Étale morphisms

Ole Ossen, 1st November 2018

We mostly follow Bhatt's notes [1].

Definition. A local homomorphism of local rings $f : (B, \mathfrak{n}) \to (A, \mathfrak{m})$ is called **unramified** if $f(\mathfrak{n})B = \mathfrak{m}$ and $\kappa(\mathfrak{m})$ is a finite separable extension of $\kappa(\mathfrak{n})$.

Definition. A morphism of schemes $\pi : X \to Y$ is called **unramified** at $x \in X$ if

- (i) the local homomorphism $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is unramified,
- (ii) π is locally of finite type at *x*.

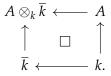
If π is unramified at all $x \in X$, it is called **unramified**.

Lemma 1. Suppose A is a finitely generated algebra over a field k with $\Omega_{A/k} = 0$. Then A is a finite direct sum of finite separable field extensions of k.

Sketch of proof. First assume $k = \overline{k}$. Then for any prime $\mathfrak{p} \subset A$ and any maximal ideal $\mathfrak{m} \subset A$ containing \mathfrak{p} ,

$$\mathfrak{m}_{\mathfrak{m}}/\mathfrak{m}_{\mathfrak{m}}^2 \cong k \otimes_{A_{\mathfrak{m}}} \Omega_{A_{\mathfrak{m}}/k} = 0$$

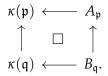
By Nakayama's lemma, it follows that $\mathfrak{m}_{\mathfrak{m}} = \mathfrak{p}_{\mathfrak{m}} = 0$. Varying \mathfrak{p} and \mathfrak{m} , we deduce that A is a reduced artinian k-algebra, hence a finite direct sum of copies of k. Deduce the case of arbitrary k using a base change



Theorem 2. Suppose $\pi : X \to Y$ is locally of finite type. Then for any $x \in X$, the following are equivalent:

- (*i*) π is unramified at x.
- (*ii*) $\Omega_{X/Y,x} = 0.$
- (iii) There exists an open $x \in U$ and a locally closed embedding $j : U \hookrightarrow \mathbb{A}^n_Y$ defined by an ideal sheaf \mathcal{I} such that $\Omega_{\mathbb{A}^n_Y/Y,x}$ is generated by dg for sections g of \mathcal{I} .
- (iv) There exists an open $x \in U$ such that $\operatorname{diag}_{X/Y}|_U$ is an open embedding.

Sketch of proof. (i) \implies (ii). Consider a homomorphism $B \to A$ and primes $\mathfrak{p} \in \text{Spec } A$, $\mathfrak{q} = \mathfrak{p} \cap B$. If $B_{\mathfrak{q}} \to A_{\mathfrak{p}}$ is an unramified homomorphism of local rings, we have a cartesian diagram



It follows that

$$\Omega_{A/B,\mathfrak{p}}\otimes_{A_{\mathfrak{p}}}\kappa(\mathfrak{p})=\Omega_{A_{\mathfrak{p}}/B_{\mathfrak{q}}}\otimes_{A_{\mathfrak{p}}}\kappa(\mathfrak{p})=\Omega_{\kappa(\mathfrak{p})/\kappa(\mathfrak{q})}=0.$$

(ii) \implies (i). Use Lemma 1.

(ii) \iff (iii). Use the conormal exact sequence

$$j^*(\mathcal{I}/\mathcal{I}^2) \to j^*\Omega_{\mathbb{A}^n_Y/Y} \to \Omega_{U/Y} \to 0.$$

(ii) \iff (iv). We show that for any affine opens Spec $B \subset Y$ and Spec $A \subset \pi^{-1}(\text{Spec } B)$, the closed embedding Spec $A \rightarrow$ Spec $A \otimes_B A$ is actually an open embedding if and only if $\Omega_{A/B} = 0$. To this end, apply the following lemma to the ideal ker($A \otimes_B A \rightarrow A$).

Lemma 3. Suppose *R* is a ring and $I \subset R$ is a finitely generated ideal. If $I^2 = I$, then V(I) = D(e) for an idempotent element $e \in R$.

Proposition 4. Unramified morphisms are stable under base change and composition. A morphism that is locally of finite type is unramified if and only if all its fibers are unramified.

Sketch of proof. Use Theorem 2.(ii).

- **Proposition 5.** (*i*) If for morphisms $f : X \to Y$ and $g : Y \to Z$ the composition gf is unramified, then so is f.
- (ii) Every monomorphism locally of finite type is unramified.

Sketch of proof. (i) Use Theorem 2.(ii).

(ii) Use Theorem 2.(iv).

Theorem 6. Suppose $\pi : X \to S$ is locally of finite type. Then π is unramified if and only if for every affine morphism $Y \to S$ and every closed subscheme $Y_0 \subset Y$ defined by an ideal sheaf \mathcal{I} with $\mathcal{I}^2 = 0$, the map

$$\operatorname{Mor}_{S}(Y, X) \to \operatorname{Mor}_{S}(Y_{0}, X)$$

is injective.

