Seminar Étale Cohomology Herbstsemester 2018 Richard Pink

Derived Functors

1. Additive categories

Def. A *pre-additive category* is a category together with the structure of an abelian group on each Hom set such that composition is bilinear.

Prop.-Def. In any pre-additive category, an object is initial if and only if it is final. Such an object is called a *null object*.

Prop.-Def. In any pre-additive category, an object is a product of two objects X and Y if and only if it is their coproduct (with appropriate morphisms). Such an object is called a *biproduct* or *direct sum* $X \oplus Y$.

Def. An *additive category* is a pre-additive category with a null object and all direct sums.

Equivalent: It contains all finite direct sums, including the empty one.

2. Abelian categories

Consider an additive category \mathcal{C} and a morphism $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$.

Def. monomorphism, kernel $\ker(f)$

Fact. Every kernel is a monomorphism.

Def. epimorphism, cokernel coker(f)

Fact. Every cokernel is an epimorphism.

Def. image $\operatorname{im}(f) := \operatorname{ker}(Y \to \operatorname{coker}(f)).$

Def. coimage $\operatorname{coim}(f) := \operatorname{coker}(\ker(f) \to X).$

Def. natural morphism $\operatorname{coim}(f) \to \operatorname{im}(f)$.

Def. An *abelian category* is an additive category with all kernels and cokernels and for which all the above morphisms $\operatorname{coim}(f) \to \operatorname{im}(f)$ are isomorphisms.

Note. The last condition is equivalent to requiring that every monomorphism is a kernel and that every epimorphism is a cokernel.

Note. All the usual diagram lemmas hold in any abelian category.

3. Examples

The category **Ab** of abelian groups.

The category \mathbf{Mod}_R of left modules over a ring R.

The category of sheaves of abelian groups on a topological space.

The category $\operatorname{Mod}_{\mathcal{O}_X}$ of sheaves of modules on a locally ringed space (X, \mathcal{O}_X) .

The category $\mathbf{QCoh}_{\mathcal{O}_X}$ of quasi-coherent \mathcal{O}_X -modules on a scheme X.

The *diagram category* of functors $X \to \mathcal{C}$ for a small category X and an abelian category \mathcal{C} .

The category of all chain complexes in an abelian category \mathcal{C} .

The opposite category \mathcal{C}^{opp} of an abelian category \mathcal{C} .

Note. Passing to the opposite category interchanges kernels with cokernels, images with coimages, projectives with injectives, and so on.

For the following we fix an abelian category \mathcal{C} .

4. Projectives and injectives

Fact. For any object X the functor $\mathcal{C} \to \mathbf{Ab}$, $Y \mapsto \operatorname{Hom}_{\mathcal{C}}(X, Y)$ is left exact.

Def. An object X is *projective* if and only this functor is exact.

Prop. Every free module is projective in Mod_R .

Caution. In general there is no good notion of a free object in \mathcal{C} .

Def. enough projectives.

Prop. The category \mathbf{Mod}_R has enough projectives.

Fact. For any object X the functor $\mathcal{C} \to \mathbf{Ab}$, $Y \mapsto \operatorname{Hom}_{\mathcal{C}}(Y, X)$ is left exact.

Def. An object X is *injective* if and only this functor is exact.

Prop. An abelian group is injective if and only if it is divisible.

Ex. \mathbb{Q} and \mathbb{Q}/\mathbb{Z} and $\mathbb{Z}[\frac{1}{n}]/\mathbb{Z}$ are injective in **Ab**.

Def. enough injectives.

Prop. The category Ab has enough injectives.

Prop. The category Mod_R has enough injectives.

Prop. The category $Mod_{\mathcal{O}_X}$ has enough injectives.

5. Resolutions

Def. Resolution (to the right) $0 \to X \to Y^0 \to Y^1 \to Y^2 \to \ldots$ or in short $0 \to X \to Y^{\bullet}$.

Def. A resolution is called *< adjective>* if and only if each Y^n is *<*adjective>.

Prop. If C has enough injectives, every object possesses an injective resolution.

Prop. Consider any resolution $0 \to X \to Z^{\bullet}$ and any injective resolution $0 \to Y \to J^{\bullet}$.

(a) Any morphism $f: X \to Y$ extends to a morphism of complexes $(X \to Z^{\bullet}) \to (Y \to J^{\bullet})$.

(b) Any two such extensions $Z^{\bullet} \to J^{\bullet}$ are equivalent under a homotopy.

6. δ -Functors

Def. δ -functor T^{\bullet}

Def. morphism of δ -functors

Def. universal δ -functor

Prop. Any universal δ -functor T^{\bullet} is determined up to unique isomorphism by T^{0} .

7. Derived functors

Now assume that \mathcal{C} has enough injectives, and consider a left exact covariant additive functor $F: \mathcal{C} \to \mathcal{D}$ to another abelian category \mathcal{D} .

Construction. For any object X choose an injective resolution $0 \to X \to I_X^{\bullet}$. For any integer $i \ge 0$ set $R^i F(X) := H^i(F(I_X^{\bullet}))$. For any morphism $f : X \to Y$ choose an extension I_f^{\bullet} to a morphism of complexes $(X \to I_X^{\bullet}) \to (Y \to I_Y^{\bullet})$. For any integer $i \ge 0$ set $R^i F(f) := H^i(F(I_f^{\bullet})) : R^i F(X) \to R^i F(Y)$.

Thm.-Def. This is a universal δ -functor with $R^0 F \cong F$, called the *(right) derived functor* of F.

