Flat Morphisms Revisited

Sebastian Schlegel Mejia

October 25, 2018

We mostly follow the treatment of flatness in the Stacks Project: [1, Tag 00HD] and [1, Tag 00MD]

Notation. For any local ring *A* we denote its maximal ideal by \mathfrak{m}_A .

Let *A* be a ring.

Definition 1. An *A*-module *M* is *flat (over A)* if the functor $M \otimes_A (\cdot)$: $(Mod_A) \rightarrow (Mod_A)$ is exact. An *A*-module *M* is *faithfully flat (over A)* if every complex of *A*-modules $N' \rightarrow N \rightarrow N''$ is exact if and only if $M \otimes_A N' \rightarrow M \otimes_A N \rightarrow M \otimes_A N''$ is exact

A ring morphism $A \rightarrow B$ is *flat* if it makes *B* into a flat *A*-module. Similarly, the ring morphism $A \rightarrow B$ is *faithfully flat* if it makes *B* into a faithfully flat *A*-module.

The following proposition was copied from Ole's handout for his talk on flatness in the seminar on moduli spaces.

Proposition 2. (*i*) Every free A-module is flat.

- (ii) The tensor product of flat A-modules is a flat A-module.
- (iii) If $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of A-modules with M'' flat, then the sequence stays exact after tensoring with any A-module.
- (iv) Let $0 \to M' \to M \to M'' \to 0$ be short exact sequence of A-modules where M'' is flat. If one of the modules M' or M is flat, then all three are flat.
- (v) For any ring morphism $A \to B$ and any flat A-module M the module $M \otimes_A B$ is flat over B.
- (vi) Suppose $A \rightarrow B$ is a flat ring morphism. Then every flat B-module is a flat A-module.

Proposition 3. *Suppose M is a flat A-module. Then the following are equivalent:*

- (*i*) *M* is a faithfully flat *A*-module,
- (*ii*) for all A-modules N if $M \otimes_A N = 0$, then N = 0,
- *(iii) for all prime ideals* $\mathfrak{p} \subset B$ *the module* $M \otimes_B \kappa(\mathfrak{p})$ *is nonzero,*
- (iv) for all maximal ideals $\mathfrak{m} \subset B$ the module $M \otimes_B \kappa(\mathfrak{m}) = M/\mathfrak{m}M$ is nonzero.

Proof. The implications $(i) \implies (ii) \implies (iii) \implies (iv)$ are immediate.

To see the implication $(iv) \implies (i)$ consider a complex $N' \rightarrow N \rightarrow N''$. Denote by H the homology of this complex. Since M is assumed to be flat, the homology \tilde{H} of the tensored complex $M \otimes N' \rightarrow M \otimes N \rightarrow M \otimes N''$ is equal to $H \otimes M$. Assume the tensored complex is exact, i.e., $H \otimes M = 0$. Suppose by contradiction that $x \in H \setminus 0$. Consider the annihilator $Ann(x) \subset A$. The inclusion $A/Ann(x) \subset H$ yields the inclusion $M/Ann(x)M \subset H \otimes M$ because M is flat. However, the ideal Ann(x) is contained in some maximal ideal $\mathfrak{m} \subset A$ and 0 = M/Ann(x)M surjects onto $M/\mathfrak{m}M \neq 0$. Contradiction.

- **Corollary 4.** (*i*) A flat ring morphism $A \rightarrow B$ is faithfully flat if and only if the associated morphism Spec(B) \rightarrow Spec(A) is surjective.
 - (*ii*) A flat ring morphism $A \to B$ is faithfully flat if and only if every closed point of Spec(A) is in the image of $Spec(B) \to Spec(A)$.
- (iii) Every flat morphism of local rings is faithfully flat.

