Étale sites

Pascal Schilde

November 8, 2018

We introduce the notions of sites, sheaves on sites, sheafification, constant sheaves and show that sheaves on a site form a abelian category. The definitions of stalks, pushforward, pullback, the proof of enough injectives and the definition of cohomology will only be done for the étale site of a scheme.

We mostly follow the corresponding sections in the Stacks Project [1] in the chapter on sites and sheaves (tag 00UZ) and the chapter on étale cohomology (tag 03N1).

1 Sites

Definition 1.1 A site consists of a category C and a set Cov(C) of families of morphisms $U = \{\varphi_i : U_i \to U\}_{i \in I}$ called coverings, such that

- (i) (isomorphism) if $\varphi: V \longrightarrow U$ is an isomorphism in \mathcal{C} , then $\{\varphi: V \longrightarrow U\}$ is a covering,
- (ii) (locality) if $\{\varphi_i : U_i \to U\}$ is a covering and for all $i \in I$ we are given a covering $\{\psi_{ij} : U_{ij} \to U_i\}_{j \in I_i}$ then

$$\{\varphi_i \circ \psi_{ij} : U_{ij} \to U\}_{(i,j)}$$

is also a covering, and

- (iii) (base change) if $\{U_i \to U\}_{i \in I}$ is a covering and $V \to U$ is a morphism in \mathcal{C} , then
 - (a) for all $i \in I$ the fibre product $U_i \times_U V$ exists in \mathcal{C} , and
 - (b) $\{U_i \times_U V \to V\}_{i \in I}$ is a covering.

Example 1.2 If X is a scheme, define the associated zariski site X_{Zar} as follows: Let the underlying category be the category of open embeddings $\varphi_i : U \hookrightarrow X$ with open embeddings over X as morphisms. The coverings are $\{\varphi_i : U_i \hookrightarrow U\}$ such that $X = \bigcup \varphi_i(U_i)$.

Example 1.3 If X is a scheme, define the associated big étale site as follows:

Let the underlying category be the category of schemes S over X with morphisms $S \to S'$ over X such that $S \to S'$ is étale. $(S \to X \text{ and } S' \to X \text{ do not have to be étale.})$ Coverings are $\{\varphi_i : S_i \to X\}_{i \in I}$ such that $X = \bigcup \varphi_i(S_i)$. **Example 1.4** If X is a scheme, define the associated small étale site $X_{\text{étale}}$ as follows: Consider the category of schemes S over X such that the structure morphism $S \to X$ is étale and as morphisms take morphisms over X that are étale. Coverings are $\{\varphi_i: S_i \to X\}_{i \in I}$ such that $X = \bigcup \varphi_i(S_i)$.

Example 1.5 If X is a scheme, define the associated (big) fppf site as follows:

Let the underlying category be the category of schemes S over X with morphisms $S \to S'$ over X such that $S \to S'$ is flat and locally of finite presentation. Coverings are $\{\varphi_i : S_i \to X\}_{i \in I}$ such that $X = \bigcup \varphi_i(S_i)$.

2 Sheaves

Now we define abelian presheaves and sheaves on a site. Analogously we can define sheaves of sets or sheaves valued in any category.

Definition 2.1 Let C be a site. A abelian presheaf on C is a contravariant functor from the underlying category to the category of abelian groups.

Definition 2.2 Let C be a site and let \mathcal{F} be a abelian presheaf on C. We say that \mathcal{F} is a sheaf if for all coverings $\{U_i \to U\}_{i \in I}$ in Cov(C) the diagram

$$\mathcal{F}(U) \longrightarrow \prod_{i \in I} \mathcal{F}(U_i) \xrightarrow{\mathrm{pr}_0^*} \prod_{(i_0, i_1) \in I \times I} \mathcal{F}(U_{i_0} \times_U U_{i_1})$$

is an equivalizer diagram.

Definition 2.3 A morphism of presheaves is a natural transformation between the corresponding functors. A morphism of sheaves is a morphism of presheaves between sheaves.

Definition 2.4 We get categories PShAb(C) and ShAb(C) associated to the site C.

