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Let X be a scheme.

1 H1(X,Gm)

Definition 1. Let C be a site with final object X and let G be an abelian sheaf on C. A
G-torsor is a sheaf of sets F on C with an action G×F → F , compatible with restriction,
such that

1. For each U ∈ Ob(C) such that F(U) ̸= ∅, the action of G(U) on F(U) is free and
transitive.

2. For each U ∈ Ob(C), there exists a covering {Ui → U}i∈I such that F(Ui) ≠ ∅
for all i ∈ I.

A morphism of G-torsors is a G-equivariant morphism of sheaves of sets.
Proposition 2. Every morphism of G-torsors is an isomorphism, i.e. the category of
G-torsors is a groupoid.
Proof. Let f : F → F ′ be a morphism of G-torsors and let {Ui → X}i∈I be an covering
of X such that F(Ui) ̸= ∅ ̸= F ′(Ui) for all i ∈ I. Let Vi → Ui be a morphism in C, then
F(Vi) ̸= ∅ ̸= F ′(Vi) and f(Vi) : F(Vi) → F(Vi) is bijective as f(Vi) is G(Vi)-invariant
and G(Vi) acts freely and transitively. Hence f |Ui

: F|Ui
→ F ′|Ui

is an isomorphism and
it follows that f is an isomorphism.
Definition 3. A torsor is trivial if it is isomorphic to G acting on itself by left-
translation.
Proposition 4. A G-torsor F is trivial if and only if Γ(X,F) ̸= ∅.
Proof. If F is trivial, then 0 ∈ F(X). Conversely, suppose that F(X) ̸= ∅ and let
x ∈ F(X). We define a morphism of G-torsors

G(U)→ F(U)

g 7→ gx|U .

Since it is an isomorphism, we are done.

1



Remark We want to prove that there is a canonical bijection H1(X,Gm) ∼= Pic(X).
We do this in two steps. First, we show that there is a canonical bijection between
isomorphism classes of G-torsors and H1(X,G) and second we show that there is a
canonical bijection between isomorphism classes of Gm-torsors and isomorphism classes
of invertible sheaves on Xzar.

Proposition 5. Let G be an abelian sheaf on Xét. There is a canonical bijection between
the set of isomorphism classes of G-torsors and H1(X,G).

Proof. We construct inverse maps. Let F be a G-torsor. Let

Z[F ] :=
(
U 7→

{∑′
ni[si]

∣∣∣ ni ∈ Z, si ∈ F(U)
})#

.

denote the free abelian sheaf over F . Let σ : Z[F ] → Z be the sheafification of∑′ni[si] 7→
∑′ni. This is a surjective morphism. We have

kerσ = (U 7→ ⟨[s]− [s′] | s, s′ ∈ F(U)⟩)# .

Let a : ker(σ)→ G be the sheafification of

[s]− [s′] 7→ h s.t. hs′ = s.

Because the abelian sheaves on Xét form an abelian category there is the following
pushout diagram with exact rows (Stacks Project [Sta18] tags 08N3 and 08N4 for abelian
categories)

0 // ker(σ) //

a

��

Z[F ] σ //

d
��

Z // 0

0 // G // E b // Z // 0

.

The long exact sequence in cohomology yields a boundary morphism δ : Z = H0(X,Z)→
H1(X,G). Let zF := δ(1).

Claim: Let F ′ be the subsheaf of sets of E defined by

U 7→ b|−1
U (1).

Then F ∼= F ′.

Proof. We identify F with the subsheaf of sets U 7→ {[s] ∈ Z[F ](U)} of Z[F ]. Its G-
action is given by g[s] := [gs]. Then d(F) is a subsheaf of F ′ and d|F is G-equivariant.
Hence we obtain a morphism, and hence an isomorphism, of G-torsors F ∼−→ F ′.

In the following, we identify F with F ′.

2



Conversely, given z ∈ H1(X,G), we construct a G-torsor as follows: choose an em-
bedding G ↪→ I of G into an injective sheaf and let Q := I/G denote the quotient. We
obtain a long exact sequence

0→ H0(X,G)→ H0(X, I) p−→ H0(X,Q) δ′−→ H1(X,G)→ 0,

as H1(X, I) = 0. Pick any q ∈ δ′−1(z). Define a subsheaf F z ⊂ I by

F z(U) := p|−1
U (q|U).