Proof. The fiber over $\mathfrak{p} \in \operatorname{Spec}(A)$ is nonempty precisely when $B \otimes_A \kappa(\mathfrak{p}) \neq 0$. \Box

Definition 5. Let $f: X \to Y$ be a morphism of schemes. A quasicoherent sheaf \mathcal{F} on X is *flat at the point* $x \in X$ *over* Y or f-*flat at the point* $x \in X$ if \mathcal{F}_x is flat as an $O_{Y,f(x)}$ -module. We sat that \mathcal{F} is f-*flat* if it is f-flat at x for every $x \in X$. The morphism $f: X \to Y$ is *flat (at x)* if O_X is f-flat (at x) (i.e., the local ring morphism $O_{Y,f(x)} \to O_{X,x}$ is flat).

A morphism of schemes is *faithfully flat* if it is flat and surjective.

The following proposition was also copied from Ole's handout and is a translation of Proposition 2 into the setting of schemes.

Proposition 6. Let $f: X \to Y$ be a morphism of schemes.

- (i) Every locally free O_X -module is flat over X.
- (ii) The tensor product of f-flat O_X -modules is f-flat.
- (iii) If $0 \to \mathcal{G}' \to \mathcal{G} \to \mathcal{G}'' \to 0$ is a short exact sequence of quasicoherent \mathcal{O}_{Y^-} modules and \mathcal{G}'' is flat over Y, then the sequence stays exact after pulling back along f.
- (iv) Let $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ be a short exact sequence of quasicoherent O_X -modules where \mathcal{F}'' is f-flat. If one of \mathcal{F} or \mathcal{F}' is f-flat, then all three \mathcal{F}' , \mathcal{F} , and \mathcal{F}'' are f-flat.
- (v) For every cartesian diagram

$$\begin{array}{ccc} X' & \stackrel{g'}{\longrightarrow} & X \\ \downarrow^{f'} & & \downarrow^{f} \\ Y' & \longrightarrow & Y \end{array}$$

and *f*-flat quasicoherent sheaf \mathcal{F} on X the sheaf $(g')^*\mathcal{F}$ is f'-flat.

(vi) Suppose $Y \to Z$ is a flat morphism. Then every quasicoherent sheaf \mathcal{F} on X which is flat over Y is also flat over Z.

Theorem 7. Let $f: X \to Y$ be a morphism locally of finite type and Y a locally noetherian scheme. If f is flat, then it is an open map.

Lemma 8 (Going down for flat morphisms). Suppose $A \to B$ is a flat ring morphism. Let $\mathfrak{p} \subset A$ be a prime ideal and $\mathfrak{q} \subset B$ a prime ideal lying over \mathfrak{p} . Then for every prime ideal $\mathfrak{p}' \subset \mathfrak{p}$ of A there exists a prime ideal $\mathfrak{q}' \subset \mathfrak{q}$ of B that lies over \mathfrak{p}' .

Proof of Theorem 7. Since openness is a local property, we reduce the affine case; we show that for a noetherian ring *A* and a finite type ring morphism $A \rightarrow B$, the map $f: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ is open.

Recall Chevalley's theorem: for every finite type morphism of noetherian schemes the image of any constructible set is constructible. In particular the image of f is constructible. Recall also that a constructible set in a noetherian topological space is open if and only if it is stable under generization. Lemma 8 translates to: the image of f is stable under generization.

Flatness Criteria

Let *A* be a ring and *M* an *A*-module. In general the functor $M \otimes_A (\cdot)$ is right exact. We want to measure its failure to be exact, that is, we want to define a derived functor. Since every *A*-module admits a free resolution, the category (Mod_{*A*}) has enough projectives.

Definition 9. Define $\operatorname{Tor}_{\bullet}^{A}$: (Mod_{*A*}) \rightarrow (Mod_{*A*}) to be the left derived δ -functor of $M \otimes_{A} (\cdot)$.

Proposition 10 (Flatness through Tor). *The following are equivalent:*

- (*i*) *M* is a flat *A*-module,
- (*ii*) $\operatorname{Tor}_{i}^{A}(M, N) = 0$ for all A-modules N and i > 0,
- (*iii*) $\operatorname{Tor}_{1}^{A}(M, N) = 0$ for all A-modules N.

