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We introduce the notions of sites, sheaves on sites, sheafification, constant sheaves and
show that sheaves on a site form a abelian category. The definitions of stalks, pushforward,
pullback, the proof of enough injectives and the definition of cohomology will only be done
for the étale site of a scheme.
We mostly follow the corresponding sections in the Stacks Project [1] in the chapter on
sites and sheaves (tag 00UZ) and the chapter on étale cohomology (tag 03N1).

1 Sites

Definition 1.1 A site consists of a category C and a set Cov(C) of families of morphisms
U = {ϕi : Ui → U}i∈I called coverings, such that

(i) (isomorphism) if ϕ : V ∼−−→ U is an isomorphism in C, then {ϕ : V ∼−−→ U} is a
covering,

(ii) (locality) if {ϕi : Ui → U} is a covering and for all i ∈ I we are given a covering
{ψij : Uij → Ui}j∈Ii then

{ϕi ◦ ψij : Uij → U}(i,j)

is also a covering, and

(iii) (base change) if {Ui → U}i∈I is a covering and V → U is a morphism in C, then

(a) for all i ∈ I the fibre product Ui ×U V exists in C, and

(b) {Ui ×U V → V }i∈I is a covering.

Example 1.2 If X is a scheme, define the associated zariski site XZar as follows: Let the
underlying category be the category of open embeddings ϕi : U ↪→ X with open embeddings
over X as morphisms. The coverings are {ϕi : Ui ↪→ U} such that X =

⋃
ϕi(Ui).

Example 1.3 If X is a scheme, define the associated big étale site as follows:
Let the underlying category be the category of schemes S over X with morphisms S → S ′

over X such that S → S ′ is étale. (S → X and S ′ → X do not have to be étale.) Coverings
are {ϕi : Si → X}i∈I such that X =

⋃
ϕi(Si).
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Example 1.4 If X is a scheme, define the associated small étale site Xétale as follows:
Consider the category of schemes S over X such that the structure morphism S → X

is étale and as morphisms take morphisms over X that are étale . Coverings are
{ϕi : Si → X}i∈I such that X =

⋃
ϕi(Si).

Example 1.5 If X is a scheme, define the associated (big) fppf site as follows:
Let the underlying category be the category of schemes S over X with morphisms S →

S ′ over X such that S → S ′ is flat and locally of finite presentation. Coverings are
{ϕi : Si → X}i∈I such that X =

⋃
ϕi(Si).

2 Sheaves

Now we define abelian presheaves and sheaves on a site. Analogously we can define sheaves
of sets or sheaves valued in any category.

Definition 2.1 Let C be a site. A abelian presheaf on C is a contravariant functor from
the underlying category to the category of abelian groups.

Definition 2.2 Let C be a site and let F be a abelian presheaf on C. We say that F is a
sheaf if for all coverings {Ui → U}i∈I in Cov(C) the diagram

F(U)
∏

i∈I F(Ui)
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1)
pr∗0

pr∗1

is an equivalizer diagram.

Definition 2.3 A morphism of presheaves is a natural transformation between the corre-
sponding functors. A morphism of sheaves is a morphism of presheaves between sheaves.

Definition 2.4 We get categories PShAb(C) and ShAb(C) associated to the site C.

3 Sheafification

Definition 3.1 Let C be a site. Let U = {Ui → U}i∈I be a covering of C. Let F be a

presheaf. Define Ȟ
0
(U ,F) as the equivalizer of the diagram

∏
i∈I F(Ui)

∏
(i0,i1)∈I×I F(Ui0 ×U Ui1)

pr∗0

pr∗1

For two coverings U = {Ui → U}i∈I and V = {Vi → U}i∈J a refinement U → V is a map
σ : I → J and for i ∈ I morphisms Ui → Vσ(i) such that the diagram

Ui Vσ(i)

U
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commutes. Now consider the colimit over all the coverings U = {Ui → U}i∈I of U in
Cov(C) cofiltered by refinements.

Define F+(U) := lim
−→U

Ȟ
0
(U ,F). F+ has a natural presheaf structure.

We get a functor PShAb→ PShAb, F 7→ F+.
Moreover there is a natural morphism ϑ : F → F+.

Definition 3.2 A presheaf F on a site C is called separated if, for all coverings {Ui → U},
the homomorphism F(U)→

∏
F(Ui) is injective.