3 Sheafification

Definition 3.1 Let C be a site. Let $\mathcal{U} = \{U_i \to U\}_{i \in I}$ be a covering of C. Let \mathcal{F} be a presheaf. Define $\check{\mathrm{H}}^0(\mathcal{U}, \mathcal{F})$ as the equivalizer of the diagram

$$\prod_{i \in I} \mathcal{F}(U_i) \xrightarrow{\operatorname{pr}_0^*} \prod_{(i_0, i_1) \in I \times I} \mathcal{F}(U_{i_0} \times_U U_{i_1})$$

For two coverings $\mathcal{U} = \{U_i \to U\}_{i \in I}$ and $\mathcal{V} = \{V_i \to U\}_{i \in J}$ a refinement $\mathcal{U} \to \mathcal{V}$ is a map $\sigma : I \to J$ and for $i \in I$ morphisms $U_i \to V_{\sigma(i)}$ such that the diagram

commutes. Now consider the colimit over all the coverings $\mathcal{U} = \{U_i \to U\}_{i \in I}$ of U in $Cov(\mathcal{C})$ cofiltered by refinements.

Define $\mathcal{F}^+(U) := \lim_{\to \mathcal{U}} \check{\mathrm{H}}^0(\mathcal{U}, \mathcal{F})$. \mathcal{F}^+ has a natural presheaf structure. We get a functor $\mathrm{PShAb} \to \mathrm{PShAb}$, $\mathcal{F} \mapsto \mathcal{F}^+$. Moreover there is a natural morphism $\vartheta : \mathcal{F} \to \mathcal{F}^+$.

Definition 3.2 A presheaf \mathcal{F} on a site \mathcal{C} is called separated if, for all coverings $\{U_i \to U\}$, the homomorphism $\mathcal{F}(U) \to \prod \mathcal{F}(U_i)$ is injective.

Proposition 3.3 (Stacks Project tag 00WB) For a presheaf \mathcal{F} on \mathcal{C}

- (i) The presheaf \mathcal{F}^+ is separated.
- (ii) If \mathcal{F} is separated, then \mathcal{F}^+ is a sheaf and the morphism of presheaves $\vartheta : \mathcal{F} \to \mathcal{F}^+$ is injective.
- (iii) If \mathcal{F} is a sheaf, then $\vartheta: \mathcal{F} \to \mathcal{F}^+$ is an isomorphism.
- (iv) The presheaf $\mathcal{F}^{\#} = \mathcal{F}^{++}$ is always a sheaf.

Definition 3.4 Now we can define the sheafification functor PShAb \rightarrow ShAb, $\mathcal{F} \mapsto \mathcal{F}^{\#}$.

Proposition 3.5 (Stacks Project tag 00WH) Let \mathcal{F} be presheaf and \mathcal{G} a sheaf. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of presheaves. Then there is a unique morphism of sheaves $\overline{\varphi} : \mathcal{F}^{\#} \to \mathcal{G}$ such that

commutes.

Proposition 3.6 Sheafification PShAb \rightarrow ShAb, $\mathcal{F} \mapsto \mathcal{F}^{\#}$ is left adjoint to the forgetful functor $\iota : ShAb \rightarrow PShAb$.

$$\operatorname{Hom}_{\operatorname{ShAb}}(\mathcal{F}^{\sharp}, \mathcal{G}) \cong \operatorname{Hom}_{\operatorname{PShAb}}(\mathcal{F}, \iota \mathcal{G}).$$

Proposition 3.7 (Stacks Project tag 00WJ) Sheafification preserves arbitrary colimits and finite limits.

4 Constant sheaves

Definition 4.1 Let C be a site and let A be an abelian group. The sheafification of the presheaf $\underline{A}_{PShAb} : U \mapsto A$ is called the constant sheaf with value A. Notation \underline{A} . Get a functor (-): Ab \rightarrow ShAb.

Definition 4.2 If we have a final object X in C (like X in $X_{\text{étale}}$) we can define the global sections functor as Γ_{PShAb} : PShAb \rightarrow Ab, $\mathcal{F} \mapsto \mathcal{F}(X)$ and Γ : ShAb \rightarrow Ab, $\mathcal{F} \mapsto \mathcal{F}(X)$. (There is also a definiton for general sites.)

As in the Algebraic Geometry course it follows:

Proposition 4.3 (-)_{PShAb} is left adjoint to Γ_{PShAb} and (-) is left adjoint to Γ .

5 The category of sheaves is abelian

Let \mathcal{C} be a site.

Proposition 5.1 The category PShAb has all limits and all colimits.

Proof. Check that limits and colimits in a presheaf category can be computed objectwise. \Box

Proposition 5.2 The category ShAb has all limits and all colimits: $\lim_{\leftarrow i, \text{ShAb}} \mathcal{F}_i = \lim_{\leftarrow i, \text{PShAb}} \mathcal{F}_i \text{ and } \lim_{\rightarrow i, \text{ShAb}} \mathcal{F}_i = (\lim_{\rightarrow i, \text{PShAb}} \mathcal{F}_i)^{\#}.$

Proof. Use that the limit in the sheaf condition commutes with limits and that sheafification commutes with colimits as a left adjoint. \Box

Proposition 5.3 The category PShAb is abelian.