Because 0→ G(U)→ I(U)→ Q(U) is exact G(U) acts freely and transitively on F(U)
by translation. Furthermore, as I ↠ Q is surjective, for each U → X we can find a
covering {Ui → U}i∈I with F(U) ≠ ∅. Hence F z is a G-torsor. The isomorphism class of
F z is independent of the choice of q: let q′ be a second choice, then q−q′ 7→ 0 ∈ H1(X,G)
and is hence the image of a global section p ∈ H0(X, I). Let F ′z be the subsheaf of I
obtained as the preimage of q′. Then the map F z(U) → F ′z(U) : x 7→ p|U + x defines
an isomorphism of G-torsors.

It remains to show that the maps are well-defined and inverses.
We want to show that F zF ∼= F . We obtain a commutative diagram:

0 // G // E //

f
��

Z //

��

0

0 // G // I // Q // 0

(∗)

The morphism E → I exists because I is injective and the morphism Z→ Q is induced
by the universal property of the cokernel Z. This diagram induces a commutative
diagram in cohomology

0 // H0(X,G) // H0(X, E) //

��

H0(X,Z) //

��

H1(X,G)

0 // H0(X,G) // H0(X, I) // H0(X,Q) // H1(X,G) // 0

Since the right square commutes, it follows that 1 ∈ H0(X,Z) is mapped to some
q ∈ H0(X,Q) with q 7→ zF . Let F zF be the subsheaf of I constructed above as the
preimage of q. Then f(F) ⊂ F zF by construction. This induces a morphism of G-torsors
and hence F ∼= F zF , as desired.

Conversely, let z ∈ H1(X,G). We want to show that δ(1) = z. Construct 0→ G →
E → Z→ 0 from F z as above. We obtain a commutative diagram

ker(σ) //

��

Z[F z]

�� g

��

G //

//

E

f ##F
F

F
F

F

I.
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Here g is defined as the sheafification of [s] 7→ s. Let F ′z ⊂ E be the G-torsor isomorphic
to F z constructed as above. Then f(F ′z) = F z, as the diagram commutes.

We again obtain a commutative diagram (∗). As f(F ′z) = F z, the morphism Z→ Q
maps the global section 1 to q. Hence, by the commutativity of

1 ∈ H0(X,Z) //

��

H1(X,G)

q ∈ H0(X,Q) // H1(X,G) ∋ z

it follows that 1 7→ z, as desired.

Recall: The abelian presheaves

Ga(U) := Γ(U,OU)

Gm(U) := Γ(U,O×
U )

µn(U) := {f ∈ Γ(U,O×
U ) | f

n = 1}

are sheaves on Xét.

Definition 6. We define the étale structure sheaf OX,ét on X to be the sheaf of rings
defined by U 7→ Γ(U,OU) for U over X.

Remark We thus obtain the notions of sheaf of OX,ét-modules and locally free and
tensor product in total analogy to the notion of OX modules on Xzar.

Just as in the Zariski case, we obtain

Fact 7. Let F be a sheaf of OX,ét-modules. The following are equivalent

1. F is locally free of rank 1

2. F is invertible, i.e. there is a sheaf of OX,ét-modules F ′ such that F ⊗OX,ét
F ′ ∼=

OX,ét.

Definition 8. The étale Picard group Pic(Xét) is the group of invertible OX,ét-modules
where the group law is given by the tensor product.

Theorem 9. There is a canonical bijection

H1(X,Gm) ∼= PicX.

Proof. We define a maps

{Invertible OX,ét-modules up to iso.} → {Gm-torsors up to iso.}

[L] 7→ [L∗(U) := (U 7→ {s ∈ L(U) | OU
−·s−−→ LU is an iso.})]

[(U 7→ (F(U)×OX,ét(U))/Gm(U))#︸ ︷︷ ︸
=:F⊗GmOX,ét

]← [ [F ]
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We see that Gm(U) acts on L∗(U) freely and transitively by multiplication. More-
over, we see that L∗ is already a sheaf. As L is locally free, we can find a cover of any U
étale {Ui → U} over U such that L∗(Ui) ∼= Gm(Ui) ̸= ∅. Therefore L∗ is a Gm-torsor.
The map is clearly defined on isomorphism classes.

