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1 Introduction

Recall the proper base change theorem: Let f : X → Y be a proper morphism and
let F ∈ Sh(Xét) be a torsion sheaf. Then we want to prove that for every cartesian
diagram

X′ X

S′ S

h

e

f
g

and every q > 0 the base change homomorphism

g−1(Rq f∗F )→ Rqh∗(e−1F )

is an isomorphism. In this talk, we consider the special case where

- S is the spectrum of a noetherian strictly henselian local ring (A,m), and S′ is the
closed point of S = Spec A,

- F is a constant sheaf of the form Z/nZ,

- the morphism h, which is the special fiber of f , is projective.

Then by Theorem 5.1 of Emil’s talk, the proper base change theorem reduces to sho-
wing that for every q > 0,

Hq(X, Z/nZ)→ Hq(X0, Z/nZ)

is an isomorphism. We show that this is an isomorphism for q = 0 and surjective for
q = 1.

2 Formal geometry

We study formal geometry only in the locally noetherian setting. The following pro-
position hints at the problems one might otherwise encounter.
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Proposition 1 (Reminder on completions). Let A be a noetherian ring and let a ⊂ A be an
ideal.

i) The a-adic completion of A is complete.

ii) a-adic completion preserves exactness of sequences of finitely generated A-modules.

iii) Every maximal ideal of Â contains â.

Proof. [2, Chapter 10]. �

We introduce the notion of formal schemes. These are certain topologically ringed spaces,
i. e., topological spaces endowed with a sheaf of topological rings.
Let A be a noetherian ring and let a ⊂ A be an ideal such that A is complete and
Hausdorff with respect to the a-adic topology. We call a an ideal of definition for A.

Definition. The formal spectrum Spf A of A is the topologically ringed space with un-
derlying topological space X := Spec(A/a) and structure sheaf of topological rings

OX := lim←−
n>0
OXn , Xn = Spec(A/an+1).

Since we may compute limits of sheaves objectwise,

OX (U) = lim←−
n
OXn(U), U ⊂ X .

Definition. A formal scheme is a topologically ringed space (X ,OX ) that has an open
cover X =

⋃
i∈I Ui by topologically ringed spaces Ui isomorphic to formal spectra.

A morphism of formal schemes f : X → Y is a morphism of locally ringed spaces for
which the f [(V) : OY(V)→ OX( f−1(V)) are all continuous.

The formal spectrum comes with a morphism Spf A→ Spec A, induced by the embed-
dings Spec A/an ↪→ Spec A. By Proposition 1.iii), Spf A contains all closed points of
Spec A.
Here is an example to keep in mind: Let A = k[[t]] be a ring of power series and let
a = (t). Then as a topological space, Spf A only contains the one closed point of Spec A.
But its functions are all the power series k[[t]]!

Proposition 2. For every formal scheme X and every formal spectrum Y = Spf S there exists
a natural bijection

Mor(X ,Y) ∼= Homcont(S,OX (X )), f 7→ f [(Y).

Proof. The same as for schemes. First consider the case where X = Spf R is a formal
spectrum. Then every continuous ring homomorphism ϕ : S → R induces a continu-
ous map X → Y by pullback. �
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Definition. An element x ∈ R of a topological ring is called topologically nilpotent if
limn→∞ xn = 0.

Let X be a formal scheme. Denote by IX the ideal sheaf of topologically nilpotent
functions. Then on any formal affine subscheme Spf A ⊂ X , the ideal IX (Spf A) is an
ideal of definition for A. Such an ideal sheaf is called ideal sheaf of definition for X .
Associate to X a family of closed embeddings of schemes

X0 ↪→ X1 ↪→ X2 ↪→ . . . , Xn = (X ,OX/In+1
X ). (1)

We can recover X as the colimit lim−→n
Xn.

Conversely, we may start with a locally noetherian scheme X and a closed subscheme
X0 cut out by the ideal sheaf I . By setting Xn := (X0,OX/In+1), we obtain a sequence
of schemes like (1). The topologically ringed space (X0, lim←−n

OX/In+1) is then a formal
scheme, called the formal completion of X along X0. It comes with a natural morphism
X → X, induced by the inclusions Xn ↪→ X.