Theorem 11 (Ideal-theoretic criterion). An *A*-module *M* is flat if and only if $\operatorname{Tor}_{1}^{A}(M, A/\mathfrak{a}) = 0$ for all ideals $\mathfrak{a} \subset A$.

Sketch of Proof. Suppose that $\operatorname{Tor}_1^A(M, A/\mathfrak{a}) = 0$ for all ideals $\mathfrak{a} \subset A$. Let N be a finitely generated A-module. We will show that $\operatorname{Tor}_1^A(M, N) = 0$. Assume first that N is a finitely generated, say by the elements x_1, \ldots, x_n , over A. We induct on the number of generators n. The key idea is to consider the annihilator $\operatorname{Ann}(x_n) \subset A$. Next we look at the long exact sequence in $\operatorname{Tor}_{\bullet}^A(M, \cdot)$ evaluated at the short exact sequence $0 \to A/\operatorname{Ann}(x_n) \to N \to Q \to 0$. The module Q is generated by the elements x_1, \ldots, x_{n-1} , so by induction hypothesis $\operatorname{Tor}_1^A(M, Q) = 0$. By assumption $\operatorname{Tor}_1^A(M, A/\operatorname{Ann}(x_n)) = 0$. We conclude that $\operatorname{Tor}_1^A(M, N) = 0$, because it is stuck between two zeros in an exact sequence. For general N: write N as the colimit of finitely generated A-submodules and use that homology commutes with colimits.

The long exact sequence in $\operatorname{Tor}_{\bullet}^{A}(M, \cdot)$ associated to the short exact sequence $0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$ starts off as

 $0 \longrightarrow \operatorname{Tor}_1^A(M, A/\mathfrak{a}) \longrightarrow \mathfrak{a} \otimes_A M \longrightarrow M \longrightarrow M/\mathfrak{a} M \longrightarrow 0.$

Thus we can restate the ideal-theoretic flatness criterion as: *M* is a flat *A*-module if and only if the map $\mathfrak{a} \otimes_A M \to M$ is injective for all ideals $\mathfrak{a} \subset A$.

Corollary 12 (Equational criterion). An A module M is flat if and only if every relation in M is trivial, i.e., for every relation $\sum_i f_i x_i = 0$ in M there are elements $y_j \in M$ and elements $a_{ij} \in A$ such that $x_i = \sum_j a_{ij} y_j$ for all i and $\sum_i f_i a_{ij} = 0$ for all *j*.

Intuitively, a relation in *M* is trivial if it is secretly a relation in *A*.

Proof. First assume that every relation in M is trivial. Let $\mathfrak{a} \subset A$ be an ideal. Let $x = \sum_i f_i \otimes x_i$ be an element in ker($\mathfrak{a} \otimes M \to M$), that is, $\sum_i f_i x_i = 0$ is a relation in M and so must be trivial. We compute

$$x = \sum_i f_i \otimes x_i = \sum_i f_i \otimes (\sum_j a_{ij} y_j) = \sum_j (\sum_i f_i a_{ij}) \otimes y_j = \sum_i 0 \otimes y_j = 0.$$

Hence $\operatorname{Tor}_1^A(M, A/\mathfrak{a}) = \ker(\mathfrak{a} \otimes M \to M) = 0$. We conclude by Theorem 11 that *M* is flat.

Now assume that *M* is flat. Let $\sum_{i=1}^{n} f_i x_i = 0$ be a relation in *M*. Consider the ideal $\mathfrak{a} \subset A$ generated by the f_i . We have a short exact sequence

$$0 \longrightarrow K \longrightarrow A^{\oplus n} \xrightarrow{e_i \mapsto f_i} \mathfrak{a} \longrightarrow 0.$$

We also have the inclusion $\mathfrak{a} \hookrightarrow A$. Tensoring these two diagrams with M and splicing them together we get the following diagram with exact column(s) and row(s).

