Vanishing Theorems in Galois Cohomology

Paul Steinmann

December 20, 2018

This talk is based on The Stacks Project [3] and Serre [2], but presented in a more digestible manner suggested by Maxim.

1 Tsen's Theorem and Implications

The vanishing of $\mathrm{H}^{2}\left(\operatorname{Spec}(L), \mathbb{G}_{\mathrm{m}}\right)$ for fields L is very important to study, as it implies vanishing of higher cohomology groups in certain cases.

For the proof of Tsen's theorem see Gille and Szamuely [1, Theorem 6.2.8].
Definition 1.1. A field K is called C_{1} if for all integers $n>d>0$ and every homogeneous polynomial $F \in K\left[X_{1}, \ldots, X_{n}\right]$ of degree d there exists a nontrivial zero of F in K. Equivalently, every hypersurface of degree d in \mathbb{P}_{K}^{n-1} has a K-rational point.

Lemma 1.2. Let K be a C_{1}-field. Then every algebraic extension L / K is also C_{1}.
Proof. Let $f \in L\left[x_{1}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree $d<n$. Choose a basis v_{1}, \ldots, v_{m} of the K-vector space L. We make a change of variables by

$$
x_{i}:=\sum_{j=1}^{m} x_{i j} v_{j},
$$

where $x_{i j}$ are new variables. Now consider the equation $N_{L / K}\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=0$, which becomes a homogeneous equation of degree $m d$ in $m n$ variables over K after the change of variables. Since $m d<m n$ there is a solution $\left(\alpha_{i j}\right)$ of this equation in K by assumption. Changing back to the initial coordinates and using the fact that the norm of an element is zero if and only if the element is zero, we find a solution of $f=0$ in L.

Theorem 1.3 (Tsen). Let K be a field extension of transcendence degree 1 over an algebraically closed field k. Then K is C_{1}.

Proof. By Lemma 1.2 we can reduce to the purely transcendental case $K=k(t)$. Let $f \in k(t)\left[x_{1}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree $d<n$. We can get rid of denominators and assume without loss of generality that $f \in k[t]\left[x_{1}, \ldots, x_{n}\right]$. We choose an integer $N>0$ and make a change of variables by

$$
x_{i}:=\sum_{j=0}^{N} a_{i j} t^{j}
$$

for new variables $a_{i j}$. Plugging this into f and regrouping by powers of t we obtain an equation we need to solve:

$$
0=f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{d N+r} f_{\ell}\left(a_{10}, \ldots, a_{n N}\right) t^{\ell}
$$

where r is the maximal degree of all coefficients of f and all f_{ℓ} are homogeneous polynomials over k in the variables $a_{i j}$. This equation is satisfied if and only if there exist elements $a_{i j} \in k$ such that $f_{\ell}\left(a_{10}, \ldots, a_{n N}\right)=0$ for all $0 \leqslant \ell \leqslant d N+r$. So we have $d N+r+1$ equations in $n(N+1)$ variables, which need to have a common solution in k. For large enough N we have $d N+r+1 \leqslant n(N+1)$, so the equations define a nonempty Zariski closed subset of $\mathbb{P}^{n N+n-1}$, which has a k-rational point because k is algebraically closed. We conclude that f has a $k(t)$-rational point and so K is C_{1}.

Corollary 1.4. Let K be a field extension of transcendence degree 1 over an algebraically closed field k. Then $\operatorname{Br}(K)=0$.

Proof. Pick a separable closure K^{s} of K. Let D be a central division algebra over K. By Alex' talk there is a separable extension L of K which splits D. In particular, there exists an integer $n>0$ and a homomorphism $\varphi: D \rightarrow M_{n}\left(K^{s}\right)$ which becomes an isomorphism by tensoring $\widetilde{\varphi}: D \otimes_{K} K^{s} \xlongequal{\cong} M_{n}\left(K^{s}\right)$. Let σ be an element of $\operatorname{Gal}\left(K^{s} / K\right)$. By abuse of notation also denote σ for the induced endomorphism on $M_{n}\left(K^{s}\right)$ and for the induced endomorphism on $D \otimes_{K} K^{s}$. By the Noether-Skolem Theorem for the two homomorphisms $\sigma \circ \widetilde{\varphi} \circ \sigma^{-1}$ and $\widetilde{\varphi}$ there exists an invertible element $b \in M_{n}\left(K^{s}\right)$ such that $\sigma \circ \widetilde{\varphi} \circ \sigma^{-1}=b \cdot \widetilde{\varphi} \cdot b^{-1}$. For every element $d \in D \otimes_{K} K^{s}$ with $d=\sigma(d)$ we then have

