative diagram

Here g is defined as the sheafification of $[s] \mapsto s$. Let $\mathcal{F}'^z \subset \mathcal{E}$ be the \mathcal{G} -torsor isomorphic to \mathcal{F}^z constructed as above. Then $f(\mathcal{F}'^z) = \mathcal{F}^z$, as the diagram commutes.

We again obtain a commutative diagram (*). As $f(\mathcal{F}'^z) = \mathcal{F}^z$, the morphism $\underline{\mathbb{Z}} \to \mathcal{Q}$ maps the global section 1 to q. Hence, by the commutativity of

it follows that $1 \mapsto z$, as desired.

Recall: The abelian presheaves

$$\mathbb{G}_{a}(U) := \Gamma(U, \mathcal{O}_{U})
\mathbb{G}_{m}(U) := \Gamma(U, \mathcal{O}_{U}^{\times})
\mu_{n}(U) := \{f \in \Gamma(U, \mathcal{O}_{U}^{\times}) \mid f^{n} = 1\}$$

are sheaves on $X_{\text{ét}}$.

Definition 6. We define the étale structure sheaf $\mathcal{O}_{X,\text{ét}}$ on X to be the sheaf of rings defined by $U \mapsto \Gamma(U, \mathcal{O}_U)$ for U over X.

Remark We thus obtain the notions of *sheaf of* $\mathcal{O}_{X,\text{\acute{e}t}}$ -modules and *locally free* and *tensor product* in total analogy to the notion of \mathcal{O}_X modules on X_{zar} .

Just as in the Zariski case, we obtain

Fact 7. Let \mathcal{F} be a sheaf of $\mathcal{O}_{X,\text{\'et}}$ -modules. The following are equivalent

- 1. \mathcal{F} is locally free of rank 1
- 2. \mathcal{F} is invertible, i.e. there is a sheaf of $\mathcal{O}_{X,\text{\'et}}$ -modules \mathcal{F}' such that $\mathcal{F} \otimes_{\mathcal{O}_{X,\text{\'et}}} \mathcal{F}' \cong \mathcal{O}_{X,\text{\'et}}$.

Definition 8. The étale Picard group $\operatorname{Pic}(X_{\acute{e}t})$ is the group of invertible $\mathcal{O}_{X,\acute{e}t}$ -modules where the group law is given by the tensor product.

Theorem 9. There is a canonical bijection

$$\mathrm{H}^1(X, \mathbb{G}_m) \cong \operatorname{Pic} X.$$

Proof. We define a maps

{Invertible $\mathcal{O}_{X,\text{ét}}$ -modules up to iso.} $\rightarrow \{\mathbb{G}_m$ -torsors up to iso.}

$$[\mathcal{L}] \mapsto [\mathcal{L}^*(U) := (U \mapsto \{s \in \mathcal{L}(U) \mid \mathcal{O}_U \xrightarrow{-\cdot s} \mathcal{L}_U \text{ is an iso.}\})]$$
$$\underbrace{[(U \mapsto (\mathcal{F}(U) \times \mathcal{O}_{X,\text{\'et}}(U))/\mathbb{G}_m(U))^{\#}]}_{=:\mathcal{F} \otimes_{\mathbb{G}_m} \mathcal{O}_{X,\text{\'et}}} \mapsto [\mathcal{F}]$$

We see that $\mathbb{G}_m(U)$ acts on $\mathcal{L}^*(U)$ freely and transitively by multiplication. Moreover, we see that \mathcal{L}^* is already a sheaf. As \mathcal{L} is locally free, we can find a cover of any Uétale $\{U_i \to U\}$ over U such that $\mathcal{L}^*(U_i) \cong \mathbb{G}_m(U_i) \neq \emptyset$. Therefore \mathcal{L}^* is a \mathbb{G}_m -torsor. The map is clearly defined on isomorphism classes.

In the other direction $g \in \mathbb{G}_m(U)$ acts on $(s, f) \in \mathcal{F}(U) \times \mathcal{O}_{X,\text{ét}}(U)$ by $g(s, f) := (gs, g^{-1}f)$. We set (s, f) + (s', f') := (s, f + (s'/s)f'), where $s'/s \in \mathbb{G}_m(U)$ such that (s'/s)s = s'. We make it into a sheaf of $\mathcal{O}_{X,\text{ét}}$ -modules by setting h(s, f) := (s, hf) for $h \in \mathcal{O}_{X,\text{ét}}(U)$.

Claim: The $\mathcal{O}_{X,\text{\'et}}$ -module $\mathcal{F} \otimes_{\mathbb{G}_m} \mathcal{O}_{X,\text{\'et}}$ is invertible.