Proposition 3.3 (Stacks Project tag 00WB)
For a presheaf F on C

(i) The presheaf F+ is separated.

(ii) If F is separated, then F+ is a sheaf and the morphism of presheaves ϑ : F → F+ is
injective.

(iii) If F is a sheaf, then ϑ : F → F+ is an isomorphism.

(iv) The presheaf F# = F++ is always a sheaf.

Definition 3.4 Now we can define the sheafification functor PShAb→ ShAb, F 7→ F#.

Proposition 3.5 (Stacks Project tag 00WH) Let F be presheaf and G a sheaf. Let ϕ : F →
G be a morphism of presheaves. Then there is a unique morphism of sheaves ϕ̄ : F# → G
such that

F# G

F

∃!ϕ̄

ϕ

commutes.

Proposition 3.6 Sheafification PShAb → ShAb, F 7→ F# is left adjoint to the forgetful
functor ι : ShAb→ PShAb.

HomShAb(F ],G) ∼= HomPShAb(F , ιG).

Proposition 3.7 (Stacks Project tag 00WJ) Sheafification preserves arbitrary colimits and
finite limits.
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4 Constant sheaves

Definition 4.1 Let C be a site and let A be an abelian group. The sheafification of the
presheaf APShAb : U 7→ A is called the constant sheaf with value A. Notation A. Get a
functor (-) : Ab→ ShAb.

Definition 4.2 If we have a final object X in C (like X in Xétale ) we can define the global
sections functor as ΓPShAb : PShAb → Ab,F 7→ F(X) and Γ : ShAb → Ab,F 7→ F(X).
(There is also a definiton for general sites. )

As in the Algebraic Geometry course it follows:

Proposition 4.3 (-)PShAb is left adjoint to ΓPShAb and (-) is left adjoint to Γ.

5 The category of sheaves is abelian

Let C be a site.

Proposition 5.1 The category PShAb has all limits and all colimits.

Proof. Check that limits and colimits in a presheaf category can be computed object-
wise. �

Proposition 5.2 The category ShAb has all limits and all colimits:
lim
←− i,ShAb

Fi = lim
←− i,PShAb

Fi and lim
−→ i,ShAb

Fi = (lim
−→ i,PShAb

Fi)#.

Proof. Use that the limit in the sheaf condition commutes with limits and that sheafifi-
cation commutes with colimits as a left adjoint. �

Proposition 5.3 The category PShAb is abelian.

Proof. Define addition of morphisms object-wise. Use Prop 5.1. Check the isomorphism
theorem object-wise. �

Proposition 5.4 The category ShAb is abelian.

Proof. Define addition of morphisms object-wise. Use Prop 5.2. To verify the iso-
morphism theorem use that sheafification commutes with the image and the coimage as it
commutes with kernels and cokernels. �

Remark 5.5 Therefore we get a notion of exact sequences of sheaves on sites, of injective
sheaves and so on.
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6 Stalks

From now on lets work with the étale site Sétale of some scheme S.

Definition 6.1 Let s̄ be a geometric point of S. An étale neighbourhood of s̄ is a
commutative diagram

U

Spec(k̄) S

ϕ
ū

s̄

where ϕ is étale. Denoted by (U, ū).
A morphism of étale neighbourhoods (U, ū)→ (U ′, ū′) is h : U → U ′ such that ū′ = hū.

Remark 6.2 The category of étale neighbourhoods is cofiltered.

Definition 6.3 For F on Yétale define Fs̄ = lim
−→ (U,ū)

F(U → X). We get a functor

PShAb(Sétale )→ Ab,F 7→ Fs̄

Proposition 6.4 (Stacks Project tag 03PT) The functor PShAb(Sétale ) → Ab,F 7→ Fs̄
is exact.

Lemma 6.5 (Stacks Project tag 03PR) Let S be a scheme. Let s̄ be a geometric point of
S. Let (U, ū) be a étale neighbourhood of s̄ and let {ϕi : Ui → U}i∈I be an étale covering.
Then there exits i in I with ui : s̄ → Ui such that ϕi : (Ui, ū) → (U, ū) is a morphism of
étale neighbourhoods.

For this we need the following claim:

Claim 6.6 (Stacks Project tag 03PC) Let k be a field. Any étale morphism X → Spec(k)
is of the form X =

∐
Spec(kj)→ Spec(k) for kj/k finite separable.

