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1 Introduction

Recall the proper base change theorem: Let f: X — Y be a proper morphism and
let 7 € Sh(Xg) be a torsion sheaf. Then we want to prove that for every cartesian
diagram

X — X

bl

s %45

and every g > 0 the base change homomorphism
¢ Y (RIf.F) = Rih, (e 1 F)
is an isomorphism. In this talk, we consider the special case where

- S is the spectrum of a noetherian strictly henselian local ring (A, m), and S’ is the
closed point of S = Spec A,

- F is a constant sheaf of the form Z/nZ,
- the morphism h, which is the special fiber of f, is projective.

Then by Theorem 5.1 of Emil’s talk, the proper base change theorem reduces to sho-
wing that for every g > 0,

HY(X,Z/nZ) — H1(Xy, Z/nZ)
is an isomorphism. We show that this is an isomorphism for 4 = 0 and surjective for
g =1
2 Formal geometry

We study formal geometry only in the locally noetherian setting. The following pro-
position hints at the problems one might otherwise encounter.

1



Proposition 1 (Reminder on completions). Let A be a noetherian ring and let a C A be an
ideal.

i) The a-adic completion of A is complete.
ii) a-adic completion preserves exactness of sequences of finitely generated A-modules.

iii) Every maximal ideal of A contains G.
Proof. [2, Chapter 10]. |

We introduce the notion of formal schemes. These are certain topologically ringed spaces,
i.e., topological spaces endowed with a sheaf of topological rings.

Let A be a noetherian ring and let a C A be an ideal such that A is complete and
Hausdorff with respect to the a-adic topology. We call a an ideal of definition for A.

Definition. The formal spectrum Spf A of A is the topologically ringed space with un-
derlying topological space X := Spec(A/a) and structure sheaf of topological rings

Oy = 1im Ox,, X, = Spec(A/a" ).

n=0
Since we may compute limits of sheaves objectwise,

Ox(U):@OXW(U), uca.

Definition. A formal scheme is a topologically ringed space (X, Oy ) that has an open
cover X = |J;c; U; by topologically ringed spaces U/; isomorphic to formal spectra.

A morphism of formal schemes f: X — Y is a morphism of locally ringed spaces for
which the f*(V): Oy (V) — Ox(f~1(V)) are all continuous.

The formal spectrum comes with a morphism Spf A — Spec A, induced by the embed-
dings Spec A/a" — Spec A. By Proposition 1.iii), Spf A contains all closed points of
Spec A.

Here is an example to keep in mind: Let A = k[[t]] be a ring of power series and let
a = (t). Then as a topological space, Spf A only contains the one closed point of Spec A.
But its functions are all the power series k[[¢]]!

Proposition 2. For every formal scheme X and every formal spectrum ) = Spf S there exists
a natural bijection

Mor(X,Y) = Homeont (S, Ox (X)),  f— ().

Proof. The same as for schemes. First consider the case where X' = SpfR is a formal
spectrum. Then every continuous ring homomorphism ¢: S — R induces a continu-
ous map X — Y by pullback. u



Definition. An element x € R of a topological ring is called topologically nilpotent if
limn_>oo xn - 0

Let X be a formal scheme. Denote by Zy the ideal sheaf of topologically nilpotent
functions. Then on any formal affine subscheme Spf A C X, the ideal Zy (Spf A) is an

ideal of definition for A. Such an ideal sheaf is called ideal sheaf of definition for X.
Associate to X’ a family of closed embeddings of schemes

Xo—= X3 = Xp— ..., Xy = (X,0x/T%M). (1)

We can recover X as the colimit li . X.

Conversely, we may start with a locally noetherian scheme X and a closed subscheme
Xo cut out by the ideal sheaf Z. By setting X,, := (Xo, Ox/Z"*1), we obtain a sequence
of schemes like (1). The topologically ringed space (X, m Ox/ Z"*1) is then a formal
scheme, called the formal completion of X along Xy. It comes with a natural morphism
X — X, induced by the inclusions X;,, — X.