The element $\sum_i f_i x_i = 0 \in M$ is the image of $\sum_i f_i \otimes x_i \in \mathfrak{a} \otimes M$. By injectivity we have $\sum_i f_i \otimes x_i = 0$. Therefore $\sum_i e_i \otimes x_i$ maps to 0, so we can write it as an element $\sum_j k_j \otimes y_j \in K \otimes M$. Since the e_i form a basis of $A^{\oplus n}$ we can write $k_j = \sum_i a_{ij}e_i$ for some $a_{ij} \in A$. We conclude that $\sum_i f_i x_i = 0$ is a trivial relation.

For finitely generated modules over a local ring we only need to check Tor_•-acyclicity for the residue field.

Theorem 13 (Local criterion). Suppose $A \to B$ is a morphism of noetherian local rings and M is a finitely generated B-module. Then M is A-flat if and only if $\operatorname{Tor}_{1}^{A}(M, A/\mathfrak{m}_{A}) = 0$.

Sketch of Proof. Set $\mathfrak{m} := \mathfrak{m}_A$. Suppose $\operatorname{Tor}_1^A(M, A/\mathfrak{m}) = 0$.

Lemma 14. For all *A*-modules *N* of finite length we have $\text{Tor}_1^A(M, N) = 0$.

Consider the inclusion of short exact sequences

Tensor the *M* to obtain the commutative diagram with exact rows:

The zeros in the first row come from the finite colength of the ideals \mathfrak{m}^n and $\mathfrak{a} + \mathfrak{m}^n$ ($\mathfrak{0} = \mathfrak{m}^n/\mathfrak{m}^n \subset \mathfrak{m}^{n-1}/\mathfrak{m}^n \subset \ldots \subset \mathfrak{m}/\mathfrak{m}^n \subset A/\mathfrak{m}^n$ is a composition series for A/\mathfrak{m}^n).

Set $K := \text{Tor}_1^A(M, A/\mathfrak{a})$. The diagram shows that *K* is contained in the iamge of ϕ_n .

By Artin-Rees, we have the inclusion $\mathfrak{a} \cap \mathfrak{m}^n \subset \mathfrak{m}^r \mathfrak{a}$ for all r > 0 and for all $n \gg 0$. The submodule $\mathfrak{m}^r(\mathfrak{a} \otimes_A M) \subset \mathfrak{a} \otimes_A M$ is the image of $\mathfrak{m}^r \mathfrak{a} \otimes_A M$. In particular, the image $\mathfrak{im}(\phi_n)$ is contained in $\mathfrak{m}^r(\mathfrak{a} \otimes_A M)$ for all $n \gg 0$. Altogether, we obtain the inclusion

$$K \subset \bigcap_{r>0} \mathfrak{m}^r(\mathfrak{a} \otimes_A M) = 0;$$

the intersection is zero by Krull's Intersection Theorem.

Therefore $\text{Tor}_{1}^{A}(M, A/\mathfrak{a}) = 0$ and *M* is flat by Theorem 11.

Corollary 15 (Variant of the local criterion). Let $A \to B$ be a local ring morphism of noetherian local rings. Let $\mathfrak{a} \subset A$ be an ideal in A and let M be a finitely generated B-module. Suppose that $M/\mathfrak{a}M$ is flat over A/\mathfrak{a} . Then M is flat over A if and only if $\operatorname{Tor}_{1}^{A}(M, A/\mathfrak{a}) = 0$.

Proof. By the local criterion, Theorem 13, it suffices to show that $\mathfrak{m}_A \otimes_A M \to M$ is injective.