Proposition 3. Let f : X → Y be a morphism of locally noetherian schemes and let X0 ⊂ X
and Y0 ⊂ Y be closed subschemes with ideal sheaves I and J such that f (X0) ⊂ Y0. Let X
be the formal completion of X along X0 and let Y be the formal completion of Y along Y0. Then
there exists an induced morphism X → Y making the following diagram commute:

X X

Y Y

f

Proof. This follows from functoriality of colimits, because we have commutative dia-
grams

Xn X

Yn Y.

f

�

We now consider the problem of algebraization. Suppose that Y = Spf A is the formal
spectrum of a complete and Hausdorff ring A, with ideal of definition a ⊂ A. Let
Y := Spec A. Suppose that X is a formal scheme over Y . Does there exist a (locally
noetherian) scheme X over Y whose a-adic completion is isomorphic to X ?

X X

Y Y

Theorem 4. If X0 is projective over Y0, then X is algebraizable.

Proof. [6, Theorem 8.4.10]. �
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3 The case q = 0

Lemma 5. Let A be a noetherian ring and let X → Spec A be a proper morphism. Then
OX(X) is a finite A-algebra.

Proof. [4, Theorem 3.2.1]. �

Lemma 6. Let A be a noetherian ring and let a ⊂ A be an ideal. Let f : X → Spec A be a
proper morphism. Then

lim←−
n

Γ(X,OX)/anΓ(X,OX) ∼= lim←−
n

Γ(X⊗A A/an,OX⊗A A/an). (2)

Proof. [4, Section 4.1]. �

We can actually understand (2) as a base change homomorphism:

X X OX

Spf A Spec A

Now denote by π0(T) the set of connected components of a scheme T. Since we only
consider constant sheaves, it suffices to prove the following theorem:

Theorem 7. Let A be a noetherian local henselian ring and let S = Spec A. Let f : X → S be
a proper morphism and let X0 be the fiber of f above the closed point of S. Then the map

π0(X)→ π0(X0), E 7→ E ∩ X0, (3)

is a bijection.

Proof. Let S′ denote the spectrum SpecOX(X). The trivial factorization of A-algebras
A→ OX(X)→ OX(X) induces a factorization X → S′ → S:

OX(X) A ; X S

OX(X) SpecOX(X)

Here the morphism S′ → S is finite (Lemma 5) and f ′ : X → S′ is proper (Cancellation
Theorem for proper morphisms, see [8, Theorem 10.1.19]). Since A is henselian, S′ =
är

i=1 Spec Ai for henselian local rings Ai.
We now investigate the fibers of f ′. Let si ∈ S′ be one of the closed points, correspon-
ding to the maximal ideal mi ⊂ Ai. Applying Lemma 6 to the fiber Xsi → si yields

lim←−
n

Si/mn
i
∼= lim←−

n
Γ(X⊗Ai Ai/mn

i ,OX⊗Ai
Ai/mn

i
).
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On the left is the mi-adic completion of Si; on the right is the functions of the formal
completion of X along the fiber Xsi . Thus this fiber is connected. Now it suffices to
show that the Xi := f ′−1(Si) are the connected components of X. They certainly form
a disjoint union of X. And they are connected, because any closed point of Xi must
map to si. �

4 The case q = 1

Let R be a ring. A functor

F : R-algebras → Sets

is called locally of finite presentation if for every filtered system of R-algebras Si,

F(lim−→
i

Si) = lim−→
i

F(Si).

The following lemma motivates this:

Lemma 8. An R-module M is finitely presented if and only if the functor HomR(M, ·) is
locally of finite presentation.

Proof. Suppose that M is finitely presented, say by Rm → Rn → M→ 0. Since

HomR(Rn, lim−→
i

Ni) = (lim−→
i

Ni)
n = lim−→

i
Nn

i = lim−→
i

HomR(Rn, Ni),

locally finite presentation of HomR(M, ·) follows from the five lemma.
Conversely, suppose that HomR(M, ·) is locally of finite presentation. Write M as a
filtered colimit of finitely presented modules M = lim−→i

Mi. Since

HomR(M, M) = HomR(M, lim−→
i

Mi) = lim−→
i

HomR(M, Mi),

the identity M → M factors through some Mi. Thus M is a direct summand of Mi, so
is finitely presented. �

In the following theorem, something called an “excellent ring” appears. We need only
know that any localization of Z is excellent. See [7, 07QS] for more information.

