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The reference for everything that follows is the Stacks Project [stacks], to which all the “Tag” hyperlinks
lead. All our diagrams are commutative unless otherwise specified. We require separable field extensions to
be algebraic.

1 Preliminaries

We recall a few definitions. A geometric point ȳ of a scheme Y is a morphism ȳ : Spec k → Y , such that k
is separably closed. We shall often denote by y the unique point y ∈ Y in the image of ȳ.

An étale neighbourhood of a geometric point ȳ on Y is a pair (V, v̄) of an étale morphism V → Y and
a geometric point v̄ with κ(v̄) = k of V such that the composition Spec k → V → Y is ȳ. We will denote
the category of all étale neighbourhoods of ȳ by Nȳ. We will denote the subcategory of all affine étale
neighbourhoods of ȳ by N aff

ȳ .
Let F be a sheaf on Yét. Recall that the stalk of F at a geometric point ȳ on Y is the following colimit

over étale neighbourhoods of ȳ

Fȳ : = colim
(V,v̄)∈Nȳ

F (V )

= colim
(V,v̄)∈N aff

ȳ

F (V ),

which we may refine as a colimit over affine étale neighbourhoods of ȳ.

2 The main result

The main result of this talk is as follows.

Main Result 2.1 (Tag 03QP). If f : X → Y is a finite morphism of schemes, then

Rqf∗F = 0,

for all q ≥ 1 and all F ∈ AbXét.
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Attempt at a proof. It is enought to show vanising at the stalks, i.e. we want to show

(Rqf∗F )ȳ = 0,

for all geometric points ȳ on Y . Our proof will be resting on three observations.

Obs. 1. The sheaf Rqf∗F ∈ AbYét is the sheafification of the presheaf

(V
ét−→ Y ) 7→ Hq

ét(X ×Y V,F |X×Y V ).

(Work it out by hand or see [stacks, Tag 03Q8].) In particular, as sheafification doesn’t change the stalks,
we may compute the stalks as

(Rqf∗F )ȳ = colim
(V,v̄)∈Nȳ

Hq
ét(X ×Y V,F |X×Y V ),

where as in the Preliminaries 1, Nȳ denotes the category of étale neighbourhoods of ȳ.

Obs. 2. We have that

lim
(V,v̄)∈Nȳ

X ×Y V = SpecOY,ȳ

(See [stacks, Tag 01YW].) Now by [stacks, Tag 03Q6], we get that

(Rqf∗F )ȳ = Hq
ét(X ×Y SpecOY,ȳ,F |X×Y SpecOY,ȳ

).

Obs. 3. Since X → Y is finite, so is X ×Y SpecOY,ȳ → SpecOY,ȳ. Thus,

X ×Y SpecOY,ȳ = SpecB,

where B is a finite OY,ȳ algebra.
Combining the three observations, we are done, conditional on the following Key Lemma 2.2

Key Lemma 2.2. If B is a finite OY,ȳ algebra, and G is an abelian sheaf on (SpecB)ét, then

Hq
ét(SpecB,G) = 0,

for all q ≥ 1.

The proof of the Key Lemma is the ultimate goal of the rest of these notes. It will follow from the fact
that this is true when replacing OY,ȳ by any “strictly henselian” local ring, and the fact that OY,ȳ is the
“strict henselisation” of the Zariski stalk OY,y.

3 Interlude: stalks of the structure sheaf

Before we go on to develop the theory of henselian local rings, we take a closer look at the stalks OY,ȳ of the
structure sheaf. We have, by definition,

OY,ȳ = colim
(V,v̄)∈Nȳ

OY (V → Y ) = colim
(V,v̄)∈Nȳ

OV (V )

To better understand this, we restrict to an affine neighbourhood SpecA of the point y under ȳ. This doesn’t
change the stalk. We write p for the point of SpecA over y, and we write p̄ for the map Spec k → SpecA

Spec k

SpecA Y

p̄ ȳ
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Note that the Zariski stalk OY,y at y is equal to Ap. We may compute OY,ȳ as

