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Derived Functors

1. Additive categories

Def. A pre-additive category is a category together with the structure of an abelian group
on each Hom set such that composition is bilinear.

Prop.-Def. In any pre-additive category, an object is initial if and only if it is final. Such
an object is called a null object.

Prop.-Def. In any pre-additive category, an object is a product of two objects X and Y
if and only if it is their coproduct (with appropriate morphisms). Such an object is called
a biproduct or direct sum X ⊕ Y .

Def. An additive category is a pre-additive category with a null object and all direct sums.

Equivalent: It contains all finite direct sums, including the empty one.

2. Abelian categories

Consider an additive category C and a morphism f ∈ HomC(X, Y ).

Def. monomorphism, kernel ker(f)

Fact. Every kernel is a monomorphism.

Def. epimorphism, cokernel coker(f)

Fact. Every cokernel is an epimorphism.

Def. image im(f) := ker(Y → coker(f)).

Def. coimage coim(f) := coker(ker(f) → X).

Def. natural morphism coim(f) → im(f).

Def. An abelian category is an additive category with all kernels and cokernels and for
which all the above morphisms coim(f) → im(f) are isomorphisms.

Note. The last condition is equivalent to requiring that every monomorphism is a kernel
and that every epimorphism is a cokernel.

Note. All the usual diagram lemmas hold in any abelian category.
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3. Examples

The category Ab of abelian groups.

The category ModR of left modules over a ring R.

The category of sheaves of abelian groups on a topological space.

The category ModOX
of sheaves of modules on a locally ringed space (X,OX).

The category QCohOX
of quasi-coherent OX -modules on a scheme X .

The diagram category of functors X → C for a small category X and an abelian category C.

The category of all chain complexes in an abelian category C.

The opposite category Copp of an abelian category C.

Note. Passing to the opposite category interchanges kernels with cokernels, images with
coimages, projectives with injectives, and so on.

For the following we fix an abelian category C.

4. Projectives and injectives

Fact. For any object X the functor C → Ab, Y 7→ HomC(X, Y ) is left exact.

Def. An object X is projective if and only this functor is exact.

Prop. Every free module is projective in ModR.

Caution. In general there is no good notion of a free object in C.

Def. enough projectives.

Prop. The category ModR has enough projectives.

Fact. For any object X the functor C → Ab, Y 7→ HomC(Y,X) is left exact.

Def. An object X is injective if and only this functor is exact.

Prop. An abelian group is injective if and only if it is divisible.

Ex. Q and Q/Z and Z[ 1
n
]/Z are injective in Ab.

Def. enough injectives.

Prop. The category Ab has enough injectives.

Prop. The category ModR has enough injectives.

Prop. The category ModOX
has enough injectives.
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5. Resolutions

Def. Resolution (to the right) 0 → X → Y 0 → Y 1 → Y 2 → . . . or in short 0 → X → Y •.

Def. A resolution is called <adjective> if and only if each Y n is <adjective>.

Prop. If C has enough injectives, every object possesses an injective resolution.

Prop. Consider any resolution 0 → X → Z• and any injective resolution 0 → Y → J•.

(a) Any morphism f : X → Y extends to a morphism of complexes (X → Z•) → (Y → J•).

(b) Any two such extensions Z• → J• are equivalent under a homotopy.

6. δ-Functors

Def. δ-functor T •

Def. morphism of δ-functors

Def. universal δ-functor

Prop. Any universal δ-functor T • is determined up to unique isomorphism by T 0.

7. Derived functors

Now assume that C has enough injectives, and consider a left exact covariant additive
functor F : C → D to another abelian category D.

Construction. For any object X choose an injective resolution 0 → X → I•X . For any
integer i > 0 set RiF (X) := H i(F (I•X)). For any morphism f : X → Y choose an
extension I•f to a morphism of complexes (X → I•X) → (Y → I•Y ). For any integer i > 0
set RiF (f) := H i(F (I•f )) : R

iF (X) → RiF (Y ).

Thm.-Def. This is a universal δ-functor with R0F ∼= F , called the (right) derived functor
of F .

Variant. For a contravariant left exact functor F : C → D one applies this to the covariant
left exact functor F : Copp → D. Since injective right resolutions in Copp correspond to
projective left resolutions in C, one must assume that C has enough projectives, and obtains
the (right) derived functor of F , again denoted by RiF .

Variant. For a covariant right exact functor F : C → D one applies this to the covariant
left exact functor F : Copp → Dopp. Again one works with projective left resolutions in C,
must assume that C has enough projectives, and obtains the (left) derived functor of F ,
which is now denoted by LiF .
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8. Acyclic resolutions

Consider any δ-functor T • : C → D.

Def. An object X of C is called T •-acyclic, or just T 0-acyclic if T • is the derived functor
of T 0, if T i(X) = 0 for all i > 0.

Note. If C has enough injectives and T • is a derived functor, every injective is T •-acyclic.
But many δ-functors T • possess more acyclic objects, and then we can compute them using
acyclic objects instead of injective ones.

Prop. For any object X and any T •-acyclic resolution 0 → X → A• in C, for every i > 0
there is a natural isomorphism T i(X) ∼= H i(T 0(A•)).

9. Flabby sheaves

Now consider a scheme X . By §3 the category ModOX
has enough injectives. Thus the

left exact functor Γ(X, ) : ModOX
→ Ab possesses the right derived functors

H i(X, ) := RiΓ(X, ).

Def. flabby sheaf of OX-modules.

Prop. For any short exact sequence of OX -modules 0 → F ′ → F → F ′′ → 0 we have:

(a) If F ′ is flabby, then for every open subset U ⊂ X the sequence of sections over U is
exact: 0 → F ′(U) → F(U) → F ′′(U) → 0.

(b) If F ′ and F are flabby, then so is F ′′.

Prop. Any injective OX -module is flabby.

Prop. Any flabby OX-module is acyclic for H i(X, ).

Cor. For any flabby resolution 0 → F → G• in ModOX
, for every i > 0 there is a natural

isomorphism H i(X,F) ∼= H i(Γ(X,G•)).

Prop. For any flabby OX -module F and any morphism f : X → Y the OY -module f∗F is
flabby.

Now assume that X = SpecA for a noetherian ring A.

Prop. For any injective A-module I the OX -module Ĩ is flabby.

Prop. Any quasicoherent sheaf is acyclic for H i(X, ).
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10. Čech cohomology

Consider a separated noetherian scheme X with a finite open affine covering U = (Ui)i∈I .

Construction. The sheafified Čech complex C•(U ,F) for any OX-module F .

Prop. This yields a resolution 0 → F → C•(U ,F).

Note. Γ(X, C•(U ,F)) is just the usual Čech complex of F with respect to U , and its
cohomology Ȟ i(U ,F) := H i(Γ(X, C•(U ,F))) is the usual Čech cohomology. So we have
two δ-functors

Ȟ i(U , ) : ModOX
−→ Ab,

H i(X, ) : ModOX
−→ Ab,

which are isomorphic in degree i = 0.

Prop. Every quasicoherent sheaf on X can be embedded in a flabby quasicoherent sheaf.

Prop. Every flabby quasicoherent sheaf is acyclic for Ȟ i(U , ).

Thm. For any quasicoherent sheaf F and every i > 0 there is a natural isomorphism

Ȟ i(U ,F) ∼= H i(X,F).

Note. In particular the restriction to the abelian subcategory QCohOX
of the derived

functor of Γ(X, ) : ModOX
−→ Ab is isomorphic to the derived functor of the restriction

Γ(X, ) : QCohOX
−→ Ab.
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