Variant. For a contravariant left exact functor $F : \mathcal{C} \to \mathcal{D}$ one applies this to the covariant left exact functor $F : \mathcal{C}^{\text{opp}} \to \mathcal{D}$. Since injective right resolutions in \mathcal{C}^{opp} correspond to projective left resolutions in \mathcal{C} , one must assume that \mathcal{C} has enough projectives, and obtains the *(right) derived functor of F*, again denoted by $R^i F$.

Variant. For a covariant right exact functor $F : \mathcal{C} \to \mathcal{D}$ one applies this to the covariant left exact functor $F : \mathcal{C}^{\text{opp}} \to \mathcal{D}^{\text{opp}}$. Again one works with projective left resolutions in \mathcal{C} , must assume that \mathcal{C} has enough projectives, and obtains the *(left) derived functor of F*, which is now denoted by $L_i F$.

8. Acyclic resolutions

Consider any δ -functor $T^{\bullet} \colon \mathcal{C} \to \mathcal{D}$.

Def. An object X of C is called T^{\bullet} -acyclic, or just T^{0} -acyclic if T^{\bullet} is the derived functor of T^{0} , if $T^{i}(X) = 0$ for all i > 0.

Note. If C has enough injectives and T^{\bullet} is a derived functor, every injective is T^{\bullet} -acyclic. But many δ -functors T^{\bullet} possess more acyclic objects, and then we can compute them using acyclic objects instead of injective ones.

Prop. For any object X and any T^{\bullet} -acyclic resolution $0 \to X \to A^{\bullet}$ in \mathcal{C} , for every $i \ge 0$ there is a natural isomorphism $T^i(X) \cong H^i(T^0(A^{\bullet}))$.

9. Flabby sheaves

Now consider a scheme X. By §3 the category $\operatorname{Mod}_{\mathcal{O}_X}$ has enough injectives. Thus the left exact functor $\Gamma(X, _) \colon \operatorname{Mod}_{\mathcal{O}_X} \to \operatorname{Ab}$ possesses the right derived functors

$$H^i(X, _) := R^i \Gamma(X, _).$$

Def. *flabby* sheaf of \mathcal{O}_X -modules.

Prop. For any short exact sequence of \mathcal{O}_X -modules $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ we have:

(a) If \mathcal{F}' is flabby, then for every open subset $U \subset X$ the sequence of sections over U is exact: $0 \to \mathcal{F}'(U) \to \mathcal{F}'(U) \to 0$.

(b) If \mathcal{F}' and \mathcal{F} are flabby, then so is \mathcal{F}'' .

Prop. Any injective \mathcal{O}_X -module is flabby.

Prop. Any flabby \mathcal{O}_X -module is acyclic for $H^i(X, _)$.

Cor. For any flabby resolution $0 \to \mathcal{F} \to \mathcal{G}^{\bullet}$ in $\operatorname{Mod}_{\mathcal{O}_X}$, for every $i \ge 0$ there is a natural isomorphism $H^i(X, \mathcal{F}) \cong H^i(\Gamma(X, \mathcal{G}^{\bullet}))$.

Prop. For any flabby \mathcal{O}_X -module \mathcal{F} and any morphism $f: X \to Y$ the \mathcal{O}_Y -module $f_*\mathcal{F}$ is flabby.

Now assume that $X = \operatorname{Spec} A$ for a noetherian ring A.

Prop. For any injective A-module I the \mathcal{O}_X -module I is flabby.

Prop. Any quasicoherent sheaf is acyclic for $H^i(X, _)$.

10. Čech cohomology

Consider a separated noetherian scheme X with a finite open affine covering $\mathcal{U} = (U_i)_{i \in I}$.

Construction. The sheafified Čech complex $\mathcal{C}^{\bullet}(\mathcal{U}, \mathcal{F})$ for any \mathcal{O}_X -module \mathcal{F} .

Prop. This yields a resolution $0 \to \mathcal{F} \to \mathcal{C}^{\bullet}(\mathcal{U}, \mathcal{F})$.

Note. $\Gamma(X, \mathcal{C}^{\bullet}(\mathcal{U}, \mathcal{F}))$ is just the usual Čech complex of \mathcal{F} with respect to \mathcal{U} , and its cohomology $\check{H}^{i}(\mathcal{U}, \mathcal{F}) := H^{i}(\Gamma(X, \mathcal{C}^{\bullet}(\mathcal{U}, \mathcal{F})))$ is the usual Čech cohomology. So we have two δ -functors

$$\begin{array}{ll} H^{i}(\mathcal{U},\underline{}): & \mathbf{Mod}_{\mathcal{O}_{X}} \longrightarrow \mathbf{Ab}, \\ H^{i}(X,\underline{}): & \mathbf{Mod}_{\mathcal{O}_{X}} \longrightarrow \mathbf{Ab}, \end{array}$$

which are isomorphic in degree i = 0.

Prop. Every quasicoherent sheaf on X can be embedded in a flabby quasicoherent sheaf.

Prop. Every flabby quasicoherent sheaf is acyclic for $\dot{H}^i(\mathcal{U}, _)$.

Thm. For any quasicoherent sheaf \mathcal{F} and every $i \ge 0$ there is a natural isomorphism

$$\check{H}^{i}(\mathcal{U},\mathcal{F})\cong H^{i}(X,\mathcal{F}).$$

Note. In particular the restriction to the abelian subcategory $\mathbf{QCoh}_{\mathcal{O}_X}$ of the derived functor of $\Gamma(X, _) : \mathbf{Mod}_{\mathcal{O}_X} \longrightarrow \mathbf{Ab}$ is isomorphic to the derived functor of the restriction $\Gamma(X, _) : \mathbf{QCoh}_{\mathcal{O}_X} \longrightarrow \mathbf{Ab}$.