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1 Étale site of Spec k

The main reference here is [1].

Proposition 1.1 The coverings in the étale site of Spec k are the form refined to the form(∐
j∈Ji

Spec kij → k

)
i∈I

where kij/k are finite separable extensions up to isomorphism.

Proposition 1.2 An étale presheaf F on (Spec k)ét is an étale sheaf if and only if

1. for any disjoint union
∐
Ui we have

F
(∐

Ui

)
=
∏
F(Ui)

2. for all finite, separable extensions k′′/k′/k such that k′′/k′ is Galois we have that

F(Spec k′)→ F(Spec k′′) is injective and F(Spec k′) = F(Spec k′′)Gal(k′′/k′).

Proof. Pick an arbitary étale map U → Spec k and an étale covering {Ui → U}i∈I . Then
the equalizer diagram is

F(U)→
∏
i

F(Ui)⇒
∏
i0,i1

F(Ui0 ×U Ui1).

This is equal to F(U) → F(
∐

i Ui) ⇒ F(
∐
Ui ×k

∐
Ui). Thus it suffices to check the

equalizer diagram for coverings consisting of a single map (
∐
Ui → U). One can check

that it suffices to check the sheaf condition for U and U ′ connected. An étale scheme over
Spec k is a disjoint union

∐
Spec ki for finite separable extensions ki/k. If we know that

the functor respects disjoint unions, it then suffices to check the equalizer diagram for
finite separable extensions. Furthermore, since any finite separable extension is contained
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in a Galois extension, Galois coverings cover finite separable coverings. Hence assume that
k′′/k′ is Galois. Then, since

k′′ ⊗k′ k
′′ ∼=

∏
Gal(k′′/k′)

k′′, x⊗ y 7→ (xg(y))g,

the exactness of the diagram corresponds to the exactness of

F(Spec k′)→ F(Spec k′′)⇒
∏

Gal(k′′/k′)

F(Spec k′′).

Thus it suffices to show that F(Spec k′) → F(Spec k′′) is injective and F(Spec k′) =
F(Spec k′′)Gal(k′′/k′). This shows the sufficiency of the conditions. �

Proposition 1.3 The functors Gm and Ga are étale sheaves on Spec k.

Proof. Let k′′/k′/k be finite, separable extensions. Gm(Spec k′) = k′× → Gm(Spec k′′) =
k′′× is injective. The fact that Gm(Spec k′′)Gal(k′′/k′) = (k′×)Gal(k′′/k′) = k′× follows from
Galois theory. Similar argument for Ga. �

Proposition 1.4 The functor µn : (Spec k)ét → Ab, (T → Spec k) 7→ µn(Γ(T,OT )) is an
étale sheaf.

Example 1.5 (Kummer sequence) Let K be a field containing the all n-th roots of
unity in K̄, where charK - n. Then we have a short exact sequence of étale sheaves on
SpecK

0→ µn → Gm
x 7→xn

−→ Gm → 0.

This is checked at all the geometric points, where the sequence becomes 0 → µn(K̄) →
K̄× → K̄× → 0.

2 Relation of Étale cohomology to Galois cohomology

Let G be a topological group.

Proposition-Definition 2.1 The following are equivalent:

1. G is the limit of a cofiltered system of discrete, finite groups,

2. G is Hausdorff, compact and totally disconnected.

A topological group satisfying this condition is called a profinite group.

Proposition 2.2 A subgroup of a compact group is open if and only if it is closed and has
finite index.
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Example 2.3 (The examples to keep in mind) Any finite group is a profinite group.
Let k be a field and fix a separable closure ksep. Then the absolute Galois group Gk is a
profinite group.

Definition 2.4 A G-module is an abelian group M with a G acting by group homo-
morphism. A discrete G-module is a G-module such that the action of G is continuous
with respect to the discrete topology of M . Equivalently, for all m ∈ M , the stabilizer
StabG(m) ⊂ G is open. A morphism between discrete G-modules is G-equivariant group
homomorphism.

Theorem 2.5 Let k be a field and choose a separable closure ksep of k. We denote by
Gk := Gal(ksep/k). Then the functor

AbÉt(Spec k)→ {discrete Gk-sets}, F 7→ colimksep⊃k′⊃k,k′′/k′galoisF(k′)

has the quasi-inverse (
M : Spec k′ 7→ (MGal(ksep/k′)

)
←pM,

i.e. the two categories are equivalent.