Proposition 9 (Artin’s approximation theorem). Let R be a henselization at a prime ideal
of a finitely generated algebra over a field or over an excellent discrete valuation ring A. Let

F : R-algebras → Sets

be a locally finitely presented functor. Then for every ξ ∈ F(R̂) there exists a ξ ∈ F(R) such
that the images of ξ and ξ in F(R/m) are the same.
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Proof. [1, Theorem 1.12]. �

Lemma 10. Let S0 ⊂ S be a closed subscheme defined by a nilpotent ideal sheaf. Then the
functor

étale S-schemes→ étale S0-schemes, X 7→ S0 ×S X,

is part of an equivalence of categories.

Proof. This functor is fully faithful by Theorem 13 from my last talk. For essential
surjectivity, see [7, 039R]. The idea is to use the description of étale ring maps using
quotients of polynomial rings with invertible Jacobian determinant. �

Theorem 11. Let A be a noetherian local henselian ring and let S = Spec A. Let f : X → S
be a proper morphism with projective special fiber X0. Then

H1(X, Z/nZ)→ H1(X0, Z/nZ)

is surjective.

Proof. Recall the theory of torsors from Nicolas’ talk last semester. It suffices to show
that the map

Z/nZ-torsors on X → Z/nZ-torsors on X0

is surjective. By Lemma 1.3 from Xiao’s talk last week, every torsor F on X0 is repre-
sented by a finite étale scheme Y0 → X0. We show that Y0 is induced by a finite étale
scheme Y → X.
First assume that A is a henselization of a finitely generated algebra over an excellent
discrete valuation ring or a field (so we can apply Artin’s approximation theorem).
Consider the following commutative prism:

Y0 ?

?

X0 X

X̂

Spec κ Spec A

Spec Â
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It illustrates our strategy of first passing to the completion X̂ = X⊗A Â and then back
to X.
The first step uses formal schemes in an essential way. By Lemma 10, Y0 is induced by
a finite étale Xn-scheme Yn for every n > 1, where Xn = X ⊗A A/mn. By Proposition
3, this extends to a morphism of formal schemes Y → X . Finally, we can use Theorem
4 to obtain an X̂-scheme Ŷ inducing Y :

Y0 Y1 Y2 . . . Y Ŷ

X0 X1 X2 . . . X X̂

Next, we use Artin’s approximation theorem applied to the functor

F : A-algebras → Sets

that associates to each A-algebra B the set of isomorphism classes of finite étale cove-
rings of X⊗A B. To verify that F is locally of finite presentation, we identify each étale
covering in F(B) with the corresponding locally free sheaf of algebras A on X ⊗A B.
Then finite presentation follows from [4, Theorem 8.5.2]. Thus we obtain the desired
finite étale covering Y → X.
Finally we discuss the reduction to A being a henselization of a finitely generated al-
gebra over an excellent discrete valuation ring or a field, so now (A,m) is just any
noetherian local henselian ring. We may write A as a filtered colimit lim−→α

Bα of finitely
generated Z-algebras. Since henselization commutes with colimits,

A = Ah = lim−→
α

(Bα,m∩Bα)
h.

Here the Aα := (Bα,m∩Bα)
h are henselizations of finitely generated algebras over the

excellent discrete valuation rings or fields Zm∩Z, and Artin’s approximation theorem
applies to them. By [5, Theorem 8.8.2], there exists some index α0 and a scheme Xα

over Spec Aα0 such that X = Xα0 ⊗Aα0
A. Similarly for the covering Y0 → X0.

? Yα0

Y0 X ; Yα0
0 Xα0

X0 Spec A ; Xα0
0 Spec Aα0

Spec κ Spec κα0
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Now the existence of the lifting Yα0 implies the existence of the desired covering Y of
X. �
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