Etale site and Galois cohomology

November 15, 2018

1 Etale site of Spec k

The main reference here is [1].
Proposition 1.1 The coverings in the étale site of Speck are the form refined to the form
(H Spec k;; — k)
JE€Ji iel
where k;;/k are finite separable extensions up to isomorphism.
Proposition 1.2 An étale presheaf F on (Speck)s is an étale sheaf if and only if

1. for any disjoint union [ [ U; we have

F(ITv) =TI Fw)
2. for all finite, separable extensions k" /k'/k such that k" /k" is Galois we have that

F(Speck’) — F(Speck”) is injective and F(Spec k') = F(Spec k") Gk /K),

Proof. Pick an arbitary étale map U — Spec k and an étale covering {U; — U };c;. Then
the equalizer diagram is

FU) = [[Fw) = [ 7, xv Us).

10,81

This is equal to F(U) — F([I,U:) = F(I1U: xx [1U;). Thus it suffices to check the
equalizer diagram for coverings consisting of a single map ([[U; — U). One can check
that it suffices to check the sheaf condition for U and U’ connected. An étale scheme over
Speck is a disjoint union ] Speck; for finite separable extensions k;/k. If we know that
the functor respects disjoint unions, it then suffices to check the equalizer diagram for
finite separable extensions. Furthermore, since any finite separable extension is contained
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in a Galois extension, Galois coverings cover finite separable coverings. Hence assume that
k" /K is Galois. Then, since

Fowk'= [[ ¥, zoy-(zg),
Gal(k” /k")

the exactness of the diagram corresponds to the exactness of

F(Speck’) — F(Speck”) = H F(Speck”).
Gal(k" /k')

Thus it suffices to show that F(Speck’) — F(Speck”) is injective and F(Speck’) =
F(Spec k")G21-"/K) " This shows the sufficiency of the conditions. O

Proposition 1.3 The functors G, and G, are étale sheaves on Speck.

Proof. Let k”/K'/k be finite, separable extensions. G,,(Speck’) = k'~ — G,,(Speck”) =
k"= is injective. The fact that G,,(Spec k”)GaK"/K) — (pr<)Galk™/K) — < follows from
Galois theory. Similar argument for G,. O

Proposition 1.4 The functor u, : (Speck)s — Ab, (T — Speck) — p,(I(T,Or)) is an
étale sheaf.

Example 1.5 (Kummer sequence) Let K be a field containing the all n-th roots of
unity in K, where charK { n. Then we have a short exact sequence of étale sheaves on
Spec K

™

0—u, > G, — G,, —0.

This is checked at all the geometric points, where the sequence becomes 0 — pn (K) —
K* — K* —0.

2 Relation of Etale cohomology to Galois cohomology

Let G be a topological group.

Proposition-Definition 2.1 The following are equivalent:
1. G 1is the limit of a cofiltered system of discrete, finite groups,
2. G 1is Hausdorff, compact and totally disconnected.

A topological group satisfying this condition is called a profinite group.

Proposition 2.2 A subgroup of a compact group is open if and only if it is closed and has
finite indez.



Example 2.3 (The examples to keep in mind) Any finite group is a profinite group.
Let k be a field and fix a separable closure k*P. Then the absolute Galois group Gy is a
profinite group.

Definition 2.4 A G-module is an abelian group M with a G acting by group homo-
morphism. A discrete G-module is a G-module such that the action of G is continuous
with respect to the discrete topology of M. Equivalently, for all m € M, the stabilizer
Stabg(m) C G is open. A morphism between discrete G-modules is G-equivariant group
homomorphism.

Theorem 2.5 Let k be a field and choose a separable closure k*°P of k. We denote by
Gy := Gal(k*P/k). Then the functor

AbEt(Spec k) — {discrete Gg-sets}, F > coliMyser—pr~k k7 /k gatoisF (K')

has the quasi-inverse
<M: Spec k' +— (MGal(ksep/k/)> — M,

i.e. the two categories are equivalent.