Proof. We first show that these functors are well-defined. By functionality of both
F and Spec, the actions of Gk on the F(k′) is compatible, hence we get a Gk-action on
colimksep⊃k′⊃k,k′′/k′galoisF(k′). Since F is an abelian sheaf, we know that colimksep⊃k′⊃k,k′′/k′galoisF(k′)
is a Gk-module. The stabilizer of any element f = [l, a ∈ F(l)] ∈ colimksep⊃k′⊃kF(k′) is

StabGk
(f) = ker(G→ Gal(l/k))

which is open. Hence colimksep⊃k′⊃kF(k′) is a discrete Gk-module.

M respects disjoint unions by definition. Furthermore for k′′/k′/k finite separable and
k′′/k′ Galois we have

M(k′) = MGal(ksep/k′) →M(k′′)Gal(ksep/k′′) = MGal(ksep/k′′).

Furthermore, M(k′′)Gal(k′′/k′) = MGal(ksep/k′) = M(k′). Hence M is an étale sheaf. Then

colimM(k′) = colimMGal(ksep/k′) ∼= M.

Furthermore
colimk′′F(k′′)(k′) = (colimk′′F(k′′))Gal(ksep/k′) ∼= F(k′).

Thus the two functors are quasi-inverse to each other and thus the categories are equivalent
to each other. �

Proposition-Definition 2.6 The category of discrete Gk-modules is abelian and has enough
injectives. We denote by H•(Gk,M) the right derived functor of the functor of Gk-
invariants M 7→ MGk and we call H•(Gk,M) the galois cohomology with coefficients
in M .
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Proposition 2.7 Let F ∈ AbÉt(k). Then

Hn
ét(Spec k,F) ∼= Hn(Gk, colimF(k′)).

Proof. The equivalence of categories identifies the functor of Gk-invariants with the
global-sections functor. �

3 Group cohomology of profinite groups

The reference here is [5], with details from [2]. The finite case is explained in [4].

Definition 3.1 Let G be a profinite group and M a discrete G-module. The group of n-
cochains of G with value in M is the group of continuous functions Gn → M . We denote
this by Cn(G,M). Together with the coboundaries

d : Cn(G,M)→ Cn+1(G,M)

f 7→ df(g1, . . . , gn+1) = g1f(g2, . . . , gn+1)+
n∑

i=1

(−1)if(g1, . . . , gi−1, gigi+1, . . . , gn+1)+(−1)n+1f(g1, . . . , gn),

this forms a complex C•(G,M). The homology of this complex is called the cohomology of
G with coefficients in M .

Proposition 3.2 Let G be a group. Denote by BG the classifying space of principal G-
bundles. Then

H•(G,Z) = H•sing(BG,Z).

Example 3.3 (Ch 2, Section 4, Ex 1 in [4]) Let S be a set. Then the classifiying
space of the free group F (S) is a bouquet of circles indexed by S. Thus

H i(F (S),Z) = H i(BF (S),Z) =


Z, i = 0,

ZS, i = 1,

0, i > 1

.

Proposition 3.4 For any profinite group G and discrete G-module M , the group H0(G,M) =
MG. Furthermore,

H1(G,M) =
{f ∈ C1(G,M)|f(xy) = xf(y) + f(x)}

{f ∈ C1(G,M)|f(x) = xm−m for some m ∈M}
.

If G acts trivially on M , then H1(G,M) = Homcont(G,M).
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Proof. The zero-th cohomology group H0(G,M) is the kernel of C0(G,M) = M →
C1(G,M),m 7→ (g 7→ gm − m), whose elements are exactly the G-invariant elements of
M . The coboundary is the map

C1(G,M)→ C2(G,M), f 7→ ((a, b) 7→ af(b)− f(ab) + f(a).

Then

H1(G,M) =
{f : G→ G|f(xy) = xf(y) + f(x)}

{f : G→ G|f(x) = xm−m for some m ∈M}
.

If G acts trivally on M , then this translates to {f :G→M |f(xy)=f(x)+f(y)}
{f :G→M |f(x)=0} = Homcont(G,M).

