Cohomology of Curves

Noah Held

06.12.2018

1 Outline

Let *C* be a smooth integral qcqs curve over an algebraically closed field *k* with generic point η , and let *n* be an integer that is not divisible by the characteristic of *k*. The goal of this talk is to compute the étale cohomology of *C* with coefficients in μ_n , following [SGA 4¹/₂]. To do so, we use the long exact sequences induced by the Kummer sequence

$$1 \longrightarrow \mu_n \longrightarrow \mathbb{G}_m \xrightarrow{(-)^n} \mathbb{G}_m \longrightarrow 1, \tag{K}$$

and the divisor sequence

$$1 \longrightarrow \mathbb{G}_m \longrightarrow \eta_* \mathbb{G}_m \xrightarrow{\mathrm{div}} \mathcal{D} \longrightarrow 0, \tag{D}$$

where

$$\mathcal{D} = \bigoplus_{c \in |C|} c_* \mathbb{Z}.$$

We already know that $H^q(c, \mathbb{Z}) = 0$ for each $q \ge 1$; for $H^q(\eta, \mathbb{G}_m)$ this will be proven in the next couple of talks. But what about $H^q(C, c_*\mathbb{Z})$ and $H^q(C, \eta_*\mathbb{G}_m)$? Because the direct image functor associated with a morphism of schemes is in general only left exact, there's no a priori reason for it to preserve cohomology; to tell whether it does, we need to study its right derived functors.

2 Extension by zero

Let $\varphi: U \to X$ be an étale morphism. Then the inverse image functor

$$\varphi^*$$
: **Sh**(X) \rightarrow **Sh**(U)

is given by

$$\varphi^* \mathcal{F}(V \to U) = \mathcal{F}(V \to U \xrightarrow{\varphi} X)$$

on objects; the same formula workes for presheaves.

Lemma 1. φ^* has an exact left adjoint $\varphi_!$.

Proof. The construction for presheaves is as follows:

$$\varphi_!^{\operatorname{pre}}\mathcal{G}(V \to X) = \bigoplus_{V \to U} \mathcal{G}(V \to U).$$

Then define $\varphi_!$ by the commutative diagram

$$\begin{aligned} \mathbf{Sh}(U) & \xrightarrow{\varphi_!} & \mathbf{Sh}(X) \\ & & & \uparrow^{(-)^{\#}} \\ \mathbf{PSh}(U) & \xrightarrow{\varphi_!^{\mathrm{pre}}} & \mathbf{PSh}(X). \end{aligned}$$

The functor $\varphi_{!}^{\text{pre}}$ is exact; $\varphi_{!}$ is left exact as a composite of left exact functors, and right exact because it is a left adjoint.

Corollary 2. φ^* preserves injectives.

3 Higher direct images

Let $f: X \to Y$ be a morphism of schemes.

Definition 3. The right derived functors

$$\mathbf{R}^{q} f_{*}: \mathbf{Sh}(X) \to \mathbf{Sh}(Y) \quad (q \ge 0)$$

are called the higher direct image functors associated with f.

Lemma 4. Let $f: X \to Y$ be a morphism of schemes, and let \mathcal{F} be a sheaf on X such that $\mathbb{R}^q f_* \mathcal{F} = 0$ for each $q \ge 1$. Then $\mathrm{H}^q(Y, f_* \mathcal{F}) = \mathrm{H}^q(X, \mathcal{F})$ for each $q \ge 0$.

Proof. If $0 \to \mathcal{F} \to \mathcal{I}^{\bullet}$ is an injective resolution of \mathcal{F} , then $0 \to f_*\mathcal{F} \to f_*\mathcal{I}^{\bullet}$ is an injective resolution of $f_*\mathcal{F}$.

Lemma 5. Let \mathcal{F} be a sheaf on X. If $H^q(X \times_Y V, \operatorname{pr}_X^* \mathcal{F}) = 0$ for every étale morphism $V \to Y$, then $\mathbb{R}^q f_* \mathcal{F} = 0$.

Proof. Let $0 \rightarrow \mathcal{F} \rightarrow \mathcal{I}^{\bullet}$ be an injective resolution of \mathcal{F} . Then

$$\mathbf{R}^{q} f_{*} \mathcal{F} = \mathbf{H}^{q} (f_{*} \mathcal{I}^{\bullet});$$

but $\mathrm{H}^{q}(f_{*}\mathcal{I}^{\bullet})$ is the sheafification of the presheaf cohomology $\mathrm{H}^{q}(f_{*}\mathcal{I}^{\bullet})^{\mathrm{pre}}$, so it suffices to show that the latter is 0. Let $\psi: V \to Y$ be an étale morphism. We have the cartesian diagram

