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We introduce the notions of sites, sheaves on sites, sheafification, constant sheaves and
show that sheaves on a site form a abelian category. The definitions of stalks, pushforward,
pullback, the proof of enough injectives and the definition of cohomology will only be done
for the étale site of a scheme.

We mostly follow the corresponding sections in the Stacks Project [1] in the chapter on
sites and sheaves (tag 00UZ) and the chapter on étale cohomology (tag 03N1).

1 Sites

Definition 1.1 A site consists of a category C and a set Cov(C) of families of morphisms
U ={p; : Uy — Ulics called coverings, such that

(i) (isomorphism) if ¢ : V. === U is an isomorphism in C, then {¢ : V —= U} is a
COvETing,

(i) (locality) if {¢; : U; — U} is a covering and for all i € I we are given a covering
{d}ij : Uij — Ui}jeli then
{@i 0ty - Uy = Ul

15 also a covering, and
(iii) (base change) if {U; — U}icr is a covering and V- — U is a morphism in C, then
(a) for alli € I the fibre product U; xy V' exists in C, and
(b) {U; xu V= V}ier is a covering.

Example 1.2 If X is a scheme, define the associated zariski site Xz., as follows: Let the
underlying category be the category of open embeddings p; : U — X with open embeddings
over X as morphisms. The coverings are {p; : Uy — U} such that X = p;(U;).

Example 1.3 If X is a scheme, define the associated big étale site as follows:

Let the underlying category be the category of schemes S over X with morphisms S — S’
over X such that S — S’ is étale. (S — X and S" — X do not have to be étale.) Coverings
are {@; + S; = X}ier such that X = i(S;)-
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Example 1.4 If X is a scheme, define the associated small étale site Xgiae as follows:
Consider the category of schemes S over X such that the structure morphism S — X
1s €étale and as morphisms take morphisms over X that are étale . Coverings are

{@i: Si = X}ier such that X = @;i(S;).

Example 1.5 If X is a scheme, define the associated (big) fppf site as follows:

Let the underlying category be the category of schemes S over X with morphisms S —
S" over X such that S — S’ is flat and locally of finite presentation.  Coverings are
{@i + S; = X}ier such that X = i(S;).

2 Sheaves

Now we define abelian presheaves and sheaves on a site. Analogously we can define sheaves
of sets or sheaves valued in any category.

Definition 2.1 Let C be a site. A abelian presheaf on C is a contravariant functor from
the underlying category to the category of abelian groups.

Definition 2.2 Let C be a site and let F be a abelian presheaf on C. We say that F is a
sheaf if for all coverings {U; — U}icr in Cov(C) the diagram

prg

F(U) — HieI‘F(Ui) T H(io,h)elxl‘F(Uio xu Uiy)
1 an equivalizer diagram.

Definition 2.3 A morphism of presheaves is a natural transformation between the corre-
sponding functors. A morphism of sheaves is a morphism of presheaves between sheaves.

Definition 2.4 We get categories PShAb(C) and ShAb(C) associated to the site C.

3 Sheatfification

Definition 3.1 Let C be a site. Let U = {U; — Uliesr be a covering of C. Let F be a
presheaf. Define HO(U,.F) as the equivalizer of the diagram

prg

Hiel ]:<Ui) T H(io,il)elxl]:(Uio XU Uil)

For two coverings U = {U; = U}ier and V ={V; = U}lics a refinementd —V is a map
o: 1 — J and for v € I morphisms U; — V() such that the diagram

UZ‘ > Vg(i)
U
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commutes. Now consider the colimit over all the coverings U = {U; — Ulicr of U in
Cov(C) cofiltered by refinements.

Define FF(U) := lim ﬁo(u,f). FT has a natural presheaf structure.

We get a functor PShAb — PShAb, F — FT.

Moreover there is a natural morphism 9 : F — FT.

Definition 3.2 A presheaf F on a site C is called separated if, for all coverings {U; — U},
the homomorphism F(U) — [[ F(U;) is injective.

Proposition 3.3 (Stacks Project tag 00WB)
For a presheaf F on C

(i) The presheaf F* is separated.