Proof. We first show that these functors are well-defined. By functionality of both

F and Spec, the actions of Gy on the F (k') is compatible, hence we get a Gi-action on
cOlimysep Sk k7 /7 galois F (k). Since F is an abelian sheaf, we know that colimpser— g k7 /kgaloisF (K)
is a Gy-module. The stabilizer of any element f = [I,a € F ()] € colimpser~p~pF (k') is

Stabg, (f) = ker(G — Gal(l/k))

which is open. Hence colimyser~p . F (k') is a discrete Gy-module.

M respects disjoint unions by definition. Furthermore for k”/k’/k finite separable and
K" /K" Galois we have

(k') = MGG/ _y T () Gallk? k") _ ) pGal(ker/k"),
Furthermore, M (k")G21 " /K) — NfGal(k®/K) — M (). Hence M is an étale sheaf. Then
colimM (k') = colim M Ga1**P/K) >~ pp

Furthermore

colimy F (k") (k') = (colimy, F (k")) G EP/K) o F (1.,

Thus the two functors are quasi-inverse to each other and thus the categories are equivalent
to each other. [l

Proposition-Definition 2.6 The category of discrete Gi.-modules is abelian and has enough
injectives.  We denote by H®(Gy, M) the right derived functor of the functor of Gy-
invariants M + M% and we call H*(Gy, M) the galois cohomology with coefficients
mn M.



Proposition 2.7 Let F € AbEt(k). Then
HZ (Speck,F) = H"(G}, colimF (k')).

Proof. The equivalence of categories identifies the functor of Gi-invariants with the
global-sections functor. U

3 Group cohomology of profinite groups
The reference here is [5], with details from [2]. The finite case is explained in [4].

Definition 3.1 Let G be a profinite group and M a discrete G-module. The group of n-
cochains of G with value in M is the group of continuous functions G — M. We denote
this by C™(G, M). Together with the coboundaries

d: C"(G, M) — C™Y(G, M)

n

f = df(glv s 7gn+1) = glf(gQa s 7gn+1)+2(_1>if<gla vy 9i—159iGi415 - - - 7gn+1)+(_1)n+1f(gl7 cee

i=1
this forms a complex C*(G, M). The homology of this complez is called the cohomology of
G with coefficients in M.

Proposition 3.2 Let G be a group. Denote by BG the classifying space of principal G-
bundles. Then

H*(G,Z) = Hg,,,(BG,Z).
Example 3.3 (Ch 2, Section 4, Ex 1 in [4]) Let S be a set. Then the classifiying
space of the free group F(S) is a bouquet of circles indexed by S. Thus

Z, 1=0,
H'(F(S),Z) = H(BF(S),Z) = { Z5, i=1,
0, 2>1

Proposition 3.4 For any profinite group G and discrete G-module M, the group HY(G, M) =
M€ . Furthermore,

| _ {f € CHG M) |f(zy) = zf(y) + f(z)}
H(G, M) = {f € CYG,M)|f(x) = zm — m for some m € M}’

If G acts trivially on M, then H*(G, M) = Homcon (G, M).

. n),



Proof. The zero-th cohomology group H°(G, M) is the kernel of C°(G, M) = M —
CYG,M),m — (g — gm — m), whose elements are exactly the G-invariant elements of
M. The coboundary is the map

CHG, M) — C*G, M), f v ((a,b) — af(b) — f(ab) + f(a).

Then
1 _ {/:G—=Glf(zy) ==f(y) + f(2)}
H(G M) = {f:G— G|f(x) =a2m —m for some m € M}

: : {f:{G=M|f(zy)=f()+f(y)} _
If G acts trivally on M, then this translates to {f:Gﬁ]\%f(:v):O} Y5 = Homeon (G, M).D

Example 3.5 Let L/K be a finite Galois extension. Then L* is a discrete Gal(L/K)-
module. Then H°(Gal(L/K),L*) = K*. We now show that H'(Gal(L/K),L*) = 1.