$$
\sigma(\operatorname{det}(\widetilde{\varphi}(d)))=\operatorname{det}(\sigma \circ \widetilde{\varphi}(d))=\operatorname{det}\left(b \cdot \widetilde{\varphi}(d) \cdot b^{-1}\right)=\operatorname{det}(\widetilde{\varphi}(d)) .
$$

Therefore the determinant induces a homomorphism det : $D \rightarrow K$. Choose a K-basis $v_{1}, \ldots, v_{n^{2}}$ of D. We then have the equation $\operatorname{det}\left(\sum_{i=1}^{n^{2}} x_{i} v_{i}\right)=0$, which is a homogeneous polynomial over K of degree n in n^{2} variables. Since D is divisible, there is no solution of this equation. By Tsen's Theorem 1.3 we conclude that therefore $n^{2}>n$ and so $n=1$, which implies $D \cong K$.

Corollary 1.5. Let K be a field extension of transcendence degree 1 over an algebraically closed field k. Then for every separable algebraic extension L / K we have $\mathrm{H}^{2}\left(\operatorname{Spec}(L), \mathbb{G}_{\mathrm{m}}\right)=0$.

Proof. Such a field L has also transcendence degree 1 over k, so by 1.4 the Brauergroup vanishes $\operatorname{Br}(L)=0$. By Alex' talk we know that $\mathrm{H}^{2}\left(\operatorname{Spec}(L), \mathbb{G}_{\mathrm{m}}\right) \cong \operatorname{Br}(L)$ which implies the statement.

2 Vanishing in Group Cohomology

2.1 Finite Groups

In this section let G be a finite group and $H<G$ a subgroup. By a " G-module" we mean a discrete left G-module.

Definition 2.1. For an H-module M we define G-modules

$$
\begin{gathered}
\operatorname{ind}_{H}^{G} M:=\mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} M, \quad g \cdot(x \otimes m):=g x \otimes m \\
\operatorname{Ind}_{H}^{G} M:=\operatorname{Hom}_{\mathbb{Z}[H]}(\mathbb{Z}[G], M), \quad(g \cdot f)(x):=f(x g) .
\end{gathered}
$$

Lemma 2.2. Let $S \subset G$ be a set of representatives for the right H-cosets in G. For every H-module M the map

$$
\operatorname{Ind}_{H}^{G} M \rightarrow \operatorname{ind}_{H}^{G} M, \quad f \mapsto \sum_{g \in S} g^{-1} \otimes f(g)
$$

is a G-equivariant isomorphism, which is independent of S.
Proof. The independence of S follows from

$$
(h g)^{-1} \otimes f(h g)=g^{-1} h^{-1} \otimes h f(g)=g^{-1} \otimes f(g)
$$

for all $h \in H$ and $g \in G$ and $f \in \operatorname{Ind}_{H}^{G} M$. The G-equivariance follows from

$$
\sum_{g \in S} g^{-1} \otimes(x \cdot f)(g)=\sum_{g \in S} g^{-1} \otimes f(g x)=\sum_{g^{\prime} \in S x} x g^{\prime-1} \otimes f\left(g^{\prime}\right)=x \cdot \sum_{g^{\prime} \in S x} g^{\prime-1} \otimes f\left(g^{\prime}\right)
$$

for all $f \in \operatorname{Ind}_{H}^{G} M$ and $x \in G$ with the substitution $g^{\prime}:=g x$ and using the fact that $S x$ is again a set of representatives for the right H-cosets in G.

To prove that it is an isomorphism, note that by bilinearity of the tensor product, every element in $\operatorname{ind}_{H}^{G} M$ can be written as $\sum_{g \in S} g^{-1} \otimes b_{g}$ for certain elements $b_{g} \in M$. Then the map defined by

$$
\sum_{g \in S} g^{-1} \otimes b_{g} \mapsto\left(G \ni x \mapsto\left\{\begin{array}{ll}
x g^{-1} b_{g} & \text { if } H g=H x \\
0 & \text { otherwise }
\end{array}\right)\right.
$$

for $x \in G$ is an inverse.