(i1) If F is separated, then F* is a sheaf and the morphism of presheaves ¥ : F — F7 is
mjective.

(111) If F is a sheaf, then O : F — F* is an isomorphism.
(iv) The presheaf F#* = F*+ is always a sheaf.
Definition 3.4 Now we can define the sheafification functor PShAb — ShAb, F s F7#.

Proposition 3.5 (Stacks Project tag 00WH) Let F be presheaf and G a sheaf. Let ¢ : F —
G be a morphism of presheaves. Then there is a unique morphism of sheaves @ : F#* — G
such that

F# __3_!‘?_> g
[A
f

commutes.

Proposition 3.6 Sheafification PShAb — ShAb, F + F# is left adjoint to the forgetful
functor v : ShAb — PShAD.

Homgpap(F7, G) = Hompgpap (F, 1G).

Proposition 3.7 (Stacks Project tag 00W.J) Sheafification preserves arbitrary colimits and
finite limits.



4 Constant sheaves

Definition 4.1 Let C be a site and let A be an abelian group. The sheafification of the
presheaf Apguarn, @ U — A is called the constant sheaf with value A. Notation A. Get a
functor (-) : Ab — ShAb.

Definition 4.2 [f we have a final object X in C (like X in Xeare ) we can define the global
sections functor as I'pgpap : PShAb — Ab, F — F(X) and I' : ShAb — Ab, F — F(X).

(There is also a definiton for general sites. )

As in the Algebraic Geometry course it follows:

Proposition 4.3 (-)pgap 1S left adjoint to Tpspan, and (=) is left adjoint to T.

5 The category of sheaves is abelian
Let C be a site.
Proposition 5.1 The category PShAb has all limits and all colimits.

Proof. Check that limits and colimits in a presheaf category can be computed object-
wise. 0

Proposition 5.2 The category ShAb has all limits and all colimits:

: L , : ) \#

{Eli,ShAb Fi= 1<£nz',PShAb Fi and h—H>li,ShAb Fi= (h—r>ni,PShAb Fi)7.
Proof. Use that the limit in the sheaf condition commutes with limits and that sheafifi-
cation commutes with colimits as a left adjoint. U

Proposition 5.3 The category PShAb is abelian.

Proof. Define addition of morphisms object-wise. Use Prop 5.1. Check the isomorphism
theorem object-wise. O

Proposition 5.4 The category ShAb s abelian.

Proof. Define addition of morphisms object-wise. Use Prop 5.2. To verify the iso-
morphism theorem use that sheafification commutes with the image and the coimage as it
commutes with kernels and cokernels. U

Remark 5.5 Therefore we get a notion of exact sequences of sheaves on sites, of injective
sheaves and so on.



6 Stalks

From now on lets work with the étale site Sgiae of some scheme S.

Definition 6.1 Let s be a geometric point of S. An étale neighbourhood of 5 is a

commutative diagram
S

Spec(k) —— S

where ¢ is étale. Denoted by (U, u).
A morphism of étale neighbourhoods (U, u) — (U’, @) is h : U — U’ such that v’ = hu.

Remark 6.2 The category of étale neighbourhoods is cofiltered.

Definition 6.3 For F on Ysae define Fz = h—H>l(Uﬂ) FU — X). We get a functor
PShAb(Setate ) = Ab, F — Fs

Proposition 6.4 (Stacks Project tag 03PT) The functor PShAb(S¢tale ) — Ab, F +— Fs
1S exact.

Lemma 6.5 (Stacks Project tag 03PR) Let S be a scheme. Let 3 be a geometric point of
S. Let (U,u) be a étale neighbourhood of § and let {¢; : U; — U}icr be an étale covering.
Then there exits © in I with w; : § — U; such that ¢; = (U;,u) — (U,a) is a morphism of
étale neighbourhoods.

For this we need the following claim:

Claim 6.6 (Stacks Project tag 03PC) Let k be a field. Any étale morphism X — Spec(k)
is of the form X =[] Spec(k;) — Spec(k) for k;j/k finite separable.