Proof. Define addition of morphisms object-wise. Use Prop 5.1. Check the isomorphism theorem object-wise. \Box

Proposition 5.4 The category ShAb is abelian.

Proof. Define addition of morphisms object-wise. Use Prop 5.2. To verify the isomorphism theorem use that sheafification commutes with the image and the coimage as it commutes with kernels and cokernels. \Box

Remark 5.5 Therefore we get a notion of exact sequences of sheaves on sites, of injective sheaves and so on.

6 Stalks

From now on lets work with the étale site $S_{\text{étale}}$ of some scheme S.

Definition 6.1 Let \bar{s} be a geometric point of S. An étale neighbourhood of \bar{s} is a commutative diagram

where φ is étale. Denoted by (U, \overline{u}) .

A morphism of étale neighbourhoods $(U, \bar{u}) \to (U', \bar{u}')$ is $h: U \to U'$ such that $\bar{u}' = h\bar{u}$.

Remark 6.2 The category of étale neighbourhoods is cofiltered.

Definition 6.3 For \mathcal{F} on $Y_{\text{étale}}$ define $\mathcal{F}_{\bar{s}} = \lim_{\to (U,\bar{u})} \mathcal{F}(U \to X)$. We get a functor $PShAb(S_{\text{étale}}) \to Ab, \mathcal{F} \mapsto \mathcal{F}_{\bar{s}}$

Proposition 6.4 (Stacks Project tag 03PT) The functor $PShAb(S_{\acute{e}tale}) \rightarrow Ab, \mathcal{F} \mapsto \mathcal{F}_{\bar{s}}$ is exact.

Lemma 6.5 (Stacks Project tag 03PR) Let S be a scheme. Let \bar{s} be a geometric point of S. Let (U, \bar{u}) be a étale neighbourhood of \bar{s} and let $\{\varphi_i : U_i \to U\}_{i \in I}$ be an étale covering. Then there exits i in I with $u_i : \bar{s} \to U_i$ such that $\varphi_i : (U_i, \bar{u}) \to (U, \bar{u})$ is a morphism of étale neighbourhoods.

For this we need the following claim:

Claim 6.6 (Stacks Project tag 03PC) Let k be a field. Any étale morphism $X \to \text{Spec}(k)$ is of the form $X = \prod \text{Spec}(k_i) \to \text{Spec}(k)$ for k_i/k finite separable.

Proposition 6.7 (Stacks Project tag 03PT) For a presheaf \mathcal{F} we have $\mathcal{F}_{\bar{s}} \cong (\mathcal{F}^{\#})_{\bar{s}}$.

Proposition 6.8 (Stacks Project tag 03PT) For every geometric point $\bar{s} \in S$ the functor ShAb \rightarrow Ab, $\mathcal{F} \mapsto \mathcal{F}_{\bar{s}}$ is exact.

Proposition 6.9 (Stacks Project tag 03PU)

- (i) A morphism of sheaves is injective if and only if it is injective on the stalks of all geometric points.
- (ii) A morphism of sheaves is surjective if and only if it is surjective on the stalks of all geometric points.

- (iii) A morphism of sheaves is an isomorphism if and only if it is an isomorphism on the stalks of all geometric points.
- (iv) A sequence of sheaves is exact if and only if it is exact on the stalks of all geometric points.

Proposition 6.10 Stalks at geometric points of constant sheaf \underline{A} are A.

Example 6.11 Let \bar{k} be algebraically closed. Then there is an equivalence of categories ShAb(Spec(\bar{k})_{étale}) \simeq Ab, $\mathcal{F} \mapsto \mathcal{F}(Spec(\bar{k})), \underline{A} \leftrightarrow A$

Proof. uses Claim 6.6.

7 Pushforward

Definition 7.1 Let $f : X \to Y$ be a morphism of schemes. Let \mathcal{F} be a presheaf on X. The direct image, or pushforward of \mathcal{F} (under f) is

$$f_*\mathcal{F}: Y^{\text{opp}}_{\text{\acute{e}tale}} \to \text{Ab}$$
$$(V \to Y) \mapsto \mathcal{F}(X \times_Y V \to X)$$

We get a functor

$$f_* : \mathrm{PShAb}(X_{\mathrm{\acute{e}tale}}) \to \mathrm{PShAb}(Y_{\mathrm{\acute{e}tale}})$$

Proposition 7.2 (Stacks Project tag 03PX) If \mathcal{F} is a sheaf then $f_*\mathcal{F}$ is a sheaf.