and a natural isomorphism

$$\psi^* f_* = (\mathrm{pr}_V)_* \mathrm{pr}_X^*.$$

Combining this with exactness of ψ^* and Corollary 2, we find

$$\begin{aligned} \mathrm{H}^{q}(f_{*}\mathcal{I}^{\bullet})^{\mathrm{pre}}(\psi) &= \psi^{*}\mathrm{H}^{q}(f_{*}\mathcal{I}^{\bullet})^{\mathrm{pre}}(\mathrm{id}_{V}) \\ &= \mathrm{H}^{q}(\psi^{*}f_{*}\mathcal{I}^{\bullet})^{\mathrm{pre}}(\mathrm{id}_{V}) \\ &= \mathrm{H}^{q}((\mathrm{pr}_{V})_{*}\mathrm{pr}_{X}^{*}\mathcal{I}^{\bullet})^{\mathrm{pre}}(\mathrm{id}_{V}) \\ &= (\mathrm{pr}_{V})_{*}\mathrm{H}^{q}(\mathrm{pr}_{X}^{*}\mathcal{I}^{\bullet})^{\mathrm{pre}}(\mathrm{id}_{V}) \\ &= \mathrm{H}^{q}(\mathrm{pr}_{X}^{*}\mathcal{I}^{\bullet})^{\mathrm{pre}}(\mathrm{id}_{X \times Y}) \\ &= \mathrm{H}^{q}(X \times_{Y} V, \mathrm{pr}_{X}^{*}\mathcal{F}) \\ &= 0. \end{aligned}$$

4 The restricted étale site

To define the morphism div appearing in (D), it is convenient to restrict our attention to qcqs schemes. A reference for this section is [Tamme, §II.1.5].

Let X be a scheme.

Definition 6. The restricted small étale site $\mathbf{pf\acute{Et}}(X)$ of X consists of the category of all finitely presented étale schemes over X and the topology of jointly surjective morphisms.

Lemma 7. If X is qc, then pfÉt(X) is a noetherian site.

Proposition 8. If X is qs, then the inclusion functor $\mathbf{pf\acute{e}t}(X) \hookrightarrow \acute{\mathbf{t}t}(X)$ induces an equivalence of categories between the associated categories of abelian sheaves.

Corollary 9. If X is qcqs, then the functors

$$\mathrm{H}^{q}(X,-)$$
: $\mathrm{Sh}(X) \to \mathrm{Ab}$

preserve pseudofiltered colimits.

5 Divisor sequence

We work on the restricted small étale site of C.

Lemma 10. The sheaf \mathcal{D} is given by

$$\mathcal{D}(U \to C) = \bigoplus_{u \in |U|} \mathbb{Z}.$$

Proof. Define \mathcal{D}' by

$$\mathcal{D}'(U \to C) = \bigoplus_{u \in |U|} \mathbb{Z};$$

then \mathcal{D}' is the coproduct of the sheaves $c_*\mathbb{Z}$ in the category of presheaves, so it suffices to check that it is already a sheaf. Let $(\varphi_i: V_i \to U)$ be an arbitrary covering; we need to show that the sequence

$$0 \longrightarrow \mathcal{D}'(U \to X) \xrightarrow{\varrho} \prod_{i} \mathcal{D}'(V_i \to X) \xrightarrow{\pi} \prod_{i,j} \mathcal{D}'(V_i \times_U V_j \to X)$$

is exact, where

$$\varrho(a_u)_{i,v} = a_{\varphi_i(v)}$$
 and $\pi(b_{i,v})_{i,j,v,w} = b_{i,v} - b_{j,w}$

The map ρ is injective because (φ_i) is jointly surjective; ker (π) consists of all $(b_{i,v})$ such that $b_{i,v} = b_{j,w}$ whenever $\varphi_i(v) = \varphi_j(w)$, i.e. exactly im (ρ) .

Proposition 11. The sequence (D) is exact.

Proof. Let $U \rightarrow C$ be finitely presented and étale. The inclusion

$$\mathbb{G}_m(U \to C) \to \eta_* \mathbb{G}_m(U \to C)$$

is clearly injective. The morphism div is given by

$$f \mapsto (\operatorname{ord}_{u}(f)),$$

which is well-defined because U is qc; its kernel is exactly $\mathbb{G}_m(U \to C)$, since U is normal. Finally, div is surjective Zariski-locally on U because U is regular. \Box

Lemma 12. The direct image functor c_* is exact for every $c \in |C|$.

Proof. Epimorphisms of sheaves on c are even epimorphisms in the category of presheaves on c, so they are preserved by c_* .

Corollary 13. For every $c \in |C|$ and every sheaf \mathcal{F} on c,

$$\mathrm{H}^{q}(C,c_{*}\mathcal{F})=0$$

for each $q \ge 1$.

Corollary 14. For each $q \ge 1$, $H^q(C, D) = 0$.

Theorem 15. Let K/k be a field extension of transcendence degree 1. Then

$$\mathrm{H}^{q}(K,\mathbb{G}_{m})=0$$

for each $q \ge 1$ *.*

Lemma 16. For each $q \ge 1$, $\mathbb{R}^q \eta_* \mathbb{G}_m = 0$.