Let $\sum_i f_i \otimes x_i \in \ker(\mathfrak{m}_A \otimes M \to M)$. Applying the equational criterion (Corollary 12) to the relation $\sum_i f_i x_i = 0$ in the flat A/\mathfrak{a} -module $M/\mathfrak{a}M$, we find elements $a_{ij} \in A$ and $y_j \in M$ such that

$$x_i = \sum_j a_{ij} y_j \mod \mathfrak{a} M,$$
$$0 = \sum_i f_i a_{ij} \mod \mathfrak{a}.$$

We calculate

$$\sum_{i} f_{i} \otimes x_{i} = \sum_{i} f_{i} \otimes x_{i} + \sum_{i,j} f_{i}a_{ij} \otimes y_{j} - \sum_{i,j} f_{i}a_{ij} \otimes y_{j}$$
$$= \sum_{i} f_{i} \otimes (x_{i} - \sum_{j} a_{ij}y_{j}) + \sum_{j} (\sum_{i} f_{i}a_{ij}) \otimes y_{j}$$

Since $x_i - \sum_j a_{ij} y_j \in \mathfrak{a}M$ and $\sum_i f_i a_{ij} \in \mathfrak{a}$, it follows that $\sum_i f_i \otimes x_i$ is in the image of the map $\mathfrak{a} \otimes_A M \to \mathfrak{m}_A \otimes_A M$.

In particular, all elements in ker($\mathfrak{m}_A \otimes_A M \to M$) are images of elements in ker($\mathfrak{a} \otimes_A M \to M$). Note that the map $\mathfrak{a} \otimes_A M \to M$ is injective, because we assume $\operatorname{Tor}_1^A(M, A/\mathfrak{a}) = 0$. Hence ker($\mathfrak{m}_A \otimes_A M \to M$) = 0.

Theorem 16 (Fiberwise criterion, local ring version). Let $A \rightarrow B \rightarrow C$ be morphisms of noetherian local rings. Suppose M is a nonzero finitely generated C-module which is flat over A and such that $M/m_A M$ is a flat $B/m_A B$ -module. Then $A \rightarrow B$ is a flat ring morphism and M is flat over B.

Sketch of Proof. Step 1. We show that *M* is faithfully flat. Let $b := \operatorname{im}(\mathfrak{m}_A \otimes_A B \to B) = \mathfrak{m}_A B$. The map $\mathfrak{m}_A \otimes_A M \twoheadrightarrow \mathfrak{b} \otimes_B M$ is surjective and the composition $\mathfrak{m}_A \otimes_A M \to \mathfrak{b} \otimes_B M \to M$ is injective. Hence $\mathfrak{b} \otimes_B M \to M$ is injective (i.e., $\operatorname{Tor}_1^B(M, B/\mathfrak{b}) = 0$), so *M* is flat by Corollary 15. Then it follows by Nakayama that *M* is faithfully flat.

Step 2. We tensor the short exact sequence

$$0 \longrightarrow \operatorname{Tor}_{1}^{A}(B, \kappa(A)) \longrightarrow \mathfrak{m}_{A} \otimes_{A} B \longrightarrow \mathfrak{b} \longrightarrow 0.$$

with *M*. Use the injectivity of $\mathfrak{m}_A \otimes_A M \to \mathfrak{b} \otimes_B M$ and the faithful flatness of *M* over *B* to conculde that $\operatorname{Tor}_1^A(B, \kappa(A)) = 0$.

Theorem 17 (Fiberwise criterion, scheme version). Let *S* be a locally noetherian scheme. Let $f: X \to Y$ be a morphism of locally noetherian *S*-schemes and \mathcal{F} a nonzero coherent O_X -module on *X*. Let $x \in X$. Let y := f(x) and let $s \in S$ be the image of x in *S*. Then the following are equivalent:

- (i) \mathcal{F} is flat over S at x and \mathcal{F}_s is flat over Y_s at x,
- (ii) Y is flat over S at y and \mathcal{F} is flat over Y at x.

Remark 18. Most of the noetherian hypotheses can be replaced with locally of finite presentation hypotheses.

References

 The Stacks project authors. The stacks project. https://stacks.math. columbia.edu, 2018.