Pick a 1-cocycle f. Then f(gh) = f(9)gf(h) or equivalently gf(h) = f(g)~*f(gh). The
coboundary condition is f'(g) = g(a)/a for some a € L*. We have

n

Ny o0 (F(h) = [T 9f(h) "2 T] flgn)/f(g) = [] F(R" 1)/ F(h") = 1.
ge(h)

g&(h) =0
Thus, by Hilbert 90 for L/L™" | there exists b € L* such that f(g) = g(b)/b.

Proposition 3.6 Let G be a profinite group. A map G™ — M into a discrete G-module
is a m-cochain if any only if there exists an open normal subgroup U C G such that the
diagram

G" — M

| I

(GJU)" —— MV,

commutes.

Proof. If there exists such an U, then the morphism G™ — M is the composition of
three continuous maps and is thus continuous. To show necessity, assume that f is con-
tinuous. Since G" is compact, the image of G" in M with the discrete topology must
be finite. Thus, since M is a discrete G-module, the cochain f must factor through
M meim(n) St 1 ot 17 he an open normal subgroup V C 1 () Stabg(m). Thus f

meim
factors as f: G — M"Y — M.

Furthermore, for any m € f(G"), the fiber f~!(m) is compact. By continuity, for each
r € f~'(m), there exist an open normal subgroup U, C G such that f(z(U,)") = m.
Since f~!(m) = User-1(m) £(Uz)" is compact, we can cover it by finitely many z(U,)".
Thus there exits an open normal subgroup V' = () (U,) such that f(x(V')") = f(z) for all
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e G

Then set U = V NV’ Since MY ¢ MY, the map f factors through G — MY. Fur-
thermore, since f(x(U)") C f(x(V')") = f(x), the map factors as stated in the statement.
U

Proposition 3.7 Let G be a profinite group and M a discrete G-module. Then for each
open normal subgroup U C G, the group of U-invariants MY is a G /U-module and

colimy H (G /U, MY) = H'(G, M).

Proof. We claim that the canonical morphism lim C*(G/U, MY) — C*(G, M) is an
isomorphism. Since every continuous cochain f : G" — M factors through some (G/U)" —
MUY by the previous Proposition, the map is a surjection. Since taking the cofiltered colimit
commutes with taking homology, the statement follows. U

Proposition 3.8 For any short exact sequence of G-modules 0 — M’ — M — M" — 0,
we get a short exact sequence

0—C*(G,M") —C*(G,M) — C*(G,M") =0
exact in every degree.

Proof. Let U be an open normal subgroup of G. We have a left exact sequence of G/U-
modules 0 — M"Y — MY — M"Y, Since C*(G/U, ) = Homggu)((G/U)",-) we know
that C"(G/U, ) is left exact and thus this is a left-exact sequence

0— C"(G/U,MY) — C™(G/U,MY) = C™(G /U, M").

Since lim C"(G /U, MY) = C™(G, M) and filtered limits preserve exactness, it just remains
to show that C™"(G, M) — C™(G, M") is surjective. Let s : M” — M be a set-theoretic
section of the surjection M — M"”. The map s is continuous with respect to the discrete
topologies on M and M"”. Thus, for any cochain f : G" — M"”, the map so f: G" - M
is continuous and lifts f by construction. O

Proposition 3.9 The sequence of functors (M — H'(G, M)) forms a 0-functor whose
degree zero one component is M — M.