Sketch of proof. Reduce to the affine case as in the following diagrams:

Fix a homomorphism $A \to B/I$. The trick is to notice that *differences* of factorizations $A \to B$ correspond to derivations $A \to I$.

For the backward implication, consider $B := (A \otimes_R A)/J^2$, where $J = \text{ker}(A \otimes_R A \to A)$, as well as the ideal $I := J/J^2$.

Definition. A morphism of schemes $\pi : X \to Y$ is called **étale** at $x \in X$ if π is unramified and flat at *x*.

It is called **étale** if it is étale at all points $x \in X$.

Proposition 7. Consider morphisms $f : X \to Y$ and $g : Y \to Z$. If g is unramified and gf is étale, then f is étale.

Sketch of proof. Use Proposition 5 and the fiberwise criterion for flatness, Theorem 17 of Sebastian's talk.

Theorem 8. A morphism $\pi : X \to Y$ is étale if and only if the following holds:

- (*i*) There exists an open $x \in U$ and a locally closed embedding $j: U \hookrightarrow \mathbb{A}^n_{Y}$.
- (ii) If \mathcal{I} is the corresponding ideal sheaf, then there exist sections g_1, \ldots, g_n of \mathcal{I} such that the dg_1, \ldots, dg_n form a basis for $\Omega_{\mathbb{A}^n_Y/Y, x} \otimes_{\mathcal{O}_{\mathbb{A}^n_Y, x}} \kappa(x)$.

Sketch of proof. (ii) \implies (i). Unramifiedness follows from Theorem 2. Flatness uses the theory of Cohen-Macaulay rings. See for example the exposition in [3, Section 25.2.1]. (i) \implies (ii). See for example [2, Tag 00UE].

We record some more properties of étale morphisms that follow quickly from the properties of unramified and flat morphisms:

Proposition 9. *Étale morphisms are open.*

Sketch of proof. In fact, flat morphisms locally of finite type are open (Theorem 7 of Sebastian's talk).

Proposition 10. *Étale morphisms are stable under base change and composition.*

Proposition 11. *Étale morphisms are quasi-finite.*

Proposition 12. A flat morphism locally of finite type is étale if and only if it is unramified.

Finally, we present an analog of Theorem 6 for étale morphisms:

Theorem 13. Suppose $\pi : X \to S$ is locally of finite type and separated. Then π is étale if and only if for every affine morphism $Y \to S$ and every closed subscheme $Y_0 \subset Y$ defined by an ideal sheaf \mathcal{I} with $\mathcal{I}^2 = 0$, the map

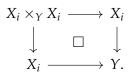
$$\operatorname{Mor}_{S}(Y, X) \to \operatorname{Mor}_{S}(Y_{0}, X)$$

is bijective.

Sketch of proof. (i) \implies (ii). Reduce to the case Y = S via base change. Let $\varphi : X \to Y$ be the structure morphism. Then the cartesian diagram

$$\begin{array}{ccc} Y & \stackrel{s}{\longrightarrow} & X \\ s \downarrow & \square & \downarrow (s\varphi, id) \\ X & \xrightarrow{}_{\operatorname{diag}_{X/Y}} & X \times_Y X \end{array}$$

shows that every section $s : Y \to X$ is an isomorphism onto a connected component of X. Now consider a morphism $t \in Mor_Y(Y_0, X)$. Since the underlying sets of Y_0 and Y are the same, there is a connected component X_i of Y such that $X_i \to Y$ is a universal homeomorphism. Also, $X_i \to Y$ is étale. Now the faithfully flat base change



shows that $X_i \to Y$ is in fact an isomorphism. The inverse is our desired extension of t to Y. (ii) \Longrightarrow (i). Assume S = Spec R, $X = \text{Spec } R[\underline{X}]/I$. Using the hypothesis, find a splitting of the exact sequence

$$0 \to I/I^2 \to R[\underline{X}]/I^2 \to R[\underline{X}]/I \to 0$$

The resulting map $R[\underline{X}]/I^2 \to I/I^2$ is a derivation, so induces a map $\Omega_{R[\underline{X}]/R} \otimes_{R[\underline{X}]} R[\underline{X}]/I \to I/I^2$ that is inverse to $I/I^2 \to \Omega_{R[\underline{X}]/R} \otimes_{R[\underline{X}]} R[\underline{X}]/I$.

References

- [1] Bhatt, B., The étale topology. http://www-personal.umich.edu/~bhattb/math/etalestcksproj.pdf, 2018.
- [2] Stacks Project authors, *The Stacks Project*. https://stacks.math.columbia.edu, 2018.
- [3] Vakil, R., The Rising Sea: Foundations of Algebraic Geometry. Preprint, 2017.