Proper Base Change for Curves

Sebastian Schlegel Mejia

Grothendieck's Birthday 2019

The goal of the talk to is prove the following theorem.

Main Theorem. Let $f: X \to S$ be a proper morphism where S = Spec(A)for a strictly henselian noetherian local ring (A, \mathfrak{m}, k) . Let $p \coloneqq \text{char}(k)$. Suppose the special fiber X_0 has dimension 1. Then for every torsion sheaf \mathcal{F} on X without p^{∞} -torsion the base change morphism

$$H^q_{\acute{e}t}(X,\mathcal{F}) \to H^q_{\acute{e}t}(X_0,\mathcal{F}|_{X_0})$$

is bijective for all $q \ge 0$.

A bijectivity criterion for base change

Definition 1. A an additive fuctor $T: \mathcal{A} \to Ab$ is *effaceable* if for every object $A \in Ob(\mathcal{A})$ and every element $\alpha \in T(A)$ there is a monomorphism $u: A \hookrightarrow M$ in \mathcal{A} such that $T(u)\alpha = 0$.

Lemma 2. Suppose $\phi^{\bullet}: T^{\bullet} \to T'^{\bullet}$ is a morphism of δ -functors from an abelian category \mathcal{A} to the category of abelian groups. Suppose each T^q is effaceable and $\mathcal{E} \subset Ob(\mathcal{A})$ is a collection of objects such that every object in \mathcal{A} is a subobject of an object in \mathcal{E} . Then the following are equivallent.

- (i) $\phi_A^q: T(A) \to T'(A)$ is bijective for all $q \ge 0$ and all $A \in Ob(\mathcal{A})$.
- (ii) $\phi^0(M)$ is bijective and $\phi^q(M)$ is surjective for all q > 0 and all $M \in \mathcal{E}$.
- (iii) $\phi^0(A)$ is bijective for all $A \in Ob(\mathcal{A})$ and T'^q is effaceable for all q > 0.

Proof. Induct on q. This is a diagram chase best left to the blackboard or a scratch piece of paper.

Lemma 3. Let X be a noetherian scheme. The functors $H^q_{\acute{e}t}(X, -)$ are effaceable on the category of constructible étale sheaves on X.

Proof. Let \mathcal{F} be a constructible sheaf on X. There is an n > 0 such that \mathcal{F} is a sheaf of \mathbb{Z}/n -modules. Indeed, there is a stratification $X = \coprod_i X_i$ such that $\mathcal{F}|_{X_i}$ is locally constant and hence a sheaf of \mathbb{Z}/m_i -modules for some $m_i > 0$. Hence \mathcal{F} is a sheaf of $\mathbb{Z}/\operatorname{lcm}(\{m_i\})$ -modules.

For every point $x \in X$ choose a geometric point $\overline{x} \to x$. Consider the acyclic sheaf $\mathcal{G} \coloneqq \prod_{x \in X} \overline{x}_*(\mathcal{F}|_{\overline{x}})$. We have a monomorphism $u \colon \mathcal{F} \hookrightarrow \mathcal{G}$ of \mathbb{Z}/n -modules. The sheaf \mathcal{G} is torsion and therefore a colimit of constructible sheaves. We write \mathcal{G} as a colimit of constructible sheaves containing \mathcal{F} .

Since cohomology commutes with colimits we have

$$H^q_{\acute{e}t}(u) \colon H^q_{\acute{e}t}(X,\mathcal{F}) \to \operatorname{colim}_{\lambda} H^q_{\acute{e}t}(X,C_{\lambda}) = H^q_{\acute{e}t}(X,\mathcal{G}) = 0.$$

Thus given a cohomology class $\xi \in H^q_{\acute{e}t}(X, \mathcal{F})$ there is a λ for which the representative $H^q_{\acute{e}t}(u)\xi$ in $H^q_{\acute{e}t}(X, C_\lambda)$ is zero. Effaceability follows from $\mathcal{F} \subset C_\lambda$.

Proposition 4. Let X be a noetherian scheme and let $X_0 \subset X$ be a subscheme. Let p be a prime number. Suppose that for all $n \ge 0$ with $p \nmid n$ and all finite X-schemes X' the base change morphism

$$H^q_{\acute{e}t}(X',\mathbb{Z}/n) \to H^q_{\acute{e}t}(X' \times_X X_0,\mathbb{Z}/n)$$

is bijective in degree q = 0 and surjective in degrees q > 0. Then for all torsion sheaves \mathcal{F} in X with no p^{∞} -torsion the base change morphism

$$H^q_{\acute{e}t}(X,\mathcal{F}) \to H^q_{\acute{e}t}(X_0,\mathcal{F})$$

is bijective in all degrees $q \ge 0$.

Proof. Since cohomology commutes with colimits and every torsion sheaf is a colimit of constructible sheaves it suffices to prove the proposition for constructible \mathcal{F} .