Definition 7.3 We get a functor

$$f_* : \operatorname{ShAb}(X_{\operatorname{\acute{e}tale}}) \to \operatorname{ShAb}(Y_{\operatorname{\acute{e}tale}})$$

8 Pullback

Definition 8.1 Let $f : X \to Y$ be a morphism of schemes. Let \mathcal{G} be a presheaf on Y. For every $U \to X$ consider the category I_U where objects are étale $V \to Y$ together with $U \to X \times_Y V$ over X and where the morphisms are étale $V \to V'$ such that

$$U \longrightarrow X \times_Y V$$

$$\downarrow$$

$$X \times_Y V'$$

commutes. The inverse image, or pullback of \mathcal{G} (under f) is the coproduct

$$f^{+}\mathcal{F}: X_{\text{étale}}^{\text{opp}} \to \text{Ab}$$
$$(U \to X) \mapsto \lim_{(V \to Y, U \to \overrightarrow{X} \times_{Y} V) \in I_{U}^{\text{opp}}} \mathcal{F}(V \to Y)$$

Remark 8.2 This is a filtered colimit.

Proposition 8.3 (Stacks Project tag 03PZ) f^+ : PShAb $(Y_{\text{étale}}) \rightarrow$ PShAb $(X_{\text{étale}})$ is left adjoint to f_* : PShAb $(X_{\text{étale}}) \rightarrow$ PShAb $(Y_{\text{étale}})$.

Definition 8.4 Define f^{-1} : ShAb $(Y_{\text{étale}}) \rightarrow$ ShAb $(X_{\text{étale}})$ as the composite

 $\operatorname{ShAb}(Y_{\operatorname{\acute{e}tale}}) \xrightarrow{\iota} \operatorname{PShAb}(Y_{\operatorname{\acute{e}tale}}) \xrightarrow{f^+} \operatorname{PShAb}(X_{\operatorname{\acute{e}tale}}) \xrightarrow{(-)^{\#}} \operatorname{ShAb}(X_{\operatorname{\acute{e}tale}})$

Proposition 8.5 (Stacks Project tag 03PZ) f^{-1} : ShAb($Y_{\text{étale}}$) \rightarrow ShAb($X_{\text{étale}}$) is left adjoint to f_* : ShAb($X_{\text{étale}}$) \rightarrow ShAb($Y_{\text{étale}}$).

Proposition 8.6 (Stacks Project tag 03Q1) Let $\bar{x} \in X$ be a geometric point. Then for a presheaf \mathcal{F} : $(f^+\mathcal{F})_{\bar{x}} \cong \mathcal{F}_{f\bar{x}}$. And for a sheaf \mathcal{F} : $(f^{-1}\mathcal{F})_{\bar{x}} \cong \mathcal{F}_{f\bar{x}}$

Proposition 8.7 (Stacks Project tag 03Q1) The functor f^{-1} : ShAb $(Y_{\text{étale}}) \rightarrow$ ShAb $(X_{\text{étale}})$ is exact.

Proposition 8.8 (Stacks Project tag 015Z) Pushforward preserves injectivity of sheaves.

9 Existence of enough injectives

Proposition 9.1 The category $ShAb(X_{\acute{e}tale})$ has enough injectives.

Proof. (Sketch) For a given sheaf $\mathcal{F} \in \text{ShAb}(X_{\text{étale}})$ choose injections into injective groups $\mathcal{F}_{\bar{x}} \hookrightarrow I^x$. Consider $\mathcal{F} \to \prod_x \bar{x}_*(\underline{\mathcal{F}}_x) \to \prod_x \bar{x}_*(\underline{I}^x)$. Use Example 6.11 and Proposition 8.8 to check that $\prod_x \bar{x}_*(\underline{I}^x)$ is injective. Check injectivity of $\mathcal{F} \to \prod_x \bar{x}_*(\underline{\mathcal{F}}_x) \to \prod_x \bar{x}_*(\underline{I}^x)$ on stalks.

10 Étale cohomology

Since $\operatorname{ShAb}(X_{\operatorname{\acute{e}tale}})$ has enough injectives and since the global sections functor is left exact (as it is right adjoint to the constant sheaf functor) we can apply the construction in section 7 of talk 1.

For $i \in \mathbb{Z}^{\geq 0}$ define the etale cohomology functors as the right derived functors

$$H^{i}(-) = R^{i}\Gamma(-) : ShAb(X_{\text{étale}}) \to Ab.$$

References

[1] The Stacks Project Authors, The Stacks project