Proof. The differential C°(G,M) — CY(G,M) is m — (g — (g — 1)m). Hence
HO(C*(G,M)) = M¢. The existence of the long exact sequence follows the snake lemma,
as for instance in singular cohomology. For any morphism of short exact sequences

0 s M’ M s M —— 0

LD

0 s N/ s N s N/ s 0

~




we get a morphism

0 —— C*'(G,M') — C*(G,M) — C*(G,M") —— 0

| | |

0 — C*(G,N') —— C*(G,N) —— C*(G,N") —— 0
exact in every degree. Hence we have the necessary commuting diagram

HI(G,M") —— H(G, M)

| |

HH'I(G,N”) Hi+1(G,N/)
and thus we have a d-functor. O

Theorem 3.10 For any profinite group G and discrete G-module we have a unique iso-
morphism

H*(C*(G, M)) = H*(G, M).

Lemma 3.11 Let G be a finite group. Denote by P, the free Z-module with generators
(90y- -+, 9n) € G" (ie. forn < —2, P, =0). We equip it with the diagonal action of G:

9(9os - -+ 9n) = (990 - - -, 9gn)-

Forn >0, we define

n

dy:Py— Po1, (9oy---s0n) — Z(—l)i(go, oy Gis ey Gn)-
i=0

Then
oo > P> PP —7Z—0

is an exact complex of G-modules.

Proof. Its a computation to check that this is a complex. To show exactness, we construct
a homotopy (h,, : P, = P,11)nez which contracts the identity map. Then the identity and
the zero map induce the same map on the cohomology of (P, d,),. Set

O,n< -2
hy=<Sh1:Z—PF z—z(l),n=-1
hn: Py — Poi1, (90y---590) — (1,905, Gn)

It is a computation to check that this is a homotopy. Il
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Proof. [Proof of 3.10] It suffices to show that the functor H*(G, -) is effacable. For this fix
an arbitrary injective discrete G-module J and G = lim; G;.
1. Case: finite group The elements

(1, 91,9192, - -, 9192~ gn)

form a basis of the left Z[G]-module P,,. We thus have an isomorphism

Homyq) (P, 1) 5 C(G.I), f=(91,---.90) = [(1, 01,9192, -, 9192 - Gn), 1 =0.

It’s a computation to show that the differential d,,.; : P,.1 — P, induces the differential
C"(G,I) — C"(G,I). Thus the applying the functor Homgg(—, ) to the complex P,
we obtain the complex C*(G, ). The complex is exact away from degree 0. Since [ is an
injective G-module, the functor Homgg(—, I) is exact. Thus applying it to P, we get a
complex which is exact away from degree 0. Thus C*(G, I) is exact away from degree 0.

2. Case: Profinite group Let U C G be an open normal subgroup. For each left
G /U-module M we have

Homgz gy (M, IV) = Home(M, I).

Thus, since I is an injective left G-module, we know that IV is an injective left G/U-
module. Since G /U is finite, we know that H"(G/U,IV) = 0 for n > 0. Then by Prop 3.7
H"(G,I)=0. O

4 Some computations

Proposition 4.1 (Hilbert 90) We have H} (Speck,G,,) = 0.

Proof. We know that H},(Speck,G,,) = H'(Gj,colim(k’*)). Hence, by Ex. 3.5, we
have H!(Speck,G,,) = colimH'(Gal(L/k), L*). In the finite group case, we know that
H'(Gal(L/K), L") = 0, O

Example 4.2 (Kummer Theory) The associated long exact sequence to the Kummer
sequence 1S
0 — pn — K* — K* — H},(Spec K, j1,) — H{,(Spec K, G,,) — ...

By Hilbert 90, we know that H'(Spec K, G,,,) = 0. Furthermore, since G acts trivially on
[hn, we have
Hg(Spec K, 1) = H' (G, ptn) = Hom(Gc, pu).

Thus we get
K> J(K*)" =2 Homeoni (Gry fin)-

Example 4.3 We compute H'(Speck,Z). The stalk of the étale sheaf Z is 7 with the
trivial action of the absolute Galois group. Thus

H'(Speck,Z) = H' (G, Z) = Homeoni (Gy, Z) = 0
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