Lemma 2.3. The functor $\operatorname{Ind}_{H}^{G}$ is exact and preserves injectives.
Proof. The functor $\operatorname{Ind}_{H}^{G}$ is right adjoint to the restriction functor $\operatorname{res}_{H}^{G}$ defined by the inclusion $H \rightarrow G$ and so left exact. On the other hand $\operatorname{ind}_{H}^{G}$ is left adjoint to the restriction functor $\operatorname{res}_{H}^{G}$ and so right exact. As the two functors are isomorphic, we conclude exactness.

Let I be an injective H-module. Then the functor $\operatorname{Hom}_{\mathbb{Z}[H]}(-, I)$ is exact. Furthermore, the restriction functor $\operatorname{res}_{H}^{G}$ is exact. Hence the composition $\operatorname{Hom}_{\mathbb{Z}[H]}\left(\operatorname{res}_{H}^{G}-, I\right)$ is exact, and it is isomorphic to the functor $\operatorname{Hom}_{\mathbb{Z}[G]}\left(-, \operatorname{Ind}_{H}^{G} I\right)$ by adjointness. We conclude that $\operatorname{Ind}_{H}^{G} I$ is an injective G-module.

Proposition 2.4 (Shapiro's Lemma). For every $q \geqslant 0$ and every H-module M there is an isomorphism $\mathrm{H}^{q}\left(G, \operatorname{Ind}_{H}^{G} M\right) \cong \mathrm{H}^{q}(H, M)$.

Proof. By Lemma 2.3 the functor $\operatorname{Ind}_{H}^{G}$ is exact and preserves injectives. By the adjunction $\operatorname{Hom}_{\mathbb{Z}[G]}\left(\mathbb{Z}, \operatorname{Ind}_{H}^{G} M\right) \cong \operatorname{Hom}_{\mathbb{Z}[H]}(\mathbb{Z}, M)$ the set of G-invariants of $\operatorname{Ind}_{H}^{G} M$ is isomorphic to the set of H-invariants of M. We conclude the statement.

Lemma 2.5. Let $S \subset G$ be a set of representatives for the right H-cosets in G. For every G-module M the map

$$
\operatorname{Ind}_{H}^{G} M \rightarrow M, \quad f \mapsto \sum_{g \in S} g^{-1} \cdot f(g)
$$

is a G-equivariant homomorphism.

Proposition 2.6. Set $n:=[G: H]$. For every $q \geqslant 0$ and every G-module M the multiplication by n map $\mathrm{H}^{q}(G, M) \rightarrow \mathrm{H}^{q}(G, M)$ factors through $H^{q}(H, M)$.

Proof. The composition of $M \rightarrow \operatorname{Ind}_{H}^{G} M, \quad m \mapsto(g \mapsto g m)$ with the homomorphism of Lemma 2.5 is the homomorphism $M \rightarrow M$ given by multiplication by n. Thus the multiplication by $n \operatorname{map} \mathrm{H}^{q}(G, M) \rightarrow \mathrm{H}^{q}(G, M)$ factors through $\mathrm{H}^{q}\left(G, \operatorname{Ind}_{H}^{G} M\right)$, which is isomorphic to $H^{q}(H, M)$ by Proposition 2.4.

Corollary 2.7. Let $n:=|G|$. Then for all $q>0$ and every G-module M the cohomology group $\mathrm{H}^{q}(G, M)$ is n-torsion.

Proof. By Proposition 2.6 the multiplication by n map on $\mathrm{H}^{q}(G, M)$ factors through the group $\mathrm{H}^{q}(\{1\}, M)=0$.

2.2 Profinite Groups

Let G be a profinite group.
Definition 2.8. Let A be an abelian group. We define $\operatorname{Ind}^{G} A:=\operatorname{colim}_{U} \operatorname{Ind}_{\{1\}}^{G / U} A$, where the colimit runs over all open normal subgroups $U \subset G$. Note that $\operatorname{Ind}^{G} A$ is equipped with a G-action.

