Faithfully Flat Descent for Morphism of Schemes

Shengxuan Liu

November 29, 2018

Theorem. Let A be a ring and let B be an A-algebra. If B is a faithfully flat A-algebra, then

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{d} B \otimes B
$$

is exact, where $d(b)=1 \otimes b-b \otimes 1$.
Proof. Let A be a ring and let B be an A-algebra. If the sequence in the statement split at the first position, i.e., there exist a ring homomorphism $h: B \rightarrow A$ such that $h \circ f=i d$, then the sequence is exact. First note that $d(f(a))=1 \otimes f(a)-f(a) \otimes 1=0$ as the tensor product is over A. Here we consider another map $h_{1}=f \circ h+h_{2} \circ d$, where $h_{2}=h \otimes i d$. Then $h_{1}(b)=f \circ h(b)+h_{2} \circ d(b)=f(h(b))+h_{2}(1 \otimes b-b \otimes 1)=f(h(b))+b-f(h(b))=b$. Thus $h_{1}=i d_{B}$. Then $d(b)=0 \Rightarrow h_{2}(d(b))=0 \Leftrightarrow f(h(b))=b$. Thus the sequence exact.

Now we assume that B is a faithfully flat A-algebra. Then we tensor the sequence with B, we get $0 \rightarrow B \rightarrow B \otimes B \rightarrow B \otimes B \otimes B$, as it is obvious admits a splitting by $a \otimes b \mapsto a b$, the sequence is exact. As B is faithfully flat, the original sequence is exact.

Theorem. With same assumption in last theorem. Then

$$
0 \rightarrow A \rightarrow B \xrightarrow{d_{0}} B \otimes_{A} B \rightarrow \ldots \xrightarrow{d_{r-2}} B^{\otimes r}
$$

is exact, where $d_{r-1}\left(b_{0} \otimes \ldots \otimes b_{r-1}\right)=\sum_{i}(-1)^{i} b_{0} \otimes \ldots b_{i-1} \otimes 1 \otimes b_{i} \otimes \ldots b_{r-1}$.
Proof. This proof is similar to the last one. We can reduce to the case where it admits a splitting. Let g be the splitting. Consider $h_{r}\left(b_{0} \otimes \ldots b_{r+1}\right)=g\left(b_{0}\right)\left(b_{1} \otimes \ldots b_{r+1}\right)$. Then $h_{r+1} \circ d_{r+1}+d_{r} \circ h_{r}=i d$. Then we just run through last proof.

Corollary. Let $\pi: U \rightarrow X$ be a morphism of affine schemes, and let $p r_{1}$ and $p r_{2}$ be the projection of $U \times_{X} U \rightarrow U$. If π is flat and surjective, then for any affine scheme T, we have

$$
\operatorname{Hom}(X, T) \xrightarrow{\circ \pi} \Pi_{i} \operatorname{Hom}\left(U_{i}, T\right) \xrightarrow{\stackrel{\circ p r_{1}}{o p r_{2}}} \Pi_{i, j} \operatorname{Hom}\left(U_{i} \times_{T} U_{j}, T\right) .
$$

Proof. This is just the corresponding diagram of the first theorem in the affine scheme language.

Definition. Let T be a scheme. A fpqc covering is a family of morphisms $\left\{\phi_{i}: T_{i} \rightarrow T\right\}_{i \in I}$ for some index I, such that (1) each ϕ_{i} is flat, (2) for each affine open subspace $U \subset X$, there exist a finite index set K, and a map $j: K \rightarrow I$, and affine open subspace $U_{j(k)} \subset T_{j(k)}$ for all k such that $U=\cup_{k} \phi_{j(k)}\left(U_{j(k)}\right)$.

Example. Any Zariski open cover is a fpqc covering.
Theorem. A fppf covering is a fpqc covering.
Definition. Let S be a scheme and let Sch/S denote the category of schemes over S. Consider a presheaf of sets, a contravariant functor $F: S c h / S \rightarrow$ Set. We say F is a sheaf in the fpqc topology if for every fpqc covering $\phi_{i}: T_{i} \rightarrow T$, we have a equializer diagram:

$$
F(T) \longrightarrow \Pi_{i} F\left(U_{i}\right) \Longrightarrow \Pi_{i, j} F\left(U_{i} \times_{T} U_{j}\right) .
$$

Theorem. Let F be a presheaf on $S c h / S$. F is a sheaf if and only if (1) It is a sheaf for Zariski topology (2) for every faithfully flat morphism $\operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ affine scheme over S, we have an equilizer:

$$
F(\operatorname{Spec}(A)) \longrightarrow F(\operatorname{Spec}(B)) \Longrightarrow F\left(\operatorname{Spec}\left(B \otimes_{A} B\right)\right) .
$$

Proof. It is easy to see only if part. Assume we have (1) and (2). Let $\left\{f_{i}: T_{i} \rightarrow T\right\}$ be a fpqc covering. Let $s_{i} \in F\left(T_{i}\right)$ be a family of elements such that their image in $F\left(T_{i} \times{ }_{T} T_{j}\right)$ are same. Then we want to show there exist a unique $s \in F(T)$ such that $\left.s\right|_{T_{i}}=s_{i}$. Let $W \subset T$ be the maximal open subset with the property that there is a unique $s \in F(W)$ such that $\left.s\right|_{f_{i}^{-1}(W)}=\left.s_{i}\right|_{f_{i}^{-1}(W)}$. Such a set exists as we require it to satisfies the sheaf condition for Zariski topology. Now we show that $W=T$.

Let $t \in T$, let U be an open affine neighbourhood of t. Then we can find an affine covering $\left\{U_{i} \rightarrow U\right\}_{i \in J}$, which is fpqc, and is a refinement of $\left\{T_{i} \times_{T} U \rightarrow U\right\}_{i \in I}$ and J is a finite set, by maps $h_{j}: U_{j} \rightarrow T_{i_{j}}=U_{j} \times_{T} T_{i}$. Then we have an element $s \in F(U)$ such that $\left.s\right|_{U_{j}}=F\left(h_{j}\right)\left(s_{i_{j}}\right)$, by property (2). Now For any scheme $V \rightarrow U$, there is a unique section $s_{V} \in F(V)$ such that $F\left(h_{j} \circ p r\right)\left(s_{i_{j}}\right)=\left.s_{V}\right|_{V \times_{U} U_{j}}$, where $p r$ is the projection to U_{j}. This is ture for affine case by property (2), and is ture for general case by property (1). Then we have $\left.s\right|_{V}=s_{V}$. Now we consider $V=U \times_{T} T_{i}$, we have $s_{U \times_{T} T_{i}}=s_{V}=\left.s_{i}\right|_{U \times_{T} T_{i}}$.

Corollary. For each scheme Y over S the presheaf $T \mapsto \operatorname{Hom}(T, Y)$ is a sheaf in fpqc topology.

Proof. This is by the last corollary the the last theorem.
Example. Let X be a scheme, then the followings are sheaves: (1) $G_{a}(T)=\Gamma\left(T, O_{T}\right)$; (2) $G_{m}(T)=\Gamma\left(T, O_{T}\right)^{\times}$; (3) For ever $n \in \mathbb{Z}$, and positive, $\mu_{n}(T)=\left\{x \in G_{m}(T) \mid x^{n}=1\right\}$.

Proof. (1) This is the representable scheme of $\operatorname{Spec}(\mathbb{Z}[t])$. (2) This is the representable scheme of $\operatorname{Spec}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)$. (3) This is the representable scheme of $\operatorname{Spec}\left(\mathbb{Z}[t] /\left(t^{n}-1\right)\right)$.