We want to apply Lemma 2 to the category \mathcal{A} of constructible sheaves, ϕ^{\bullet} the base change morphism $H^{\bullet}_{\acute{e}t}(X, -) \to H^{\bullet}_{\acute{e}t}(X_0, -)$ and for \mathcal{E} we take the collection of objects of the form $\bigoplus \pi_*C_i$ for finite morphisms $\pi_* \colon X'_i \to X$ and finite constant sheaves \mathcal{C}_i with no p^{∞} -torsion on X'_i . In Xiao's talk we saw that every constructible sheaf is a suboject of $\bigoplus \pi_*C_i$. We have surjectivity of the base change morphism for the sheaves $\bigoplus \pi_*C_i$ because cohomology commutes with finite products and we know surjectivity of the C_i by assumtion. Thus we have verified all the hypotheses of Lemma 2 *(ii)*.

Surjectivity in degree 2

Proposition 5. Let $f: X \to S$ be a proper morphism with S = Spec(A)for a strictly henselian local ring (A, \mathfrak{m}, k) . Suppose the special fiber $X_0 := X \times_S \text{Spec}(k)$ has dimension 1. Then the restriction

$$\operatorname{Pic}(X) \to \operatorname{Pic}(X_0)$$

is surjective.

Proof. Let $X_n \coloneqq X \times_S \operatorname{Spec}(A/\mathfrak{m}^{n+1})$. We show iteratively that we have surjections $\operatorname{Pic}(X_n) \to \operatorname{Pic}(X_0)$. Consider the ideal sheaf $\mathcal{I}_{n+1} \coloneqq \ker(\mathcal{O}_{X_{n+1}} \to \mathcal{O}_{X_n})$. We have the short exact sequence

$$0 \longrightarrow \mathcal{I}_{n+1} \xrightarrow{a \mapsto 1+a} \mathcal{O}_{X_{n+1}}^{\times} \longrightarrow \mathcal{O}_{X_{n+1}}^{\times} \longrightarrow 0.$$

Since \mathcal{I}_{n+1} is coherent on the scheme X_{n+1} of dimension 1 its degree 2 quasicoherent cohomology vanishes and we obtain the surjection $H^1(X_{n+1}, \mathcal{O}_{X_{n+1}}^{\times}) \twoheadrightarrow$ $H^1(X_n, \mathcal{O}_{X_n})$. Passing to the colimit we obtain a surjection $\operatorname{Pic}(\mathfrak{X}) \twoheadrightarrow \operatorname{Pic}(X)$ where \mathfrak{X} is the completion of X along X_0 .

By Grothendieck's Existence Theorem we obtain a surjection $\operatorname{Pic}(X \times \operatorname{Spec}(\widehat{A})) \to \operatorname{Pic}(X_0)$. It follows from [2, (8.5.2) (ii) and (8.5.5)] that Pic is locally of finite presentation. Thus we obtain by Artin's Approximation Theorem a surjection $\operatorname{Pic}(X) \to \operatorname{Pic}(X_0)$

If suffices to show surjectivity for the sheaves \mathbb{Z}/l^r for some any prime $l \neq \operatorname{char}(k)$. Recall the Kummer sequence

$$0 \longrightarrow \mathbb{Z}/l^r \longrightarrow \mathbb{G}_m \xrightarrow{(-)^{l^r}} \mathbb{G}_m \longrightarrow 1.$$

the base change morphism $H^{\bullet}_{\acute{e}t}(X, \mathbb{Z}/l^r) \to H^{\bullet}_{\acute{e}t}(X_0, \mathbb{Z}/l^r)$ yields a morphism of exact sequences

Fact 6. For a proper curve X_0 over a seperably closed field the cohomology group $H^2_{\acute{e}t}(X_0, \mathbb{G}_m)$ is p^{∞} -torsion.

Thus $\operatorname{Pic}(X_0) \to H^2_{\acute{e}t}(X_0, \mathbb{Z}/l^r)$ and $H^2_{\acute{e}t}(X, \mathbb{Z}/l^r) \to H^2_{\acute{e}t}(X_0, \mathbb{Z}/l^r)$ are surjective.

Topological invariance of the étale site

Definition 7. A morphism of schemes $f: X \to Y$ is universally injective if any base change of f is injective.

Lemma 8. Let $f: X \to Y$ be a morphism of schemes. The following are equivalent.

- (a) f is universally injective.
- (b) For every field K the morphism f is injective on K-points, i.e., composition with f

$$f \circ -: \operatorname{Mor}(\operatorname{Spec}(K), X) \to \operatorname{Mor}(\operatorname{Spec}(K), Y)$$

 $g \mapsto f \circ g$

is injective.

(c) f is injective and for every $x \in X$ the field extension $k(x) \supset k(f(x))$ is purely inseparable.

Proof. [3, Tag 01S4]

Lemma 9. Any base change of a surjective morphism of schemes is surjective.

Proof. [3, Tag 01S1]

Lemma 10. A morphism is integral if and only if it is affine and universally closed.

