H'(X,G,,) and the Kummer sequence

Nicolas Muller
29.11.2018

Let X be a scheme.

1 HY(X,G,)

Definition 1. Let C be a site with final object X and let G be an abelian sheaf on C. A
G-torsor is a sheaf of sets F on C with an action G X F — F, compatible with restriction,
such that

1. For each U € Ob(C) such that F(U) # @&, the action of G(U) on F(U) is free and

transitive.

2. For each U € Ob(C), there exists a covering {U; — U }ier such that F(U;) # @
foralli e I.

A morphism of G-torsors is a G-equivariant morphism of sheaves of sets.

Proposition 2. Fvery morphism of G-torsors is an isomorphism, i.e. the category of
G-torsors is a groupoid.

Proof. Let f: F — F' be a morphism of G-torsors and let {U; — X };c; be an covering
of X such that F(U;) # @ # F'(U;) for all i € I. Let V; — U; be a morphism in C, then
F(V;) # @ # F'(V;) and f(V;) : F(Vi) — F(V;) is bijective as f(V;) is G(V;)-invariant
and G(V;) acts freely and transitively. Hence f|y, : F|u, — F'|u, is an isomorphism and
it follows that f is an isomorphism. ]

Definition 3. A torsor is trivial if it is isomorphic to G acting on itself by left-
translation.

Proposition 4. A G-torsor F is trivial if and only if I'(X, F) # @.

Proof. If F is trivial, then 0 € F(X). Conversely, suppose that F(X) # @& and let
x € F(X). We define a morphism of G-torsors

GU)— FU)
g grly.

Since it is an isomorphism, we are done. [



Remark We want to prove that there is a canonical bijection H'(X,G,,) = Pic(X).
We do this in two steps. First, we show that there is a canonical bijection between
isomorphism classes of G-torsors and Hl(X ,G) and second we show that there is a
canonical bijection between isomorphism classes of G,,-torsors and isomorphism classes
of invertible sheaves on X, .

Proposition 5. Let G be an abelian sheaf on X¢. There is a canonical bijection between
the set of isomorphism classes of G-torsors and H' (X, G).

Proof. We construct inverse maps. Let F be a G-torsor. Let

ZIF] = (U s {Z/ni[si]

denote the free abelian sheaf over F. Let o : Z[F] — Z be the sheafification of
S 'ny[si] = Y_'n;. This is a surjective morphism. We have

n; € L,s; € f(U)}>#.

kero = (U ([s] = [s] | 5,8 € FU))".
Let a : ker(o) — G be the sheafification of
[s] = [¢'] = h s.t. hs' = s.

Because the abelian sheaves on Xy form an abelian category there is the following
pushout diagram with exact rows (Stacks Project [Stal8] tags 08N3 and 08N4 for abelian
categories)

0—>ker(o) —=Z|F] 2 ~Z 0.

b

0 G -t .7 .0

The long exact sequence in cohomology yields a boundary morphism ¢ : Z = H*(X,Z) —
HY(X,G). Let 27 := d6(1).
Claim: Let F' be the subsheaf of sets of £ defined by

U~ bl (1).
Then F = F'.

Proof. We identify F with the subsheaf of sets U — {[s] € Z[F|(U)} of Z[F]. Its G-
action is given by g[s] := [¢gs]. Then d(F) is a subsheaf of " and d|r is G-equivariant.
Hence we obtain a morphism, and hence an isomorphism, of G-torsors F — F'. 0

In the following, we identify F with F'.



Conversely, given 2z € H'(X,G), we construct a G-torsor as follows: choose an em-
bedding G < Z of G into an injective sheaf and let Q := Z/G denote the quotient. We
obtain a long exact sequence

0 — H(X,G) — H(X,T) & H°(X, Q) & H'(X,G) — 0,
as HY(X,Z) = 0. Pick any g € & '(2). Define a subsheaf 7* C Z by

F*(U) = pl*(q]v)-

Because 0 - G(U) — Z(U) — Q(U) is exact G(U) acts freely and transitively on F(U)
by translation. Furthermore, as Z — @ is surjective, for each U — X we can find a
covering {U; — U }ier with F(U) # @. Hence F? is a G-torsor. The isomorphism class of
F# is independent of the choice of ¢: let ¢’ be a second choice, then g—¢' — 0 € H'(X, G)
and is hence the image of a global section p € H°(X,Z). Let F’* be the subsheaf of Z
obtained as the preimage of ¢’. Then the map F*(U) — F*(U) : x — p|y + = defines
an isomorphism of G-torsors.

It remains to show that the maps are well-defined and inverses.

We want to show that /%7 = F. We obtain a commutative diagram:

0—>G—rE—nZ—>0 (%)

N

0 g v Q 0

The morphism £ — 7 exists because Z is injective and the morphism Z — Q is induced
by the universal property of the cokernel Z. This diagram induces a commutative
diagram in cohomology

0——=H(X,G) —=H'(X, &) —=H(X, Z) —= H(X, G)

| |

0 —>H(X,G) —>H(X,T) —=H(X, Q) —=H'(X,G) —~

Since the right square commutes, it follows that 1 € H°(X,Z) is mapped to some
q € H'(X, Q) with ¢ — zz. Let F** be the subsheaf of Z constructed above as the
preimage of g. Then f(F) C F** by construction. This induces a morphism of G-torsors
and hence F = F*7 as desired.