Proof. By Lemma 5, it suffices to show that

$$\mathrm{H}^{q}(U_{\eta}, \mathbb{G}_{m}) = 0 \quad (q \ge 1)$$

for every finitely presented étale morphism $U \to X$. Let $\{\eta_1, \ldots, \eta_r\}$ be the points of U_η . Each extension $\kappa(\eta_i)/k$ is of transcendence degree 1; by Theorem 15, \mathbb{G}_m is acyclic on η_i . If $0 \to \mathbb{G}_m \to \mathcal{I}^{\bullet}$ is an injective resolution of \mathbb{G}_m on U_η , then

$$(0 \longrightarrow \mathbb{G}_m(U_\eta) \longrightarrow \mathcal{I}^{\bullet}(U_\eta)) = \prod_{i \in \{1, \dots, r\}} (0 \longrightarrow \mathbb{G}_m(\eta_i) \longrightarrow \mathcal{I}^{\bullet}(\eta_i)).$$

But each $\mathcal{I}^{\bullet}|_{\eta_i}$ is an injective resolution of the acyclic sheaf \mathbb{G}_m on η_i , so all factors are exact. Thus $0 \longrightarrow \mathbb{G}_m(U_\eta) \longrightarrow \mathcal{I}^{\bullet}(U_\eta)$ is exact, as desired. \Box

Corollary 17. For each $q \ge 1$, $\mathrm{H}^q(C, \eta_* \mathbb{G}_m) = 0$.

Proposition 18 (Cohomology of \mathbb{G}_m). The only potentially nonvanishing cohomology groups of C with coefficients in \mathbb{G}_m are

$$\mathrm{H}^{0}(C, \mathbb{G}_{m}) = \mathcal{O}_{C}(C)^{\times}$$
 and $\mathrm{H}^{1}(C, \mathbb{G}_{m}) = \mathrm{Pic}(C).$

Proof. The long exact sequence induced by (D) looks like

$$0 \longrightarrow \mathcal{O}_C(C)^{\times} \longrightarrow K(C)^{\times} \xrightarrow{\operatorname{div}} \bigoplus_{c \in |C|} \mathbb{Z} \longrightarrow \mathrm{H}^1(C, \mathbb{G}_m) \longrightarrow 0 \longrightarrow \cdots,$$

with

$$\mathrm{H}^{q-1}(C, \mathcal{D}) = 0$$
 and $\mathrm{H}^q(C, \eta_* \mathbb{G}_m) = 0$

for each $q \ge 2$; hence $\mathrm{H}^q(C, \mathbb{G}_m) = 0$ for each $q \ge 2$ and

$$\mathrm{H}^{1}(C, \mathbb{G}_{m}) = \operatorname{coker}(\operatorname{div}) = \operatorname{Pic}(C).$$

6 Kummer sequence

Proposition 19 (Cohomology of μ_n). Assume that C is projective over k. Then the only potentially nonvanishing cohomology groups of C with coefficients in μ_n are

$$H^{0}(C, \mu_{n}) = \mu_{n}(k),$$

$$H^{1}(C, \mu_{n}) = \operatorname{Pic}^{0}(C)[n],$$

$$H^{2}(C, \mu_{n}) = \mathbb{Z}/(n);$$

moreover, $\mathrm{H}^{1}(C, \mu_{n})$ is free of rank twice the genus of C as a $\mathbb{Z}/(n)$ -module.

Proof. Since $H^q(C, \mathbb{G}_m) = 0$ for each $q \ge 2$, we have $H^q(C, \mu_n) = 0$ whenever $q \ge 3$. For $q \le 2$, the relevant piece of the long exact sequence induced by (**K**) is

$$\mathrm{H}^{1}(C,\mu_{n}) \longrightarrow \mathrm{Pic}(C) \xrightarrow{(-)^{n}} \mathrm{Pic}(C) \longrightarrow \mathrm{H}^{2}(C,\mu_{n})$$

Hence

$$\mathrm{H}^{1}(C,\mu_{n}) = \mathrm{Pic}(C)[n]$$
 and $\mathrm{H}^{2}(C,\mu_{n}) = \mathrm{Pic}(C)/\mathrm{Pic}(C)^{n}$.

Note that $\operatorname{Pic}(C)[n] = \operatorname{Pic}^{0}(C)[n]$. The group $\operatorname{Pic}^{0}(C)$ is the group of rational points of the Jacobian of *C*, and is therefore divisible; its *n*-torsion is free of rank twice the genus of *C* as a $\mathbb{Z}/(n)$ -module (see [Stacks, Tags 0B9Z, 0BA0, 03RP]). To finish the proof, it remains to show that the degree homomorphism

deg:
$$\operatorname{Pic}(C) \to \mathbb{Z}$$

induces an isomorphism of $\operatorname{Pic}(C)/\operatorname{Pic}(C)^n$ with $\mathbb{Z}/(n)$. That is so because it is surjective and $\operatorname{Pic}^0(C)$ is divisible.

References

- [SGA 4¹/₂] Deligne, P., *Cohomologie étale*, Springer-Verlag Berlin Heidelberg, 1977.
- [Stacks] The Stacks project authors, *The Stacks project*, https://stacks.math.columbia.edu, 2018.
- [Tamme] Tamme, G., *Introduction to Étale Cohomology*, Springer-Verlag Berlin Heidelberg, 1994.