Lemma 2.9. Let A be an abelian group. Then for every $q \geqslant 1$ we have $\mathrm{H}^{q}\left(G, \operatorname{Ind}^{G} A\right)=0$.
Proof. Note that for every open normal subgroup $U^{\prime} \subset G$ the set of U^{\prime}-invariants satisfies

$$
\left(\operatorname{colim}_{U} \operatorname{Ind}_{\{1\}}^{G / U} A\right)^{U^{\prime}}=\operatorname{Ind}_{\{1\}}^{G / U^{\prime}} A .
$$

By Proposition 3.7 of Lukas' notes it follows

$$
\mathrm{H}^{q}\left(G, \operatorname{Ind}^{G} A\right) \cong \operatorname{colim}_{U} \mathrm{H}^{q}\left(G / U,\left(\operatorname{Ind}^{G} A\right)^{U}\right)=\operatorname{colim}_{U} \mathrm{H}^{q}\left(G / U, \operatorname{Ind}_{\{1\}}^{G / U} A\right)=0,
$$

where the vanishing follows from Proposition 2.4.

Recall: For a prime p a group of order a power of p is called a p-group. A limit of finite p-groups is called a pro- p-group. A subgroup G_{p} of a profinite group G is called Sylow p subgroup if it is closed and for every open normal subgroup $U \subset G$ the image of G_{p} in G / U is a Sylow p-subgroup.

Lemma 2.10. Let p be a prime and let G be a finite p-group. Every finite p-power-torsion G-module M with $M \neq 0$ satisfies $M^{G} \neq 0$.

Proof. The set $M \backslash M^{G}$ is the disjoint union of all orbits that are of length $\geqslant 2$. The length of every such orbit must be divisible by p since G is a p-group. Hence $\left|M \backslash M^{G}\right|$ and $|M|$ are both divisible by p. We conclude that $\left|M^{G}\right|>1$.

Lemma 2.11. Let G be a pro-p-group. Every finite p-power-torsion G-module M admits a filtration with subquotients isomorphic to $\mathbb{Z} / p \mathbb{Z}$ with trivial action of G.

Proof. Because M is finite, the stabilizers are open normal subgroups of G and there are only finitely many of them. Hence there is an open normal subgroup $U \subset G$ which induces an action of the finite p-group G / U on M. By Lemma 2.10 we conclude that $M^{G / U} \neq 0$.
We use induction on $m:=|M|$, which is a p-power by the assumption on M. For $m=p$ the statement is true because $M^{G / U} \neq 1$ and so $M^{G / U}=M$, hence $M \cong \mathbb{Z} / p \mathbb{Z}$ and the action is trivial. Now assume that $m>p$ and that the statement is true for every finite p-power-torsion G-module. The module $M / M^{G / U}$ is again a p-power-torsion G-module and it has cardinality stricly less than m. By the induction hypothesis, there is a filtration of $M / M^{G / U}$ with subquotients isomorphic to $\mathbb{Z} / p \mathbb{Z}$. This filtration lifts to a filtration of M which contains $M^{G / U}$ with subquotients isomorphic to $\mathbb{Z} / p \mathbb{Z}$. Since G / U acts trivially on $M^{G / U}$ we can extend this filtration to the left by a composition series of $M^{G / U}$.

We can now prove our main vanishing theorem of the cohomology of profinite groups:
Theorem 2.12. Let G be a profinite group. Assume that for every prime p there is a Sylow p-subgroup $G_{p} \subset G$ such that $\mathrm{H}^{2}\left(G_{p}, \mathbb{Z} / p \mathbb{Z}\right)=0$. Then $\mathrm{H}^{q}(G, M)=0$ for every $q \geqslant 2$ and every torsion G-module M.