Proof. [3, Tag 01WM]

Definition 11. A morphism of schemes $f: X \to Y$ is a *unverisal homeo*morphism if any base change of f is a homeomorphism of the underlying topological spaces, or, equivalently if f is integral, universally injective, and surjective.

Theorem 12. Suppose $f: X \to Y$ is a morphism of schemes and is a universal homeomorphism. Then the base changing along f

$$[V \to Y] \mapsto [V \times_Y X \to X]$$

is part of an equivalence of categories

 $Y_{\acute{e}t} \cong X_{\acute{e}t}$

Proof. [3, Tag 03SI]

Remark 13. In Ole's talk we saw the theorem for f a closed immersion defined by a nilpotent ideal sheaf.

Vanishing for curves (Surjectivity for degrees greater than 2)

Lemma 14. Let X be a scheme of finite type over a seperably closed field.

- (i) Suppose \mathcal{K} an étale sheaf on X supported at finitely many points. Then $H^q_{\acute{e}t}(X,\mathcal{K}) = 0$ for q > 0.
- (ii) Suppose $\mathcal{F} \to \mathcal{G}$ is an isomorphism of etale sheaves on X outside of finitely many points. Then $H^q_{\acute{e}t}(X, \mathcal{F}) \cong H^q(X_0, \mathcal{G})$ for q > 1.

Proof. Suppose \mathcal{K} is an étale sheaf on X supported on a finite subscheme $i: F \hookrightarrow X$. Then $\mathcal{K} \cong i_*i^*\mathcal{K}$. Hence

$$H^q_{\acute{e}t}(X,\mathcal{K}) = H^q_{\acute{e}t}(X,i_*i^*\mathcal{K}) = H^q_{\acute{e}t}(F,i^*\mathcal{K}) = 0$$

for q > 0. The last equation follows from Theorem 12 which applies because every algebraic extension of k must be purely inseperable. This proves (i).

By assumption the kernel and cokernel of $\mathcal{F} \to \mathcal{G}$ are finitely supported. Hence *(ii)* follows from *(i)* by looking at the long exact sequence associated to the short exact sequences

$$0 \longrightarrow \ker(\alpha) \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}/\ker(\alpha) \longrightarrow 0$$
$$0 \longrightarrow \mathcal{F}/\ker(\alpha) \longrightarrow j_*j^*\mathcal{F} \longrightarrow \operatorname{coker}(\alpha) \longrightarrow 0.$$

Theorem 15. Let X_0 be a proper curve over a seperably closed field k. Suppose char(k) $\nmid n$. Then $H^q_{\acute{e}t}(X_0, \mathbb{Z}/n) = 0$ for all q > 2.

Proof. By the topological invariance of the étale site, we may assume that X_0 is reduced.

We show that we may reduce to the case that X_0 is irreducible. Suppose η_i are the generic points of the irreducible components of X_0 . Then $\mathbb{Z}/n \hookrightarrow \sum_i \eta_{i,*}\mathbb{Z}/n$. The cokernel is supported at finitely many points and therefore it's higher cohomology vanishes. It follows that if the cohomology of \mathbb{Z}/n on X_i vanishes for each *i* then so does the cohomology of \mathbb{Z}/n on X_0 .

Assume X_0 is irreducible. Let $\nu: X_0 \to X_0$ be the normalization of X_0 . The curve \widetilde{X}_0 is smooth and proper over k, and hence projective over k. We claim that $H^q_{\acute{e}t}(X_0, \mathbb{Z}/n) = H^q_{\acute{e}t}(\widetilde{X}_0, \mathbb{Z}/n)$ for all $q \ge 0$. The morphism ν is a birational morphism, that is an isomorphism outside of finitely many points

$$\nu \colon \widetilde{X_0} \smallsetminus \{\widetilde{P_1}, \dots, \widetilde{P_r}\} \to X_0 \smallsetminus \{P_1, \dots, P_r\}.$$

By Lemma 14 we may replace X_0 with its normalization $\widetilde{X_0}$. So now we need only to prove the theorem for a smooth projective curve over a seperably closed field k. Let \overline{k} be an algebraic closure of k. The extension $k \subset \overline{k}$ is purely inseperable, hence $\operatorname{Spec}(\overline{k}) \to \operatorname{Spec}(k)$ is a universal homeomorphism. In particular, $X_{0,\overline{k}} \to X_0$ is a universal homeomorphism. Thus by topological invariance we may assume that X_0 is not only smooth and projective over an algebraically closed field k. In this situation, vanishing of $H^q(X_0, \mathbb{Z}/n)$ is part of the computation of cohomology of curves we did last semester. \Box

References

- Freitag, Eberhard and Kiehl, Reinhard. 1988. Etale Cohomolgoy and the Weil Conjecture. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 13.
- [2] Grothendieck, Alexander. 1966. Éléments de géométrie algébraique IV. Publications mathématiques de l'I.H.É.S., tome 28.
- [3] The Stacks Project Authors. 2019. *Stacks Project*. https://stacks.math.columbia.edu