In the other direction g ∈ Gm(U) acts on (s, f) ∈ F(U) × OX,ét(U) by g(s, f) :=
(gs, g−1f). We set (s, f) + (s′, f ′) := (s, f + (s′/s)f ′), where s′/s ∈ Gm(U) such that
(s′/s)s = s′. We make it into a sheaf of OX,ét-modules by setting h(s, f) := (s, hf) for
h ∈ OX,ét(U).
Claim: The OX,ét-module F ⊗Gm OX,ét is invertible.

Proof. Let {Ui → X}i∈I be a covering of X such that F(Ui) ̸= ∅ for all i ∈ I. For
each i we can pick an isomorphism of sheaves of sets φi : F|Ui

∼−→ Gm|Ui
. We define a

morphism of presheaves

(Gm(U)×OX,ét(U))/Gm(U)→ OX,ét(U)

(s, f) 7→ sf.

By a short calculation one verifies that this is an isomorphism of OX,ét(U)-modules.
Therefore (F ⊗Gm OX,ét)|Ui

∼= OUi,ét, as desired.

We show that the two constructions are inverse to each other. Let L be an invertible
OX,ét-module. Let {Ui → X}i∈I be a covering such that L∗(Ui) ̸= ∅ for all i. For
U → Ui the map

(L∗(U)×OX,ét(U))/Gm(U)→ L(U)

(s, f) 7→ sf

defines a canonical isomorphism (L∗⊗Gm OX,ét)|Ui
∼= L|Ui

. These isomorphism glue and
we obtain a global isomorphism.

Conversely, let F be a Gm-torsor. We have for U such that F(U) ̸= ∅

((F(U)×OX,ét(U))/Gm(U))∗ = ((F(U)×OX,ét(U)×)/Gm(U)) ∼= F(U),

canonically. Again, we glue these and have (F ⊗Gm OX,ét)
∗ ∼= F .

Using the theorem above, we have shown H1(X,Gm) ∼= PicXét. But we have
PicXét

∼= PicXzar by descent of quasi-coherent sheaves.

Remark One can show that this is in fact a group isomorphism.

For more properties and motivation for the F ⊗Gm OX,ét-construction see for example
[vB14].
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2 The Kummer sequence
Lemma 10. Let A be a ring, let P ∈ A[T ] be a monic polynomial and let B := A[T ]/(P ).
Suppose that the derivative P ′ is a unit in B. Then the induced morphism SpecB →
SpecA is surjective and étale.

Proof. Since B is free of rank degP over A, the inclusion A ⊂ B is faithfully flat.
Clearly the morphism is of finite type. To show that the map is unramified, we just
show that ΩB/A = 0. This follows from the second exact sequence for differentials

(P )/(P 2)→ B · dT → ΩB/A → 0

P 7→ P ′dT.

Proposition 11 (Kummer sequence). For every n > 1 with n ∈ Γ(X,O×
X), the sequence

of étale sheaves
1→ µn,X → Gm

x 7→xn

−−−→ Gm → 1

is exact.

Proof. By definition µn,X is the kernel of x 7→ xn. It remains to show the surjectivity of
x 7→ xn onto Gm. Let U be a scheme over X and let f ∈ Γ(U,OU)

×. We need to find an
étale covering U = {Ui → U}i∈I of U such that f |Ui

has an n-th root for all i ∈ I. After
covering U with affine opens, we can reduce to the case when U = SpecA is affine. Let
B := SpecA[T ]/(T n − f) and let U ′ := SpecB. Let π : U ′ → U denote the morphism
induced by the inclusion A ⊂ B. We calculate d(Tn−f)

dT
= nT n−1 which is a unit in B.

Hence, by Lemma 10, the morphism π is étale and surjective. Furthermore, the section
T ∈ Γ(SpecB,OSpecB) is an n-th root for f |SpecB.
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