Proof. We procede in three steps:
(a) Let p be a prime. We prove that every finite p-power-torsion G-module M satisfies $\mathrm{H}^{2}(G, M)=0$. Let $G_{p} \subset G$ be a Sylow p-subgroup and let $U \subset G$ be an open normal subgroup. Then the index $a:=\left[G / U: G_{p} /\left(G_{p} \cap U\right)\right]$ is not divisible by p. By Proposition 2.6 the multiplication by a map on $\mathrm{H}^{2}\left(G / U, M^{U}\right)$ factors through $\mathrm{H}^{2}\left(G_{p} /\left(G_{p} \cap U\right), M^{U}\right)$. But because M^{U} is a p-power-torsion G-module the multiplication by a map is an isomorphism. Hence the induced restriction map $\mathrm{H}^{2}\left(G / U, M^{U}\right) \rightarrow \mathrm{H}^{2}\left(G_{p} /\left(G_{p} \cap U\right), M^{U}\right)$ is injective. By taking the colimit we obtain an injective restriction map $\mathrm{H}^{2}(G, M) \rightarrow \mathrm{H}^{2}\left(G_{p}, M\right)$. By Lemma 2.11 there is a filtration $0 \subset M_{0} \subset M_{1} \subset \cdots \subset M_{\ell}=M$ whose subquotients are isomorphic to $\mathbb{Z} / p \mathbb{Z}$. Let $0 \leqslant i<\ell$. By assumption $\mathrm{H}^{2}\left(G_{p}, \mathbb{Z} / p \mathbb{Z}\right)=0$, so by using the long exact sequence in cohomology associated to $0 \rightarrow M_{i} \rightarrow M_{i+1} \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0$ we conclude that there is a surjection $\mathrm{H}^{2}\left(G_{p}, M_{i}\right) \rightarrow \mathrm{H}^{2}\left(G_{p}, M_{i+1}\right)$. Since this is true for every $0 \leqslant i<\ell$ and $M_{0} \cong \mathbb{Z} / p \mathbb{Z}$ we conclude that there is a surjection $0=\mathrm{H}^{2}\left(G_{p}, M_{0}\right) \rightarrow \mathrm{H}^{2}\left(G_{p}, M\right)$ and hence the latter vanishes. Using the injective map $\mathrm{H}^{2}(G, M) \rightarrow \mathrm{H}^{2}\left(G_{p}, M\right)$ constructed above we conclude that $\mathrm{H}^{2}(G, M)=0$.
(b) We prove that every torsion G-module M satisfies $\mathrm{H}^{2}(G, M)=0$. We have

$$
\begin{aligned}
\mathrm{H}^{2}(G, M) & \cong \operatorname{colim}_{U} \mathrm{H}^{2}\left(G / U, M^{U}\right) \\
& \cong \operatorname{colim}_{U} \mathrm{H}^{2}\left(G / U, \bigoplus_{p} \operatorname{colim}_{r} M^{U}\left[p^{r}\right]\right) \\
& \cong \bigoplus_{p} \operatorname{colim}_{r} \operatorname{colim}_{U} \mathrm{H}^{2}\left(G / U, M^{U}\left[p^{r}\right]\right) \\
& \cong \bigoplus_{p} \operatorname{colim}_{r} \mathrm{H}^{2}\left(G, M\left[p^{r}\right]\right) \\
& =0,
\end{aligned}
$$

where the vanishing follows from part (a). Here we also used that for the finite groups G / U group cohomology commutes with filtered colimits and direct sums, as can be seen by using the \mathbb{Z}-bar resolution to compute group cohomology.
(c) The natural injective map $M^{U} \rightarrow \operatorname{Ind}_{\{1\}}^{G / U} M$ passes by taking colimits to an injective homomorphism of G-modules $M \rightarrow \operatorname{Ind}^{G} M$. Consider the short exact sequence $0 \rightarrow$ $M \rightarrow \operatorname{Ind}^{G} M \rightarrow\left(\operatorname{Ind}^{G} M\right) / M \rightarrow 0$. Passing to the long exact sequence and using Lemma 2.9 we conclude that $\mathrm{H}^{q-1}\left(G,\left(\operatorname{Ind}^{G} M\right) / M\right) \cong \mathrm{H}^{q}(G, M)$ for all $q \geqslant 2$. Because M is torsion, so is $\operatorname{Ind}^{G} M$ and so is $\left(\operatorname{Ind}^{G} M\right) / M$. By using (b) and an induction on q we conclude that $\mathrm{H}^{q}(G, M)=0$ for all $q \geqslant 2$.