OY,ȳ = OSpecA,p̄ = colim
(V,v̄)∈N aff

p̄

OV (V ),

with the colimit taken over affine étale neighbourhoods as in the Preliminaries 1.
We have reduced to the affine situation and it is time to translate it into commutative algebra. The data

of an affine étale neighbourhood (V = SpecB, v̄ = q̄) of p̄ in SpecA is represented by a diagram

Spec k

SpecB SpecA

q p

q̄ p̄

∈ ∈

This is equivalent to giving 1) and étale algebra A → B, 2) a prime q over p (which gives a field extension
κ(q)/κ(p) of residue fields), and 3) a κ(p) algebra morphism ϕ : κ(q)→ k. Finally, we compute

OY,ȳ = colim
(B,q,ϕ)

B.

We will see that the colimit over these objects, after localising at p, is the strict henselisation of Ap.
Moreover, when developing the theory of henselian local rings below, it might be beneficial to keep the
following in mind: they will be characterised both by a) the structure of finite algebras over them (cf. Key
Lemma 2.2), as well as b) the behaviour of certain étale algebras over them (cf. the stalk description above).
In this way, they help us prove the Key Lemma 2.2 and with it, the Main Result 2.1.

4 Henselian local rings

4.1 Definition and alternative characterisations

Definition 4.1. A local ring (A,m, k) is henselian if every finite algebra A→ B is a product
∏

iBi of local
rings (Bi, ni). If, moreover, k is separable closed, we say that A is strictly henselian.

We may immediately streangthen this definition without losing generality.

Lemma 4.2. If (A,m, k) is henselian and A → B is a finite algebra, then a) B is a finite product of local
rings B1, . . . , Br, b) the factors Bi are henselian, and c) if A is strictly henselian then so are the Bi.

Proof. We first show that if n is maximal in B, then it lies over m (i.e. n ∩A = nc = m).
We have that n ∩ A ⊆ m, since otherwise n ∩ A would be all of A (it would contain a unit), and then n

would have to be all of B. The situation is thus as follows

B n q

A n ∩A m

⊆

⊆

By the going up theorem (see e.g. [AM69, Prop. 5.7.]), there exists a q lying over m, but since n is maximal,
n = q. Thus, n ∩A = m.

Next, note that finite implies quasi-finite (see e.g. [AM69, Exercise 4, Ch. 8]), and thus there are only
finitely many maximal ideals n in B.

Finally, the maximal ideals ni of the factors Bi of B give rise to distinct maximal ideals ni ×
∏

j 6=iBj .
Putting everything together, we conclude (a).
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To see that Bi is henselian, take a finite algebra Bi → C, and consider the following diagram.

A B B1 × · · · ×Br

Bi

C

We conclude (b) by noting that the long arrow is finite (as it’s the composition of finite morphisms), and
thus C splits into a product of local rings.

For (c), we assume that k is separably closed. We have that the composite morphisms A → Bi are
finite, so we get finite extensions κ(ni)/k, and therefore κ(ni) are separably closed: if L is an extension
with separable degree l = [L : κ(ni)]s over κ(ni), then [L : k]s = 1 and [κ(ni) : k]s = 1, as k is separably
closed. Thus, by the multiplicativity of separable degrees (see [stacks, Tag 09HK]), l = 1, and hence κ(ni) is
separably closed.

Next, we have alternative characterisations of henselian rings. We use bars to denote reduction mod m.

Proposition 4.3. If (A,m, k) is a local ring then the following are equivalent:

1. A is henselian,

2. for every monic f ∈ A[T ], and every simple root a0 ∈ k of f̄ ∈ k[T ], there exists a lift a ∈ A (so
ā = a0) such that f(a) = 0,

3. for every étale algebra A→ B, and q ⊂ B over m with k = κ(q), there exists a section τ : B → A with
τ−1(m) = q.

Proof. See [stacks, Tag 04GG].

The second characterisation is the first indication of a theme we’ll see more of, namely much of the
behaviour of a henselian ring A being determined by behaviour at its residue field, or more geometrically,
its behavour is determined at its closed point m. In Theorem 5.1, this will manifest étale-topologically as
the spectrum of a strictly henselian ring being “contractible”. The third characterisation is key in the proof
of this theorem.