Proposition 6.7 (Stacks Project tag 03PT) For a presheaf F we have Fs̄ ∼= (F#)s̄.

Proposition 6.8 (Stacks Project tag 03PT) For every geometric point s̄ ∈ S the functor
ShAb→ Ab,F 7→ Fs̄ is exact.

Proposition 6.9 (Stacks Project tag 03PU)

(i) A morphism of sheaves is injective if and only if it is injective on the stalks of all
geometric points.

(ii) A morphism of sheaves is surjective if and only if it is surjective on the stalks of all
geometric points.
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(iii) A morphism of sheaves is an isomorphism if and only if it is an isomorphism on the
stalks of all geometric points.

(iv) A sequence of sheaves is exact if and only if it is exact on the stalks of all geometric
points.

Proposition 6.10 Stalks at geometric points of constant sheaf A are A.

Example 6.11 Let k̄ be algebraically closed. Then there is an equivalence of categories
ShAb(Spec(k̄)étale ) ' Ab,F 7→ F(Spec(k̄)),A←[ A

Proof. uses Claim 6.6. �

7 Pushforward

Definition 7.1 Let f : X → Y be a morphism of schemes. Let F be a presheaf on X.
The direct image, or pushforward of F (under f) is

f∗F : Y opp
étale → Ab

(V → Y ) 7→ F(X ×Y V → X)

We get a functor
f∗ : PShAb(Xétale )→ PShAb(Yétale )

Proposition 7.2 (Stacks Project tag 03PX) If F is a sheaf then f∗F is a sheaf.

Definition 7.3 We get a functor

f∗ : ShAb(Xétale )→ ShAb(Yétale )

8 Pullback

Definition 8.1 Let f : X → Y be a morphism of schemes. Let G be a presheaf on Y .
For every U → X consider the category IU where objects are étale V → Y together with
U → X ×Y V over X and where the morphisms are étale V → V ′ such that

U X ×Y V

X ×Y V ′

commutes. The inverse image, or pullback of G (under f) is the coproduct

f+F : Xopp
étale → Ab

(U → X) 7→ lim
−→

(V→Y,U→X×Y V )∈IoppU

F(V → Y )
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Remark 8.2 This is a filtered colimit.

Proposition 8.3 (Stacks Project tag 03PZ) f+ : PShAb(Yétale ) → PShAb(Xétale ) is left
adjoint to f∗ : PShAb(Xétale )→ PShAb(Yétale ).

Definition 8.4 Define f−1 : ShAb(Yétale )→ ShAb(Xétale ) as the composite

ShAb(Yétale )
ι−→ PShAb(Yétale )

f+−→ PShAb(Xétale )
(−)#−−−→ ShAb(Xétale )

Proposition 8.5 (Stacks Project tag 03PZ) f−1 : ShAb(Yétale ) → ShAb(Xétale ) is left
adjoint to f∗ : ShAb(Xétale )→ ShAb(Yétale ).

Proposition 8.6 (Stacks Project tag 03Q1) Let x̄ ∈ X be a geometric point. Then for a
presheaf F : (f+F)x̄ ∼= Ffx̄. And for a sheaf F : (f−1F)x̄ ∼= Ffx̄

Proposition 8.7 (Stacks Project tag 03Q1) The functor f−1 : ShAb(Yétale )→ ShAb(Xétale )
is exact.

Proposition 8.8 (Stacks Project tag 015Z) Pushforward preserves injectivity of sheaves.

9 Existence of enough injectives

Proposition 9.1 The category ShAb(Xétale ) has enough injectives.

Proof. (Sketch) For a given sheaf F ∈ ShAb(Xétale ) choose injections into injective groups
Fx̄ ↪→ Ix. Consider F →

∏
x x̄∗(Fx)→

∏
x x̄∗(I

x). Use Example 6.11 and Proposition 8.8
to check that

∏
x x̄∗(I

x) is injective. Check injectivity of F →
∏

x x̄∗(Fx)→
∏

x x̄∗(I
x) on

stalks. �

10 Étale cohomology

Since ShAb(Xétale ) has enough injectives and since the global sections functor is left exact
(as it is right adjoint to the constant sheaf functor) we can apply the construction in section
7 of talk 1.

For i ∈ Z>0 define the etale cohomology functors as the right derived functors

H i(−) = RiΓ(−) : ShAb(Xétale )→ Ab.
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