We can get rid of the assumption that M is torsion by paying with one cohomological degree:
Corollary 2.13. Let G be a profinite group. If for every prime p there exists a Sylow psubgroup G_{p} of G such that $\mathrm{H}^{2}\left(G_{p}, \mathbb{Z} / p \mathbb{Z}\right)=0$, then $\mathrm{H}^{q}(G, M)=0$ for all $q \geqslant 3$ and every G-module M.

Proof. Note that for every open normal subgroup $U \subset G$ the group $\mathrm{H}^{q}\left(G / U, M^{U} \otimes \mathbb{Q}\right)$ is torsion for $q \geqslant 1$ by Corollary 2.7 but also free because we tensored by \mathbb{Q}. Hence these cohomology groups are zero. We conclude that $\mathrm{H}^{q}(G, M \otimes \mathbb{Q}) \cong \operatorname{colim}_{U} \mathrm{H}^{q}\left(G / U, M^{U} \otimes \mathbb{Q}\right)$ is zero, too. Consider the exact sequence

$$
0 \rightarrow M_{\text {tors }} \rightarrow M \rightarrow M \otimes \mathbb{Q} \rightarrow M \otimes \mathbb{Q} / \mathbb{Z} \rightarrow 0
$$

which we split into two:

$$
0 \rightarrow M_{\text {tors }} \rightarrow M \rightarrow N \rightarrow 0, \quad 0 \rightarrow N \rightarrow M \otimes \mathbb{Q} \rightarrow M \otimes \mathbb{Q} / \mathbb{Z} \rightarrow 0
$$

Note that $M \otimes \mathbb{Q} / \mathbb{Z}$ is torsion, so by Theorem 2.12 its cohomology groups in degree $q \geqslant 2$ vanish. By a long exact sequence we obtain isomorphisms $\mathrm{H}^{q}(G, N) \cong \mathrm{H}^{q}(G, M \otimes \mathbb{Q})=0$ for $q \geqslant 3$. By another long exact sequence and the same argument we therefore obtain isomorphisms $\mathrm{H}^{q}(G, M) \cong \mathrm{H}^{q}(G, N)=0$ for all $q \geqslant 3$.

3 Vanishing in Étale Cohomology

We state the following proposition without proof:
Proposition 3.1 (Artin-Schreier sequence). Let p be a prime. For every scheme X over \mathbb{F}_{p} the natural sequence of étale sheaves

$$
0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{G}_{a} \xrightarrow{x \mapsto x-x^{p}} \mathbb{G}_{a} \rightarrow 0
$$

is exact.

Lemma 3.2. For every field K and every $q \geqslant 1$ we have $\mathrm{H}^{q}\left(\operatorname{Spec}(K), \mathbb{G}_{a}\right)=0$.
Proof. Let K^{s} be a separable closure of K and let G be the Galois group of K^{s} over K. Let $U \subset G$ be an open normal subgroup and let L be the corresponding finite Galois extension of K. By the normal basis theorem there exists an element $x \in L$ such that $(\sigma(x))_{\sigma \in G}$ is a K-basis of L. We obtain a group homomorphism

$$
L \ni \sum_{\sigma \in G} k_{\sigma} \sigma(x) \mapsto\left(\tau \mapsto k_{\tau^{-1}}\right) \in \operatorname{Ind}_{\{1\}}^{G / U} K .
$$

This is in fact an isomorphism of G / U-modules. We conclude that $\operatorname{colim}_{L} \mathbb{G}_{a}(L)=\operatorname{colim}_{L} L \cong$ Ind $^{G} K$, where the colimit runs over all finite Galois extensions of K in K^{s}. Using Proposition
2.7 of Lukas' talk and Lemma 2.9 we obtain for all $q \geqslant 1$:

$$
\mathrm{H}^{q}\left(\operatorname{Spec}(K), \mathbb{G}_{a}\right) \cong \mathrm{H}^{q}\left(G, \operatorname{colim}_{L} \mathbb{G}_{a}(L)\right) \cong \mathrm{H}^{q}\left(G, \operatorname{Ind}^{G} K\right)=0 .
$$

Now we can state our main vanishing theorem:
Theorem 3.3. Let K be a field. If $\mathrm{H}^{2}\left(\operatorname{Spec}(L), \mathbb{G}_{\mathrm{m}}\right)=0$ for every separable algebraic extension L / K then $\mathrm{H}^{q}\left(\operatorname{Spec}(K), \mathbb{G}_{\mathrm{m}}\right)=0$ for every $q \geqslant 1$.