Proof. Let $\{U_i \to X\}_{i \in I}$ be a covering of X such that $\mathcal{F}(U_i) \neq \emptyset$ for all $i \in I$. For each i we can pick an isomorphism of sheaves of sets $\varphi_i : \mathcal{F}|_{U_i} \xrightarrow{\sim} \mathbb{G}_m|_{U_i}$. We define a morphism of presheaves

$$(\mathbb{G}_m(U) \times \mathcal{O}_{X,\text{\'et}}(U))/\mathbb{G}_m(U) \to \mathcal{O}_{X,\text{\'et}}(U)$$
$$(s, f) \mapsto sf.$$

By a short calculation one verifies that this is an isomorphism of $\mathcal{O}_{X,\text{\acute{e}t}}(U)$ -modules. Therefore $(\mathcal{F} \otimes_{\mathbb{G}_m} \mathcal{O}_{X,\text{\acute{e}t}})|_{U_i} \cong \mathcal{O}_{U_i,\text{\acute{e}t}}$, as desired.

We show that the two constructions are inverse to each other. Let \mathcal{L} be an invertible $\mathcal{O}_{X,\text{\acute{e}t}}$ -module. Let $\{U_i \to X\}_{i \in I}$ be a covering such that $\mathcal{L}^*(U_i) \neq \emptyset$ for all i. For $U \to U_i$ the map

$$(\mathcal{L}^*(U) \times \mathcal{O}_{X,\text{\'et}}(U)) / \mathbb{G}_m(U) \to \mathcal{L}(U) (s, f) \mapsto sf$$

defines a canonical isomorphism $(\mathcal{L}^* \otimes_{\mathbb{G}_m} \mathcal{O}_{X,\text{\'et}})|_{U_i} \cong \mathcal{L}|_{U_i}$. These isomorphism glue and we obtain a global isomorphism.

Conversely, let \mathcal{F} be a \mathbb{G}_m -torsor. We have for U such that $\mathcal{F}(U) \neq \emptyset$

$$((\mathcal{F}(U) \times \mathcal{O}_{X,\text{ét}}(U))/\mathbb{G}_m(U))^* = ((\mathcal{F}(U) \times \mathcal{O}_{X,\text{ét}}(U)^{\times})/\mathbb{G}_m(U)) \cong \mathcal{F}(U),$$

canonically. Again, we glue these and have $(\mathcal{F} \otimes_{\mathbb{G}_m} \mathcal{O}_{X,\text{\acute{e}t}})^* \cong \mathcal{F}$.

Using the theorem above, we have shown $\mathrm{H}^1(X, \mathbb{G}_m) \cong \mathrm{Pic} X_{\mathrm{\acute{e}t}}$. But we have $\mathrm{Pic} X_{\mathrm{\acute{e}t}} \cong \mathrm{Pic} X_{\mathrm{zar}}$ by descent of quasi-coherent sheaves.

Remark One can show that this is in fact a group isomorphism.

For more properties and motivation for the $\mathcal{F} \otimes_{\mathbb{G}_m} \mathcal{O}_{X,\text{\acute{e}t}}$ -construction see for example [vB14].

2 The Kummer sequence

Lemma 10. Let A be a ring, let $P \in A[T]$ be a monic polynomial and let B := A[T]/(P). Suppose that the derivative P' is a unit in B. Then the induced morphism Spec $B \rightarrow$ Spec A is surjective and étale.

Proof. Since B is free of rank deg P over A, the inclusion $A \subset B$ is faithfully flat. Clearly the morphism is of finite type. To show that the map is unramified, we just show that $\Omega_{B/A} = 0$. This follows from the second exact sequence for differentials

$$(P)/(P^2) \to B \cdot dT \to \Omega_{B/A} \to 0$$

 $P \mapsto P' dT.$

Proposition 11 (Kummer sequence). For every n > 1 with $n \in \Gamma(X, \mathcal{O}_X^{\times})$, the sequence of étale sheaves

$$1 \to \mu_{n,X} \to \mathbb{G}_m \xrightarrow{x \mapsto x^n} \mathbb{G}_m \to 1$$

is exact.

Proof. By definition $\mu_{n,X}$ is the kernel of $x \mapsto x^n$. It remains to show the surjectivity of $x \mapsto x^n$ onto \mathbb{G}_m . Let U be a scheme over X and let $f \in \Gamma(U, \mathcal{O}_U)^{\times}$. We need to find an étale covering $\mathcal{U} = \{U_i \to U\}_{i \in I}$ of U such that $f|_{U_i}$ has an n-th root for all $i \in I$. After covering U with affine opens, we can reduce to the case when $U = \operatorname{Spec} A$ is affine. Let $B := \operatorname{Spec} A[T]/(T^n - f)$ and let $U' := \operatorname{Spec} B$. Let $\pi : U' \to U$ denote the morphism induced by the inclusion $A \subset B$. We calculate $\frac{d(T^n - f)}{dT} = nT^{n-1}$ which is a unit in B. Hence, by Lemma 10, the morphism π is étale and surjective. Furthermore, the section $T \in \Gamma(\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B})$ is an n-th root for $f|_{\operatorname{Spec} B}$. \Box

References

- [Sta18] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia. edu, 2018.
- [vB14] R. van Bommel, Cohomology on quasi-coherents, torsors, h¹ and the picard group, 2014, https://www.raymondvanbommel.nl/talks/etale3.pdf.