Proposition 3. Let f: X — Y be a morphism of locally noetherian schemes and let Xo C X
and Yo C Y be closed subschemes with ideal sheaves T and [J such that f(Xy) C Yo. Let X
be the formal completion of X along X and let ) be the formal completion of Y along Yo. Then
there exists an induced morphism X — ) making the following diagram commute:

X — X

L)

Yy —— Y
Proof. This follows from functoriality of colimits, because we have commutative dia-
grams

-

We now consider the problem of algebraization. Suppose that Y = Spf A is the formal
spectrum of a complete and Hausdorff ring A, with ideal of definition a C A. Let
Y = Spec A. Suppose that X' is a formal scheme over ). Does there exist a (locally
noetherian) scheme X over Y whose a-adic completion is isomorphic to X'?

X — X

]

Yy ——Y

Theorem 4. If X is projective over Yy, then X is algebraizable.
Proof. [6, Theorem 8.4.10]. |



3 Thecasegq =0

Lemma 5. Let A be a noetherian ring and let X — Spec A be a proper morphism. Then
Ox(X) is a finite A-algebra.

Proof. [4, Theorem 3.2.1]. [ |

Lemma 6. Let A be a noetherian ring and let a C A be an ideal. Let f: X — Spec A be a
proper morphism. Then

lgnl“(X, Ox)/d'T(X,O0x) = @F(X ®aA/d", OX(X)AA/a”)- (2)
Proof. [4, Section 4.1]. [

We can actually understand (2) as a base change homomorphism:

X y X OX

! !

SpfA —— Spec A

Now denote by 71p(T') the set of connected components of a scheme T. Since we only
consider constant sheaves, it suffices to prove the following theorem:

Theorem 7. Let A be a noetherian local henselian ring and let S = Spec A. Let f: X — S be
a proper morphism and let Xy be the fiber of f above the closed point of S. Then the map

71'0(X) — 7'(()(X0), E— EN Xy, (3)
is a bijection.

Proof. Let S’ denote the spectrum Spec Ox(X). The trivial factorization of A-algebras
A — Ox(X) = Ox(X) induces a factorization X — S’ — S:

Ox(X) « A ~ X > S

~. ~.,

Ox(X) Spec Ox(X)

Here the morphism S’ — S is finite (Lemma 5) and f’: X — S’ is proper (Cancellation

Theorem for proper morphisms, see [8, Theorem 10.1.19]). Since A is henselian, S’ =
i_1 Spec A; for henselian local rings A;.

We now investigate the fibers of f’. Lets; € S’ be one of the closed points, correspon-

ding to the maximal ideal m; C A;. Applying Lemma 6 to the fiber X;, — s; yields

Hm S;/mf! = WmT(X ®4; Ai/mi, Oxs, 4 /m)-
n n
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On the left is the m;-adic completion of S;; on the right is the functions of the formal
completion of X along the fiber X;,. Thus this fiber is connected. Now it suffices to
show that the X; := f'~1(S;) are the connected components of X. They certainly form
a disjoint union of X. And they are connected, because any closed point of X; must
map to s;. |

4 Thecaseg=1

Let R be a ring. A functor
F: R-algebras —  Sets

is called locally of finite presentation if for every filtered system of R-algebras S;,
F(limS;) = lim F(S,).
i i

The following lemma motivates this:

Lemma 8. An R-module M is finitely presented if and only if the functor Hompg (M, -) is
locally of finite presentation.

Proof. Suppose that M is finitely presented, say by R — R" — M — 0. Since

HomR(R”,ligNi) = (hgﬁ N)" = 11_n>1Nl” = hﬂHomR(Rn, N;),
i i i i

locally finite presentation of Hompg (M, -) follows from the five lemma.
Conversely, suppose that Hompg (M, -) is locally of finite presentation. Write M as a
filtered colimit of finitely presented modules M = lim, M;. Since

Hompg (M, M) = HomR(M,ligMi) = ligHomR(M, M;),
i i
the identity M — M factors through some M;. Thus M is a direct summand of M;, so

is finitely presented. u

In the following theorem, something called an “excellent ring” appears. We need only
know that any localization of Z is excellent. See [7, 07QS] for more information.