�

Example 3.5 Let L/K be a finite Galois extension. Then L× is a discrete Gal(L/K)-
module. Then H0(Gal(L/K), L×) = K×. We now show that H1(Gal(L/K), L×) = 1.
Pick a 1-cocycle f . Then f(gh) = f(g)gf(h) or equivalently gf(h) = f(g)−1f(gh). The
coboundary condition is f ′(g) = g(a)/a for some a ∈ L×. We have

NmL/L〈h〉(f(h)) =
∏
g∈〈h〉

gf(h)
1-cocycle

=
∏
g∈〈h〉

f(gh)/f(g) =
n∏

i=0

f(hn+1)/f(hn) = 1.

Thus, by Hilbert 90 for L/L〈h〉, there exists b ∈ L× such that f(g) = g(b)/b.

Proposition 3.6 Let G be a profinite group. A map Gn → M into a discrete G-module
is a n-cochain if any only if there exists an open normal subgroup U ⊂ G such that the
diagram

Gn M

(G/U)n MU .

commutes.

Proof. If there exists such an U , then the morphism Gn → M is the composition of
three continuous maps and is thus continuous. To show necessity, assume that f is con-
tinuous. Since Gn is compact, the image of Gn in M with the discrete topology must
be finite. Thus, since M is a discrete G-module, the cochain f must factor through
M∩′

m∈im(f)
StabG(m). Let V be an open normal subgroup V ⊂ ∩′m∈im(f) StabG(m). Thus f

factors as f : G→MV →M .

Furthermore, for any m ∈ f(Gn), the fiber f−1(m) is compact. By continuity, for each
x ∈ f−1(m), there exist an open normal subgroup Ux ⊂ G such that f(x(Ux)n) = m.
Since f−1(m) =

⋃
x∈f−1(m) x(Ux)n is compact, we can cover it by finitely many x(Ux)n.

Thus there exits an open normal subgroup V ′ =
⋂′(Ux) such that f(x(V ′)n) = f(x) for all
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x ∈ Gn.

Then set U = V ∩ V ′. Since MV ⊂ MU , the map f factors through G → MU . Fur-
thermore, since f(x(U)n) ⊂ f(x(V ′)n) = f(x), the map factors as stated in the statement.

�

Proposition 3.7 Let G be a profinite group and M a discrete G-module. Then for each
open normal subgroup U ⊂ G, the group of U-invariants MU is a G/U-module and

colimUH
i(G/U,MU) ∼= H i(G,M).

Proof. We claim that the canonical morphism limC•(G/U,MU) → C•(G,M) is an
isomorphism. Since every continuous cochain f : Gn →M factors through some (G/U)n →
MU by the previous Proposition, the map is a surjection. Since taking the cofiltered colimit
commutes with taking homology, the statement follows. �

Proposition 3.8 For any short exact sequence of G-modules 0 → M ′ → M → M ′′ → 0,
we get a short exact sequence

0→ C•(G,M ′)→ C•(G,M)→ C•(G,M ′′)→ 0

exact in every degree.

Proof. Let U be an open normal subgroup of G. We have a left exact sequence of G/U -
modules 0 → M ′U → MU → M ′′U . Since Cn(G/U, ·) = HomZ[G/U ]((G/U)n, ·) we know
that Cn(G/U, ·) is left exact and thus this is a left-exact sequence

0→ Cn(G/U,M ′U)→ Cn(G/U,MU)→ Cn(G/U,M ′′U).

Since limCn(G/U,MU) = Cn(G,M) and filtered limits preserve exactness, it just remains
to show that Cn(G,M) → Cn(G,M ′′) is surjective. Let s : M ′′ → M be a set-theoretic
section of the surjection M → M ′′. The map s is continuous with respect to the discrete
topologies on M and M ′′. Thus, for any cochain f : Gn → M ′′, the map s ◦ f : Gn → M
is continuous and lifts f by construction. �

Proposition 3.9 The sequence of functors (M → H i(G,M)) forms a δ-functor whose
degree zero one component is M →MG.