Recall that (A,m) is a complete local ring if the canonical morphism A→ limnA/m
n is an isomorphism.

Lemma 4.4 (Hensel’s lemma). If (A,m, k) is complete, then it is henselian.

Reminder on Newton’s method. Given some differentiable function f : R → R, we have successive
approximations of a root, converging rapidly, as follows. Make a guess a0 ∈ R. Then define ai+1, iteratively
as

ai+1 = ai −
f(ai)

f ′(ai)
.

We then get an actual root of f as the limit limi→∞ ai. The proof of Hensel’s lemma is by adapting this
method.

Proof of Hensel’s lemma. We show that condition 2. in Prop. 4.3 is fulfilled by A. Let f ∈ A[T ] be monic,
let fn ∈ (A/mn+1)[T ] be the reduction of f mod mn+1, and let f ′n be the derivative of f . We suppose we
have a simple root a0 in k = A/m of f̄ = f0. This corresponds to the initial guess in Newton’s method.
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We would like to define an+1 ∈ A/mn+2 iteratively as in Newton’s method. Thus, we suppose we’re given
an ∈ A/mn+1, such that a0 = an mod m. Take any b ∈ A/mn+2 such that an = b mod mn+1. This implies
in particular that 0 = fn(an) = fn+1(b) mod mn+1, so that fn+1(b) is in mn+1/mn+2. Then a0 = b mod m.

...

b A/mn+2

an A/mn+1

...

a0 A/m

∈

∈

∈

Next, we (try to) define

an+1 := b− fn+1(b)

f ′n+1(b)
.

Note that f ′n+1(b) is a invertible in A/mn+2, since a0 being a simple root of f0 means 0 6= f ′0(a0) = f ′n+1(b)
mod m is a unit in k, meaning f ′n+1(b) has a representative not in m, whence it is represented by a unit in
A, and is therefore invertible. Compute1

fn+1(an+1) = fn+1(b)− fn+1(b) = 0

in A/mn+2, as well as an = an+1 mod mn+1. Thus {an}n≥0 is a compatible system of elements giving rise
to an element a of limnA/m

n = A, with f(a) = 0, and ā = a0, and we are done.

We won’t use the following lemma (at least not in these notes), but we include it as it is interesting and
fits nicely into the themes explored.

Lemma 4.5. Let (A,m, k) be a henselian local ring. Then the category FinEt(A) of finite étale algebras
over A is equivalent to FinEt(k) via the functor (A→ B) 7→ (k → B/mB).

Proof. See [stacks, Tag 04GK].

4.2 Henselisation and stalks

The third characterisation of henselian rings (3. of Prop. 4.3) gives us an idea of how to construct a henselian
ring out of any local ring. Roughly, we just take the colimit over the étale algebras described there. We will
drop a lot of details in this subsection, but they may be picked up again at [stacks, Tag 0BSK].

Lemma 4.6 (Henselisation). If (A,m, k) is a local ring, then there exists a local morphism A → Ah such
that

1. Ah is henselian,

2. Ah is a filtered colimit of étale A-algebras,

1I have not done this computation and so am trusting the stacks project about it for now!
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3. mAh is maximal,

4. k = Ah/mAh.

Remark. Such an Ah is unique up to unique isomorphism. It is the henselisation of A.

Construction (sketch). The filtered category we will take a colimit over has objects (B, q) where A → B is
an étale algebra, q ⊂ B lies over m, and k = κ(q). Morphisms (B, q) → (B′, q′) are A-algebra morphisms
ψ : B → B′ such that ψ−1(q′) = q.

• This is a filtered category. We set Ah := colim (B,q)B.

• Elements x ∈ Ah are represented by triples (B, q, f) where f ∈ B. Two representatives (B, q, f) and
(B′, q′, f ′) give the same element x if they eventually become equal, meaning if there exists (B′′, q′′),
hit by morphisms ψ and ψ′ from (B, q) and (B′, q′) respectively, such that ψ(f) = ψ′(f ′). (Cf. germes
of a sheaf.)

• We may choose representatives such that mB = q, and q is the only prime in B over m.