Proposition 9 (Artin’s approximation theorem). Let R be a henselization at a prime ideal
of a finitely generated algebra over a field or over an excellent discrete valuation ring A. Let

F: R-algebras —  Sets

be a locally finitely presented functor. Then for every & € F(R) there exists a & € F(R) such
that the images of ¢ and ¢ in F(R/m) are the same.
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Proof. [1, Theorem 1.12]. [

Lemma 10. Let Sy C S be a closed subscheme defined by a nilpotent ideal sheaf. Then the
functor
étale S-schemes — étale Sy-schemes, X Sg xg X,

is part of an equivalence of categories.

Proof. This functor is fully faithful by Theorem 13 from my last talk. For essential
surjectivity, see [7, 039R]. The idea is to use the description of étale ring maps using
quotients of polynomial rings with invertible Jacobian determinant. u

Theorem 11. Let A be a noetherian local henselian ring and let S = Spec A. Let f: X — S
be a proper morphism with projective special fiber Xo. Then

HY(X,Z/nZ) — H (X0, Z/nZ)
is surjective.

Proof. Recall the theory of torsors from Nicolas’ talk last semester. It suffices to show
that the map
Z./nZ-torsorson X — Z/nZ-torsors on X

is surjective. By Lemma 1.3 from Xiao’s talk last week, every torsor F on Xj is repre-
sented by a finite étale scheme Yy — Xj,. We show that Yj is induced by a finite étale
scheme Y — X.

First assume that A is a henselization of a finitely generated algebra over an excellent
discrete valuation ring or a field (so we can apply Artin’s approximation theorem).
Consider the following commutative prism:

Yo
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It illustrates our strategy of first passing to the completion X = X ® 4 A and then back
to X.

The first step uses formal schemes in an essential way. By Lemma 10, Y is induced by
a finite étale X;;-scheme Y}, for every n > 1, where X,, = X ® 4 A/m". By Proposition
3, this extends to a morphism of formal schemes J — X. Finally, we can use Theorem
4 to obtain an X-scheme Y inducing ):

Yy < > Y] » Yy > Yy —— Y
Xy — Xjg < y Xo < X —— X

Next, we use Artin’s approximation theorem applied to the functor
F: A-algebras — Sets

that associates to each A-algebra B the set of isomorphism classes of finite étale cove-
rings of X ® 4 B. To verify that F is locally of finite presentation, we identify each étale
covering in F(B) with the corresponding locally free sheaf of algebras A on X ® 4 B.
Then finite presentation follows from [4, Theorem 8.5.2]. Thus we obtain the desired
finite étale covering Y — X.

Finally we discuss the reduction to A being a henselization of a finitely generated al-
gebra over an excellent discrete valuation ring or a field, so now (A, m) is just any
noetherian local henselian ring. We may write A as a filtered colimit lim By of finitely
generated Z-algebras. Since henselization commutes with colimits,

A = A" =1lim(Bymng, )"
o

Here the Ay := (Bymns,)" are henselizations of finitely generated algebras over the
excellent discrete valuation rings or fields Z;nz, and Artin’s approximation theorem
applies to them. By [5, Theorem 8.8.2], there exists some index &g and a scheme X*
over Spec Ay, such that X = X, ® 4, A. Similarly for the covering Yy — Xp.

: v
Yo 3:(( ~ Y(‘;‘O Xlao
| | ]
Xp Spec A ~ Xlg 0 Spec Ay,
L~ e
Speck Spi Kag



Now the existence of the lifting Y*0 implies the existence of the desired covering Y of

X.
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