Proof. The differential C0(G,M) → C1(G,M) is m 7→ (g 7→ (g − 1)m). Hence
H0(C•(G,M)) = MG. The existence of the long exact sequence follows the snake lemma,
as for instance in singular cohomology. For any morphism of short exact sequences

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0
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we get a morphism

0 C•(G,M ′) C•(G,M) C•(G,M ′′) 0

0 C•(G,N ′) C•(G,N) C•(G,N ′′) 0

exact in every degree. Hence we have the necessary commuting diagram

H i(G,M ′′) H i(G,M ′)

H i+1(G,N ′′) H i+1(G,N ′)

and thus we have a δ-functor. �

Theorem 3.10 For any profinite group G and discrete G-module we have a unique iso-
morphism

H•(C•(G,M)) ∼= H•(G,M).

Lemma 3.11 Let G be a finite group. Denote by Pn the free Z-module with generators
(g0, . . . , gn) ∈ Gn+1 (i.e. for n 6 −2, Pn = 0). We equip it with the diagonal action of G:

g(g0, . . . , gn) = (gg0, . . . , ggn).

For n > 0, we define

dn : Pn → Pn−1, (g0, . . . , gn) 7→
n∑

i=0

(−1)i(g0, . . . , ĝi, . . . , gn).

Then
. . .→ P2 → P1 → P0 → Z→ 0

is an exact complex of G-modules.

Proof. Its a computation to check that this is a complex. To show exactness, we construct
a homotopy (hn : Pn → Pn+1)n∈Z which contracts the identity map. Then the identity and
the zero map induce the same map on the cohomology of (Pn, dn)n. Set

hn =


0, n 6 −2

h−1 : Z→ P0 x 7→ x(1), n = −1

hn : Pn → Pn+1, (g0, . . . , gn) 7→ (1, g0, . . . , gn)

.

It is a computation to check that this is a homotopy. �
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Proof. [Proof of 3.10] It suffices to show that the functor H•(G, ·) is effacable. For this fix
an arbitrary injective discrete G-module J and G = limiGi.
1. Case: finite group The elements

(1, g1, g1g2, . . . , g1g2 · · · gn)

form a basis of the left Z[G]-module Pn. We thus have an isomorphism

HomZ[G](Pn, I)
∼=→ Cn(G, I), f 7→ (g1, . . . , gn) 7→ f(1, g1, g1g2, . . . , g1g2 · gn), n > 0.

It’s a computation to show that the differential dn+1 : Pn+1 → Pn induces the differential
Cn(G, I) → Cn+1(G, I). Thus the applying the functor HomZ[G](−, I) to the complex P•
we obtain the complex C•(G, I). The complex is exact away from degree 0. Since I is an
injective G-module, the functor HomZ[G](−, I) is exact. Thus applying it to P• we get a
complex which is exact away from degree 0. Thus C•(G, I) is exact away from degree 0.

2. Case: Profinite group Let U ⊂ G be an open normal subgroup. For each left
G/U -module M we have

HomZ[G/U ](M, IU) = HomG(M, I).

Thus, since I is an injective left G-module, we know that IU is an injective left G/U -
module. Since G/U is finite, we know that Hn(G/U, IU) = 0 for n > 0. Then by Prop 3.7
Hn(G, I) = 0. �

4 Some computations

Proposition 4.1 (Hilbert 90) We have H1
ét(Spec k,Gm) = 0.

Proof. We know that H1
ét(Spec k,Gm) = H1(Gk, colim(k′×)). Hence, by Ex. 3.5, we

have H1(Spec k,Gm) = colimH1(Gal(L/k), L×). In the finite group case, we know that
H1(Gal(L/K), L×) = 0. �

Example 4.2 (Kummer Theory) The associated long exact sequence to the Kummer
sequence is

0→ µn → K× → K× → H1
ét(SpecK,µn)→ H1

ét(SpecK,Gm)→ . . .

By Hilbert 90, we know that H1(SpecK,Gm) = 0. Furthermore, since GK acts trivially on
µn, we have

H1
ét(SpecK,µn) = H1(GK , µn) = Hom(GK , µn).

Thus we get
K×/(K×)n ∼= Homcont(GK , µn).

Example 4.3 We compute H1(Spec k,Z). The stalk of the étale sheaf Z is Z with the
trivial action of the absolute Galois group. Thus

H1(Spec k,Z) = H1(Gk,Z) = Homcont(Gk,Z) = 0
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