Proposition 6.7 (Stacks Project tag 03PT) For a presheaf F we have Fs = (F7)s.

Proposition 6.8 (Stacks Project tag 03PT) For every geometric point § € S the functor
ShAb — Ab, F — F; is exact.

Proposition 6.9 (Stacks Project tag 03PU)

(i) A morphism of sheaves is injective if and only if it is injective on the stalks of all
geomeltric points.

(i1) A morphism of sheaves is surjective if and only if it is surjective on the stalks of all
geometric points.



(11i) A morphism of sheaves is an isomorphism if and only if it is an isomorphism on the
stalks of all geometric points.

(iv) A sequence of sheaves is exact if and only if it is exact on the stalks of all geometric
points.

Proposition 6.10 Stalks at geometric points of constant sheaf A are A.

Example 6.11 Let k be algebraically closed. Then there is an equivalence of categories
ShAb(Spec(k)gtate ) ~ Ab, F — F(Spec(k)), A <=+ A

Proof. uses Claim 6.6. Il

7 Pushforward

Definition 7.1 Let f : X — Y be a morphism of schemes. Let F be a presheaf on X.
The direct image, or pushforward of F (under f) is

FF DY 5 Ab

étale

(VoY) FX xy V= X)

We get a functor
f+ : PShAb(X¢ate ) — PShAD(Yitale )

Proposition 7.2 (Stacks Project tag 03PX) If F is a sheaf then f.F is a sheaf.
Definition 7.3 We get a functor
f* : ShAb(Xétale ) — ShAb(Yétale )

8 Pullback

Definition 8.1 Let f : X — Y be a morphism of schemes. Let G be a presheaf on Y.
For every U — X consider the category Iy where objects are étale V- — Y together with
U — X Xy V over X and where the morphisms are étale V- — V' such that

U—)XXYV

!

X Xy Vv’
commutes. The inverse image, or pullback of G (under f) is the coproduct

FHF:XEP 5 Ab

U—X)w— lim FV-=Y)

—
(VoY U—=XxyV)elf?
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Remark 8.2 This is a filtered colimat.

Proposition 8.3 (Stacks Project tag 03PZ) f* : PShAb(Yigae ) — PShAb(Xegate ) is left
adjoint to f. : PShAb(Xgae ) — PShAb(Yiale )-

Definition 8.4 Define f~' : ShAb(Yiae ) — ShAb(Xgale ) as the composite

_\#
ShAD(Yatate ) % PShAD(Yetate ) s PShAD(Xstate ) s ShAb( Xetae )

Proposition 8.5 (Stacks Project tag 03PZ) f~' : ShAb(Ysae ) — ShAb(X¢are ) is left
adjoint to f. : ShAb(X¢tale ) = ShAD(Yitate )-

Proposition 8.6 (Stacks Project tag 03Q1) Let & € X be a geometric point. Then for a
presheaf F: (f*F)z & Fpz. And for a sheaf F: (f'F)z = Fyz

Proposition 8.7 (Stacks Project tag 03Q1) The functor f~' : ShAb(Ysae ) — ShADb(Xgtale )
1S exact.

Proposition 8.8 (Stacks Project tag 0157Z) Pushforward preserves injectivity of sheaves.

9 Existence of enough injectives
Proposition 9.1 The category ShAb(X¢iae ) has enough injectives.

Proof. (Sketch) For a given sheaf 7 € ShAb( X1 ) choose injections into injective groups
Fz — I*. Consider F — [[, Z.(Fz) — [[, .(L"). Use Example 6.11 and Proposition 8.8
to check that [, z.(I") is injective. Check injectivity of F — [], #.(Fz) — [ [, .(I*) on
stalks. 0

10 Etale cohomology

Since ShAb(Xgare ) has enough injectives and since the global sections functor is left exact
(as it is right adjoint to the constant sheaf functor) we can apply the construction in section
7 of talk 1.

For i € Z7° define the etale cohomology functors as the right derived functors

H'(—) = R'T(~) : ShAb(X¢tate ) — Ab.
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