• An element x not in the ideal mAh is represented by (B, q, f) such that f /∈ mB = q. Such an x has
an inverse given by (Bq, qSq, 1/f). In particular, it is a unit. Thus:

• mAh is the unique maximal ideal of Ah.

• Ah is henselian (proof omitted).

Given a separable closure ksep of k, we can modify the colimit above slightly to produce a strictly henselian
ring.

Lemma 4.7 (Strict henselisation). Given (A,m, k) local and k ⊆ ksep a separable closure, there exists a
commutative diagram

k k ksep

A Ah Ash

where the left square is from the previous lemma, and

1. Ah → Ash is a local morphism,

2. Ash is henselian,

3. Ash is a filtered colimit of étale A-algebras,

4. mAsh is maximal,

5. ksep = Ash/mAsh (in particular, Ash is strictly henselian).

Remark. The strict henselisation Ash of A, with respect to ksep/k, is unique up to unique isomorphism.

Construction (sketch). We do the same thing as for henselisation with the following modification. Instead
of pairs (B, q), we take triples (B, q, ϕ) such that ϕ : κ(q)→ ksep is a k-algebra morphism.

This colimit should remind us of the description of OY,y that we produced in the interlude.
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Lemma 4.8. Let A be a ring and p ⊂ A prime. Let κ(p) ⊆ κsep be a separable closure. We have a filtered
category of triples (B, q, ϕ) where A → B is étale, q is a prime of B over p, and ϕ : κ(q) → κsep is a
κ(p)-algebra morphism, and canonical isomorphisms

(Ap)sh = colim
(B,q,ϕ)

= colim
(B,q,ϕ)

Sq.

Proof. See [stacks, Tag 04GW].

Lemma 4.9. The stalk OY,ȳ is the strict henselisation Osh
Y,y of the Zariski stalk OY,y at the point y ∈ Y

under ȳ.

Proof. Recall the colimit

OY,ȳ = OSpecA,ȳ = colim
(B,q,ϕ)

B,

indexed by (B, q, ϕ) such that A → B is an étale algebra, q ⊂ B a prime over p (the prime under ȳ), and
ϕ : κ(q) → k is a κ(p)-algebra morphism. Note that the embedding κ(p) ⊆ k gives us a separable closure
κ(p) ⊆ κsep ⊆ k. We get that ϕ : κ(q)→ k factors through κ(q→ κsep. We may thus apply Lemma 4.8 and
conclude the result.

The following technical lemma is good to know and might be useful in later talks.

Lemma 4.10 (Tag 06LJ). If A is noetherian then so are Ah and Ash.

5 Finishing the proof

Theorem 5.1 (Tag 03QO). Let (A,m, k) be a strictly henselian local ring. Then, for any sheaf F on
(SpecA)ét, the global sections and the stalk at m coincide,

Γ(SpecA,F ) = Fm.

Proof. Let (U = SpecR, ū) be an affine étale neighbourhood of m. Then SpecR→ SpecA is étale (i.e. A→
R is étale), and κ(ū) = κ(m) = k (as k is separably closed). Thus, by Prop. 4.3, we have a section τ : A→ R
with τ−1(m) = q, where q is the point under ū. Thus, the étale neighbourhood (SpecA,m)→ (SpecA,m) is
cofinal in N aff

m , and we are done.

Corollary. The global sections functor Γ(SpecA,−) : Ab(SpecA)ét → Ab is exact.

Proof. The functor F 7→ Fm is exact.

Corollary. If A→ B is finite then Hq
ét(SpecB,G ) = 0 for all q ≥ 1, for all abelian sheaves G on SpecB.

Proof. By Lemma 4.2, B is a finite product of strictly henselian local rings (Bi,mi). Thus,

Hq
ét(SpecB,G ) = Hq

ét(
∐
i

SpecBi,G ) =
∏
i

Hq
ét(SpecBi,G ).

Now by the previous corollary, each piece Hq
ét(SpecBi,G ) is zero, so we are done.

Proof of the Key Lemma 2.2. By Lemma 4.9, OY,ȳ is strictly henselian. Apply the last corollary.
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