Conversely, let 2z € H'(X,G). We want to show that §(1) = 2. Construct 0 — G —
& - Z — 0 from F* as above. We obtain a commutative diagram

ker(o) — Z[F?]

| N
N9
G——¢
f\\\



Here g is defined as the sheafification of [s] — s. Let F"* C & be the G-torsor isomorphic
to F* constructed as above. Then f(F’*) = F?, as the diagram commutes.

We again obtain a commutative diagram (x). As f(F"*) = F*, the morphism Z — Q
maps the global section 1 to q. Hence, by the commutativity of

1€ HY(X,Z) H'(X,G)

|

qe H'(X, Q) —=HY(X,G) >
it follows that 1 +— z, as desired. O

Recall: The abelian presheaves

G.(U) :==T'(U, OU)
Gn(U) =T, 0)
m(U) :={f € (U, 0p) | [* =1}
are sheaves on Xg;.

Definition 6. We define the étale structure sheaf Ox ¢ on X to be the sheaf of rings
defined by U — T'(U, Oy) for U over X.

Remark We thus obtain the notions of sheaf of Ox ¢-modules and locally free and
tensor product in total analogy to the notion of Ox modules on X,,;.

Just as in the Zariski case, we obtain
Fact 7. Let F be a sheaf of Ox ¢-modules. The following are equivalent
1. F is locally free of rank 1

2. F is invertible, i.e. there is a sheaf of Ox g-modules F' such that F ®oy , F' =
Ox et

Definition 8. The étale Picard group Pic(X) is the group of invertible Ox ¢-modules
where the group law is given by the tensor product.

Theorem 9. There is a canonical bijection
H'(X,G,,) = Pic X.
Proof. We define a maps
{Invertible Ox ¢-modules up to iso.} — {G,,-torsors up to iso.}
(L] = [L£*(U) == (U {s € LIU) | Oy == Ly is an iso.})]
(U (FIU) x Ox ) /C(U))] - 7]

.

=:F @Gy, Ox 6t



We see that G,,(U) acts on L*(U) freely and transitively by multiplication. More-
over, we see that £* is already a sheaf. As L is locally free, we can find a cover of any U
étale {U; — U} over U such that L*(U;) = G,,(U;) # @. Therefore £* is a G,,-torsor.
The map is clearly defined on isomorphism classes.

In the other direction g € G,,(U) acts on (s, f) € F(U) x Ox&(U) by g(s, f) :==
(95,971 f). We set (s, f)+ (s, f) == (s, f + (s/s)f), where §'/s € G,,(U) such that
(s'/s)s = s'. We make it into a sheaf of Ox ¢-modules by setting h(s, f) := (s, hf) for
h e O)Qét(U).

Claim: The Ox ¢-module F ®g,, Ox ¢ is invertible.

Proof. Let {U; — X}ier be a covering of X such that F(U;) # @ for all i € I. For
each ¢ we can pick an isomorphism of sheaves of sets ¢; : F|y, — G|p,. We define a
morphism of presheaves

(Gm(U) x Ox:(U)) /G (U) = Oxe(U)

(s, f) > sf.
By a short calculation one verifies that this is an isomorphism of Ox ¢ (U)-modules.
Therefore (F ®g,, Oxet)|v, = Ou, e, as desired. O

We show that the two constructions are inverse to each other. Let £ be an invertible
Ox¢-module. Let {U; — X}ier be a covering such that £*(U;) # @ for all i. For
U — U; the map

(L(U) x Ox(U))/Gm(U) = L(U)
(s, f) = sf

defines a canonical isomorphism (£* ®g,, Oxet)|v;, = L]y,. These isomorphism glue and

we obtain a global isomorphism.
Conversely, let F be a G,,-torsor. We have for U such that F(U) # @&

(F(U) x Ox&(U)) /G (U))" = (F(U) x Oxs(U)")/Gn(U)) = F(U),

canonically. Again, we glue these and have (F ®g,, Ox¢)* = F.
Using the theorem above, we have shown H'(X,G,,) = PicX4. But we have
Pic X4 =2 Pic X,., by descent of quasi-coherent sheaves. O]

Remark One can show that this is in fact a group isomorphism.

For more properties and motivation for the F ®g,, Ox ¢-construction see for example
[vB14].



2 The Kummer sequence

Lemma 10. Let A be a ring, let P € A[T| be a monic polynomial and let B := A[T]/(P).
Suppose that the derivative P’ is a unit in B. Then the induced morphism Spec B —
Spec A is surjective and étale.

Proof. Since B is free of rank deg P over A, the inclusion A C B is faithfully flat.
Clearly the morphism is of finite type. To show that the map is unramified, we just
show that 25,4 = 0. This follows from the second exact sequence for differentials

(P)/(P*) — B-dT — Qpa—0
P PdT.

]

Proposition 11 (Kummer sequence). For everyn > 1 withn € I'(X, O%), the sequence

of étale sheaves
T

1= ppx = Gy —— G, = 1

15 exact.

Proof. By definition p,, x is the kernel of x — 2. It remains to show the surjectivity of
x — 2" onto G,,. Let U be a scheme over X and let f € I'(U, Oy)*. We need to find an
étale covering U = {U; — U }ier of U such that f|y, has an n-th root for all ¢ € . After
covering U with affine opens, we can reduce to the case when U = Spec A is affine. Let
B := Spec A[T]|/(T™ — f) and let U’ := Spec B. Let 7 : U' — U denote the morphism

induced by the inclusion A C B. We calculate A" ~f) — pTn=1 which is a unit in B.

T
Hence, by Lemma , the morphism 7 is étale and surjective. Furthermore, the section
T € I'(Spec B, Ospec ) is an n-th root for f|spec - O
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