Proof. The case $q=1$ is Hilbert 90 (see Prop. 4.1. in Lukas' notes). The cohomology group $\mathrm{H}^{2}\left(\operatorname{Spec}(K), \mathbb{G}_{\mathrm{m}}\right)$ is zero by assumption. Let $q \geqslant 3$. We verify the conditions of Corollary 2.13. Let K^{s} be a separable closure of K and denote by G the Galois group. For every prime p pick a Sylow p-subgroup G_{p} of G and let K_{p} be the corresponding field extension of K inside K^{s}. We will prove that $\mathrm{H}^{2}\left(G_{p}, \mathbb{Z} / p \mathbb{Z}\right)=0$ for every prime p. There are two cases:
(a) Assume that $\operatorname{char}(K) \neq p$. Then we can use the long exact sequence induced by the Kummer sequence

$$
1 \rightarrow \mu_{p} \rightarrow \mathbb{G}_{\mathrm{m}} \rightarrow \mathbb{G}_{\mathrm{m}} \rightarrow 1
$$

on $\operatorname{Spec}\left(K_{p}\right)$ to deduce that $\mathrm{H}^{2}\left(\operatorname{Spec}\left(K_{p}\right), \mu_{p}\right)=0$. Indeed $\mathrm{H}^{1}\left(\operatorname{Spec}\left(K_{p}\right), \mathbb{G}_{\mathrm{m}}\right)$ vanishes by Hilbert 90 and $\mathrm{H}^{2}\left(\operatorname{Spec}\left(K_{p}\right), \mathbb{G}_{\mathrm{m}}\right)$ vanishes by assumption. On $\operatorname{Spec}\left(K_{p}\right)$ we have an isomorphism of étale sheaves $\mathbb{Z} / p \mathbb{Z} \cong \mu_{p}$; this can be checked on stalks. We conclude that $\mathrm{H}^{2}\left(G_{p}, \mathbb{Z} / p \mathbb{Z}\right) \cong \mathrm{H}^{2}\left(\operatorname{Spec}\left(K_{p}\right), \mathbb{Z} / p \mathbb{Z}\right)=0$.
(b) Assume that $\operatorname{char}(K)=p$. Then we use the long exact sequence coming from the Artin Schreier sequence of Proposition 3.1

$$
0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{G}_{a} \rightarrow \mathbb{G}_{a} \rightarrow 0
$$

to deduce that $\mathrm{H}^{2}\left(\operatorname{Spec}\left(K_{p}\right), \mathbb{Z} / p \mathbb{Z}\right)=0$. Indeed $\mathrm{H}^{q}\left(\operatorname{Spec}\left(K_{p}\right), \mathbb{G}_{a}\right)=0$ for $q \geqslant 1$ by Lemma 3.2, so $\mathrm{H}^{2}\left(G_{p}, \mathbb{Z} / p \mathbb{Z}\right) \cong \mathrm{H}^{2}\left(\operatorname{Spec}\left(K_{p}\right), \mathbb{Z} / p \mathbb{Z}\right)=0$.

We see that the assumptions of Corollary 2.13 are satisfied and conclude together with the case of $q=1$ and $q=2$ above that $\mathrm{H}^{q}\left(\operatorname{Spec}(K), \mathbb{G}_{\mathrm{m}}\right)=0$ for all $q \geqslant 1$.

By Corollary 1.5 we obtain
Corollary 3.4. Let K be a field of transcendence degree 1 over an algebraically closed field. Then $\mathrm{H}^{q}\left(\operatorname{Spec}(K), \mathbb{G}_{\mathrm{m}}\right)=0$ for every $q \geqslant 1$.

References

[1] Gille, P., Szamuely, T. (2006). Central Simple Algebras and Galois Cohomology (Cambridge Studies in Advanced Mathematics). Cambridge University Press. doi:10.1017/CBO9780511607219
[2] J.-P. Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002. x+210 pp.
[3] Stacks Project authors. The Stacks Project. http://stacks.math.columbia.edu, Tag 0A2M.

